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Preface

The objective of this book is to delve into intricate subjects concerning the analysis
of nonlinear vibration issues in continuous structures. The target audience for this
material is graduate students seeking to expand their knowledge in this area. This
document aims to present the fundamental principles of nonlinear vibrations in a
clear and concise manner, both in theory and in practice. Numerous practical exam-
ples have been utilized to elaborate on nonlinear concepts comprehensively. The
methodology employed for elucidating and articulating the subject matter is designed
to familiarize the student and researcher with the primary and essential principles
of linear vibrations. In essence, the approach involves a comprehensive coverage of
these principles. Subsequently, the individual acquires knowledge of the fundamen-
tal principles underlying nonlinear vibrations, followed by an understanding of the
techniques employed in the analysis and resolution of such issues. The researcher’s
cognitive abilities are significantly tested by the presentation of a practical and intri-
cate example.

The literature reveals the lack of a comprehensive book concerning nonlinear
vibration and dynamics of smart continuous structures. Because of the existence
of such a lack in the literature, the proposed book will be arranged to analyze the
nonlinear vibration and dynamics of smart continuous structures thoroughly. The
proposed book, Nonlinear Vibration and Dynamics of Smart Continuous Structures
and Materials, offers a wide range of application-based and practical considerations
of state-of-the-art smart continuous structures. A fascinating exploration of the ana-
lytical and numerical solution procedures can be found in this comprehensive book,
and each chapter provides and embraces detailed information of crucial characteris-
tics of nonlinear vibration and dynamics of smart continuous structures. If you want
to find a thorough all-in-one answer for all aspects of nonlinear vibration and dynam-
ics of smart continuous structures, this book is highly recommended. In the proposed
book, the first chapter will be dedicated to the principles of vibration. Chapter 2, “An
Introduction to the Nonlinear Vibration”, contains general concepts and a history of
nonlinear systems. Qualitative analysis of nonlinear vibration will be discussed in
Chapter 3. Solution methods of continuous structures will be presented in Chapter 4.
In Chapter 5, nonlinear forced vibration will be discussed. Nonlocal systems and
kinematics of the continuous structures will be explained in Chapter 6. An intro-
duction to smart materials will be presented in Chapter 7. In Chapter 8, dynamics
of nonlinear smart continuous structures—beams—will be discussed in detail, and
in Chapter 9, dynamics of nonlinear smart continuous structures—plate—will be
analyzed.
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’I Principles of Vibrations

1.1 INTRODUCTION

This chapter starts the examination of oscillatory motion in a rather uncomplicated
manner. Following a short historical overview, we analyze the significance of vibra-
tions. Next, we enumerate the many stages employed in vibration analysis and pro-
vide concise explanations of the terminologies and principles that are involved. This
chapter declines to provide a qualitative analysis of the subject.

1.2 HISTORICAL DEVELOPMENT OF VIBRATION

Presumably, upon the creation of the initial musical instruments such as whistles
or drums, humans developed an interest in the concept of vibrations and started its
research. The origins of wired musical instruments, like as the harp, may be traced
to around 3,000 years ago through depictions found on ancient Egyptian artifacts.
In that period, musicians and philosophers endeavored to investigate the principles
governing sound and utilized these principles to enhance the functionality of musical
instruments. The research of vibrational behavior has proven highly significant.

Over the course of time, researchers examined the vibrational characteristics of
many systems and structures. Galileo was originally drawn to the Church of Pisa
by the lamp’s oscillating motion. In addition, Robert Hook (1703—-1635) performed
tests to ascertain the correlation between the length of a wire and the frequency of
its vibrations. Indeed, Joseph Sauer (1716—1653) conducted these investigations and
employed the term “acoustic” to refer to the study of phonology [1].

Joseph LaGrange (1813—1736) conducted an analysis of the oscillation of the
vibrating wire, which was published in an essay by the Academy of Turin in 1759.
In this analysis, he conceptualized the wire as a finite number of homogeneous mass
particles positioned equidistantly from one another. In 1744, Euler and Bernoulli
conducted the first examination of the vibrations of thick beams, which subsequently
became known as the Euler-Bernoulli theory or thick beam theory.

Over the past few decades, there has been an increasing significance in the study of
vibrations in intricate systems. In 1902, Fromm conducted a study on the behavior of
torsion vibrations in the grasshopper shaft’s design. Stefan Timoshenko (1872-1878)
formulated a comprehensive theory on the oscillation of beams by studying rotation
and shear deformation. This hypothesis is sometimes referred to as Timoshenko’s
bean theory or thick beam theory.

Mechanical vibrations may be categorized into several types, including free and
forced vibrations, damped and undamped vibrations, linear and nonlinear vibra-
tions, and regular and random vibrations. Free vibrations refer to the fluctuations
of a system that occur without any external force acting on it, following the initial
turbulence caused by either the initial displacement or velocity. On the other hand,
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2 Nonlinear Vibration of Smart Continuous Structures

forced vibrations occur when a system varies under the influence of an external force.
The term “undamped vibrations” refers to the movement of an oscillating system in
which no energy is lost. Vibrations that occur when the energy of a system is lost due
to any cause are referred to as damped. Linear vibrations refer to the movement of
an oscillating system when all components, such as springs, masses, and dampers,
exhibit linear behavior. On the other hand, if any of these components deviate from
linear behavior, the movement of the system is referred to as nonlinear vibrations.
Regular vibrations occur in an oscillating system when the amount of the effective
excitation force is known at any given point, resulting in a predictable movement of
the system. This type of excitation is referred to as regular excitation. Occasionally,
the input force that stimulates a system is stochastic, and its magnitude cannot be
ascertained at a certain instant. Random vibrations refer to vibrations that are created
by unpredictable stimulus.

It is widely understood that the majority of dynamic phenomena, such as vibra-
tions, are characterized by nonlinearity. Nonlinear systems exhibit behaviors that
are not possible in linear systems. In 1892, Poincaré and Lyapunov pioneered the
mathematical theory of nonlinear vibrations. In 1892, Poincaré devised the concept
of perturbation to estimate the solution of mechanical problems. In 1920, Duffing
and Van der Pol discovered the first solution to nonlinear vibrations [2]. Furthermore,
the phenomenon of chaos has garnered the attention of scientists, such as Glieck [3]
and Peitgen and Richter [4], as one of the nonlinear phenomena.

It is noteworthy that engineers in the 1950s developed the finite element approach,
which enabled the analysis of intricate mechanical systems with several degrees of
freedom [5]. The research of vibration is comprehensively described in Table 1.1.

TABLE 1.1
Providing a Concise Overview of the Historical Development of the Field of
Vibrations

Year/Period Event/Development

Ancient Times Understanding of basic vibrations in musical instruments (e.g., strings and
drums).

6th Century BC Pythagoras studies vibrating strings and the relationship between length, tension,
and pitch.

1st Century BC Vitruvius, a Roman engineer, writes about the vibration of structures.

17th Century Galileo Galilei investigates the oscillatory motion and pendulums.

1665 Robert Hooke discovers the law of elasticity (Hooke’s Law) related to springs
and vibrations.

1687 Isaac Newton’s “Principia Mathematica” lays the foundation for classical
mechanics and vibrations.

18th Century Daniel Bernoulli and Leonhard Euler develop theories on the vibrations of beams
and plates.

1738 Daniel Bernoulli publishes the principle of superposition in “Hydrodynamic”.



Principles of Vibrations 3

TABLE 1.1 (Continued)
Providing a Concise Overview of the Historical Development of the Field of

Vibrations
Year/Period

1746
1822 Joseph

1842
1869

19th Century
Early 20th Century
1940s

1950s
1960s

1980s

21st Century

Event/Development

Jean le Rond d’ Alembert introduces the concept of damping in vibrating systems.

Fourier introduces Fourier series, allowing complex vibrations to be broken down
into simpler components.

Gustav Kirchhoff develops the theory of elastic vibrations.

Lord Rayleigh publishes “The Theory of Sound”, a fundamental text on acoustics
and vibrations.

Development of mathematical tools (e.g., differential equations) to analyze
vibrations.

Advances in material science and engineering improve understanding of
structural vibrations.

Development of vibration testing and analysis techniques during WWII for
aircraft and machinery.

Emergence of electronic devices (e.g., accelerometers) for measuring vibrations.

Introduction of modal analysis and finite element methods (FEM) in vibration
analysis.

Advances in computational methods and software for simulating and analyzing
vibrations.

Use of advanced sensors, machine learning, and real-time monitoring in vibration
analysis.

1.3 SIGNIFICANCE OF STUDYING VIBRATION

Previously, scientists exerted much effort to comprehend the processes of nature and
devise mathematical theories pertaining to vibrations. Currently, there is a growing
focus on the study of vibrations and their practical applications. This is an endeavor
to utilize the application of vibrations in the construction of machinery, foundations,
buildings, engines, turbines, and control systems. The investigation of mechanical
vibrations holds significance in the fields of engineering and science.

The significance of this matter stems from the following factors:

* Enhancing the longevity of structures and equipment: Monitoring and
regulating vibrations can avert early and partial breakdown, hence, extend-
ing the operational lifespan of equipment.

* Enhancing efficiency and performance: Gaining a comprehensive under-
standing of vibrations and their management can contribute to the enhance-
ment of machinery and equipment’s efficiency and performance. This is
because unmanageable vibrations have the potential to diminish efficiency
and give rise to performance issues.
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» Safety: The regulation and supervision of vibrations in structures and machin-
ery can effectively mitigate accidents and potential threats to human life.

* Analysis and design of structures: In the design and analysis of structures
and engineering systems, the recognition of vibrations plays an important
role. This issue is vital to prevent resonance and resonance phenomena that
can lead to the destruction of structures.

* Sound and acoustics: Mechanical vibrations are connected to the phenom-
ena of sound and acoustics. Gaining insight into this correlation can aid in
minimizing noise and enhancing sound fidelity across various settings.

* Diagnosing and rectifying defects: Assessing vibrations is a prevalent
approach for diagnosing defects and issues in machinery and structures.
Vibration analysis can assist in the early detection of flaws prior to the
occurrence of significant failures.

Studying mechanical vibrations can generally result in enhanced design, heightened
safety, decreased maintenance expenses, and optimized performance of systems and
structures.

It is often observed that the engines of most automobiles are prone to fluctu-
ations, leading to performance issues. For instance, a conventional diesel engine
produces a significant amount of noise. In turbines, vibrations result in the failure of
components.

Resonance occurs when the natural frequency of vibrations in a system matches
the frequency of external stimulus. Hence, when engineering systems are designed,
the ability of these systems to withstand vibrations is also considered (see Figure 1.1).

In contrast to the earlier described detrimental consequences, vibrations also
possess beneficial industrial utilizations. For instance, vibrations find use in many
devices such as conveyor, funnels, screens, washing machines, dental drills, time-
pieces, electrical massage devices, material oscillation testing, and even in the sur-
face cleaning of mechanical parts (Figure 1.2).

1.4 THE FUNDAMENTAL PRINCIPLES OF VIBRATIONS

1.4.1 VIBRATION

Vibrational or oscillatory motion can be characterized in two distinct manners:

1. The process of continuous movement when potential energy and kinetic
energy are alternately transformed.
2. A vibrating item is an elastic mass that exhibits oscillations.

Vibration or oscillation is the term used to describe any repetitive movement that
occurs at regular time intervals. A pendulum is a weight suspended from a fixed
point that swings back and forth under the force of gravity. Oscillation and elon-
gated thread motion exemplify oscillatory motion. The theory of vibrations pertains
to the examination of the oscillatory motion of objects and the forces that are influ-
enced by it.



FIGURE 1.1 Nature of wind-induced vibration experienced by Tacoma Narrows Bridge before its failure. The bridge opened on July 1, 1940, and
collapsed on November 7, 1940.
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FIGURE 1.2 Screening machine using vibrations.

Oscillation systems can be categorized into many classifications:

1. Classification based on the mathematical representation:
1.1: Discrete systems refer to situations when we encounter ordinary differ-
ential equations with the independent variable (time) constrained by a
finite number of degrees of freedom.

1.2: Continuous systems refer to systems having an infinite degree of free-
dom, characterized by the presence of partial or partial differential equa-
tions that involve both spatial and temporal variables.

2. Classification based on the system’s behavior:
2.1: Linear behavior refers to a situation where there is a direct and propor-
tional relationship between two variables.

2.2: Nonlinear phenomena.
Nonlinear behavior can be attributed to many factors:
Option A: Large displacements or rotations
Illustration 1.3 depicts the undamped oscillations of a simple pendulum.
The pendulum motion Equation (1.1) is displayed next.

—mgsinf =ml 0

.. .. 1.1
=>9+§sin0:0:>9+§9=0 (D

It is important to observe that when the sine of 6 undergoes modest periodic displace-
ments (sinf ~ §), the equation takes the form of a linear equation.
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Illustration 1-4 depicts a substance that exhibits both linear and nonlinear char-

acteristics and possesses elasticity.

a) Material with linear elastic behavior in the elastic range
b) Substance exhibiting nonlinear elastic behavior within the elastic range

FIGURE 1.3 Display of a simple pendulum.

Plastic Region
Elastic Region|

Stress, o

Yield Strength

Ml

Strain, €

FIGURE 1.4 Display of the elastic behavior in both linear and nonlinear states.
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FIGURE 1.4 (Continued)
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FIGURE 1.5 Display of a beam that has undergone transverse displacement due to axial

force.

Illustration 1.5 depicts the impact of longitudinal stress on the beam with trans-

verse displacement.

There exist two methods for representing oscillatory systems:

1. Utilizing public behavior as a basis for modeling:
A) Free vibration: referring to oscillation occurring without any external

force.

B) Forced vibration: where oscillation is carried out in response to external
stimulus and is categorized into three types: 1—harmonic, 2—periodic,

3—non-periodic (in general).
2. Energy consumption-based modeling:
A. Without damper.

B. With damper, which is further categorized into three types. The three
categories are as follows: 1—viscose, 2—Coulomb, and 3—structural.
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1.4.2 COMPONENTS OF A VIBRATING SYSTEM

An oscillating system typically comprises three main components: a potential energy
storage device (such as an elastic spring or item), a kinetic energy storage device
(such as a mass or inertia), and an energy loss system (such as a damper or frictional
element). During oscillation, the system undergoes a conversion of potential energy
into kinetic energy, and vice versa [6]. In the case of the damped system, there is a
loss of energy in each oscillation cycle, as seen in Figure 1.6.

1.4.3 DEGREE OF FREEDOM

The degree of freedom of a system is the minimum number of independent coor-
dinates needed to determine the state of all system components at any one time.
The system depicted in Figure 1.6 consists of a mass, a spring, and a damper, and
it possesses a single degree of freedom. The movement of the mass-spring-damper
system seen in Figure 1.6 may be described using coordinates x and y. Indeed, the x
and y coordinates are interdependent. Alternatively, the symbol # might denote the
rotational movement (as seen in Figure 1.7).

ke & 1 %0

T

FIGURE 1.6 Display of a diagram illustrating the structure of the mass-spring-plain damper.

L,

FIGURE 1.7 Display of a system with a single degree of freedom that exhibits a twisting
motion.
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FIGURE 1.8 Systems with two degrees of freedom.

> g
% ky N - fey - ky E
7

FIGURE 1.9 Systems that possess three degrees of freedom.

Figures 1.8 and 1.9 depict systems with two and three degrees of freedom,
respectively.

1.5 REVIEWING MATHEMATICAL EQUATIONS
IN MECHANICAL VIBRATIONS

1.5.1 THE DIrrereNTIAL EQUATION OF MOTION FOR A SYSTEM
wiITH ONE DEGREE OF LINEAR FREEDOM

Figure 1.10 presents the generic form of the differential equation of motion for a sys-
tem with one degree of freedom, as described by Newton’s second law.

mi(t)+cx(t) + kx(t) =0 (1.2)
Symbols m,c and k represent the mass values, damping coefficient, and spring stiff-

ness, respectively. The variable x represents the displacement from the equilibrium
point.
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- T :
+x l
+x
System Free-body diagram
(a) (b)

FIGURE 1.10 One-degree system of freedom with a damper: a) system and b) free-body
diagram.

1.5.2 UNDAMPED FREE VIBRATION (C = 0)

Under the assumption of no energy loss in the oscillation process, the equation of
motion may be reduced as follows:

mx(t)+kx(t) =0 (L.3)

The equation is homogeneous, and its solution is also homogeneous. The answer to
this problem is represented in the following manner:

x(t) = A cos(w, t — ),
L (1.4)

w, =,[—
m

The constants A and ¢ are derived from the initial conditions, and their values are unknown.

To initiate movement according to the initial conditions, one must modify either the initial

position or the first velocity, or a combination of both. The free vibration response may be

determined by including the initial conditions into the equation of motion.

{x(O) =x,
x0)=YV,
0 (1.5)
Vo .
x(t) = x, cos w,t +—sinw,t
From the analysis of the free vibration response, it is evident that the system would
undergo harmonic oscillations indefinitely, maintaining a consistent amplitude and
frequency w,, which represents the natural frequency of the system. The natural
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frequency refers to the frequency at which the system’s free fluctuations occur. The
following are some crucial aspects:

e In a system without a damper, the amplitude of the movement remains
consistent.

¢ Inasystem without a damper, the system functions in a harmonious manner
at its natural frequency.

* The system’s motion is perpetual, with a continuous conversion of kinetic
energy into potential energy and vice versa, extending indefinitely.

e The natural frequency of the system is independent of the initial conditions
and solely determined by the parameters m and K.

e The amplitude of movement and the phase change differ according to the
initial conditions.

1.6 HARMONIC MOVEMENT

Oscillatory movement may be classified into two types: regular repetition, as seen
in pendulum movement, and erratic repetition, as observed in earthquakes. When
a movement is repeated within the same time frame, it is referred to as periodic
motion. Harmonic motion is the most basic form of periodic motion. In the Scotch
yoke mechanism depicted in Figure 1.11, the mass m undergoes simple harmonic
motion. Within this system, a crank undergoes rotational motion with a certain
radius, denoted as A, around a fixed point known as Point O. Point P, located at the
other end of the crank, is inserted into a slotted rod.

When the wheel spins at an angular velocity w, the displacement x changes
accordingly as follows:

x=Asinf = A sinwt (1.6)

The velocity and acceleration of mass m are as follows:

x:@:wAcoswt (L.7)
dt
d’ .
X = d—f = —wAsinwt = —w’x (1.3)
t

This phenomenon is referred to as oscillatory motion, characterized by acceleration
that is directly proportionate to the displacement. It is commonly known as sim-

ple harmonic motion. The vector OP (Figure 1.12) can be used to depict harmonic
motion. This vector possesses a magnitude and undergoes rotational motion with a

consistent angular velocity w. The picture of the end of the vector X =OP on the
vertical and horizontal axes may be seen in Figure 1.12.

y=Asinwt (1.9)
x = A coswt (1.10)
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FIGURE 1.11  Scout yoke mechanism.

Angular

One cycle o motion

FIGURE 1.12 Harmonic motion as the vertical representation of the terminal point of a
rotating vector.
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Example 1-I: Calculate the natural frequency of the system depicted in Figure 1.13.
Response: Since the weight’s horizontal location does not impact the system’s
natural frequency, we may conclude the following:

YM=10—ML0+ka’0=0—w, _a |k
L\M
Example 1-2: Figure 1.14 depicts a cylinder with a mass of m and a moment of
inertia of J,. The cylinder is rolling without slipping and is confined by two linear
springs with stiffness values of k, and k,. Find the following: A) The natural fre-
quency of vibration for the system. B) The optimal value of parameter a to maximize
the natural frequency.

k
m

%:\lj—a—bldiL—a—rlO

FIGURE 1.13 A rod with no mass that is accompanied by a concentrated mass at its head.

N ]0 m
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b) _
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FIGURE 1.14 Roller cylinder is restrained by a spring a) before b) after.
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Answer: A) The mass inertia for the cylinder may be expressed as follows:

1 1
JOZEmRZ, J, =—mR* +mR’

c

The equation of motion for the cylinder will be determined by a slight angular devi-
ation, denoted as 0.

SM=J0—J06+k(R+a)0+k(R+a) =0

Y =J("‘+k2)(“a>2  [wre)Rrer

J 3

c ~mR’
2
B) We put dw, /da = 0. The result is a = R.

1.7 FREE VIBRATION WITH VISCOUS DAMPER

Based on the general equation of motion (Equation (1.2)) and Figure 1.10, Equation
(1.2) may be expressed in a more concise manner as follows:

#0+S w0+ X xny =0 (1.11)
m m

K(t) 4 26w, 5(1) + W x(t) = 0 (1.12)

In Equation (1.12), € is a dimensionless quantity known as the damping ratio. The
presence of a viscous damper in the system significantly influences the motion of
the system due to the influence of . The answer to the Equation (1.12) is as follows:

x(t) = C,e”" +C,e™

e, [L]zﬁ .
2m 2m) m

:CIJ +C2J C [C]z k]/ o

The values of C, and C,, which are unknown constants, can be calculated based on
the initial conditions.

1.7.1  CrimicAL DAMPING AND CRiTICAL RATIO

The value of the damping constant, denoted as c, at which the square root term in Equa-
tion (1.13) equals zero, is referred to as the critical damping and is symbolized as C_:

C. 2_5 B
[2m] -0 (1.14)
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In other words:

C = Zm\/z = 2Vkm =2muw, (1.15)
m

The ratio between the constant damping and critical damping is referred to as the
viscous damping ratio and is defined as follows:

f=— (1.16)

Therefore, Equation (1.13) is expressed as follows:

[rere-t}us e{—f—\/ffl}wn '

x(t)=Cie +C, (1.17)

It has been noted that at § = 0, the vibration is undamped. Typically, there are three
modes that may be taken into account for £ damping:

1. System with a damping ratio less than 1 (€ < 1). Given that (£* —1) is a
negative value, we may express it as follows:

—EHiE 1w, 1
x(t):Cle{ } +C,e
; iJI—€ w i1-€* o,
:eiﬁw”’{Cle FEer ettt "'}

{—g—i 52—1}%:
(1.18)

The variables ¢,, X, X, ¢, C,, C, are derived from the initial conditions. For
the initial condition x(¢ = 0) = x,, and x( = 0) = x,:

x(t) = e & {x() cos(\ll - fzwnt) + Msin 1— fzwnt] (1.19)

VI-&w,

Also if:

(1.20)

We have:
X = (C)* +(C,)* (1.21)
¢ =tan"'(C,/C,) (1.22)
Equation (1.19) represents the harmonic oscillation of damped system. The

angular frequency of this movement, known as the frequency of damped
vibrations, may be expressed as follows:

w, = 1-Ew, (1.23)
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The frequency of damped vibrations is consistently lower than the natural
frequency of the undamped vibration (w, ). Figure 1.15 and 1.18 depict the
graphs of Equations (1.19) and (1.23), respectively. It is important to men-
tion that the underdamped vibration is the sole state in which movement
exhibits oscillatory behavior [7].

2. Critically damped system (€ = 1)
For € = 1 in this situation, the answer to Equation (1.17) will be determined
by the presence of dual roots in the characteristic equation.

x(1)=—(c, +¢,)e " (1.24)
By utilizing the initial conditions x(f = 0) = x,, and x( = 0) = x,:
x(t) = [xo + ()'co + wnxo)t]e’””' (1.25)

Equation (1.25) denotes a non-periodic motion. According to this equation,
when t — oo, e — 0. As a result, the mentioned movement finally stops
(Figure 1.19).

3. Overdamped system (€ > 1)
In this case, Equation (1.17) is given as follows:

sy = Cel I g LN (1.26)
For the initial conditions x(f = 0) = x,, x(t = 0) = X,
XoW, (£+\/§2 71)+5c0
C =
2w,€" —1
(1.27)

—XyWw, (5— IS —1)—560

2w A€ —1

C, =

A Eq. (1-19)

FIGURE 1.15 Vibration of the damped system.
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A Undamped
g Overdamped ({ > 1) 2 (¢=0)

N { Critically Unéefdaglied _
damped ({ = 1 ~ <1 (wgq1s
Xp \""-... ped (€ ) /// \{/ smaller
1 \ than w,)
\

2nwy

LL 2nwy 44

FIGURE 1.16 Comparison of motions based on different damping settings.

FIGURE 1.17 A rolling disk on an inclined surface that is impeded by a spring and damper.

Equation (1.26) demonstrates that regardless of the initial condition of the sys-

tem, the motion remains continuous. As the roots are negative (—f ==V Pol< 0),

the momentum experiences exponential decay over time (Figure 1.16).

Example 1-3: Determine the natural frequency and motion equation of the system
Figure 1.17 (a).

Response: We have demonstrated the discrepancy of the cylinder in r relation to
the state of static balance using the variable x (Figure 1.17 (b)):

SF = mi — 2mi+ci+ 2k =0 w, = ok
2 3m
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kx

b)

FIGURE 1.17 (Continued)

Example 1-4: Derive the equation of motion for the oscillatory system shown in
Figure 1.18 (a) and determine its natural frequency of vibration.

Response: We demonstrate the angular displacement of the rod in relation to the
state of static balance using the symbol 6 (as shown in Figure 1.18 (b)), and we obtain
the following:

s sa o oo

2 2
J00+19+§k129:0—> w, = 4k
16 4 3J,
In which:
J, = lmlz
48

1.8 FORCED HARMONIC OSCILLATIONS
1.8.1 OVERVIEW

Vibrations occur in a system when it experiences fluctuations due to external stimu-
lus. The state of arousal can manifest in several forms, including harmonic, non-
harmonic, periodic, non-periodic, or random patterns. The reaction of a system to
harmonic excitation is referred to as its harmonic response. The reaction of a system
to a sudden and sustained excitation that is abruptly applied is referred to as a tran-
sitory response.

This episode focuses on analyzing the reaction of systems that possess a sin-
gle degree of freedom to harmonic excitation. If the excitation frequency matches
the system’s natural frequency, the system reaction will significantly increase. The
occurrence of this condition, known as resonance, leads to system failure and should
be actively prevented.
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FIGURE 1.18 Rigid rod with a mass m that is constrained by a pin.

1.8.2 MorTioN EQUATION

The equation of motion for a mass-spring and damper system with the external force
F(1) applied at a specific location (as shown in Figure 1.19) may be expressed as
follows:

mx(t) + cx(t) + kx(t) = F(¢) (1.28)

The equation in question is heterogeneous, and its general solution is derived by
adding the homogeneous solution x, (7) and the particular solution x,(z). The homo-
geneous component refers to the solution of the given problem.

mx(t) +cx(t) + kx(t) =0 (1.29)

This displays the oscillations of the system that occur without any external forces.
As free vibrations decay with time, the general solution of Equation (1.28) reduces to
its particular solution. The presence of external excitation ensures the continuity of
motion. Figure 1.20 indicates that the homogenous response of x, (f) ceases to exist
after time 7, leaving only the particular response of x,(#). Transient motion refers to
the free vibrations that are attenuated due to dampening.



Principles of Vibrations 21

VLI

o

FIGURE 1.19 Mass-spring-damper system.
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T AT :
x,(t)
0

x(t) = xp(t) + x,(t)
0

FIGURE 1.20 Homogeneous, particular, and combined solutions for Equation (1.28) in the
underdamped system.

1.8.3 HARMONIC RESPONSE OF A DAMPED SYSTEM

The equation of motion for a damped system, under the influence of the force
F(t) = F; sin wt, may be expressed as follows:

mix(t) + cx(t) + kx(t) = F sinwt (1.30)
The solution to Equation (1.30) is given by the particular solution.

x,(t) = X sin(wr — ¢) (1.31)



22 Nonlinear Vibration of Smart Continuous Structures

By substituting the Equation (1.31) into Equation (1.30), the outcome is as follows:

X [(k — mwz) sin (wt — @) + cw cos (wt — q’))] = F, sin wt (1.32)

By utilizing trigonometric connections and doing mathematical operations, we will
obtain the following:

X= 7 (1.33)

2

[(k — mwz) — W’ }
¢ = tan”" [L2 (1.34)
k—mw
Now, let us establish the definitions of the following quantities:
w, = \/E, ¢, =2mw,
m
c ¢ c c
= —_—= = , — = 2 w
. ¢, 2mw, 2Jmk m S
=0

st k

w

r=—

wﬂ

So:
; _Xk_ 12 = 21 (1.35)
st 0 : g \/1—r2 +|2¢r ’
'1—[“’ +2e 1=r] +{2¢7]
wn wil
26—
¢=tan"' — % I tan! [12£r2] (1.36)
—r

]

n

X
The quantity M = — is called the magnification coefficient or amplitude ratio. The
N Y _r X .
graphic in Figure 1.21 shows the variation of — and ¢ with respect to the frequency

st

ratio r.

Example 1-5: A beam with a uniform mass, denoted as m, is connected at Point
O and supported by two springs and a damper, as seen in Figure 1.22. The termi-
nal position of the P-point of the PQ spring experiences a sinusoidal displacement
represented by the equation x(f) = x, sin wt. Determine the angular displacement
required to reach the stable condition of the beam.

[ =1m, k=1000 N/m,c =500 N —s/m,m =10 kg, x, =1 cm, w =10 rad/s
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FIGURE 1.21 Changes in 5— and ¢ by frequency ratio r.

st

The governing equation of the rod is as follows:

109':—kia[i]—cié[i]—k[ﬂe—x(t)]ﬁ
414) 4 (4 4 4

23
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— 109'+ic129' o =3k =1u X, sin wr
16 8 4 4
In which:

l

2
1
I, =—ml’ +m[—] = !

—ml® = %(10)(12) =1.4583 kg —m’

12 4 48

Once the data is inserted into the equation, the equation of the system results in the
following:

1.4583 6 +32.2560 +625.0 0 = 7.5 sin 10t

Consequently:

m, =14583, ¢, =3125  k,=6250, M,=75

The steady response of a rod will obtain as follows:
0(t) = O sin(wt — @)

In which:

M
0= 0 , ¢=tan"'

{t, =m, @) +{e, () ]

The result is obtained after inputting numerical numbers.

© =0.01311rad, ¢ =—0.5779 rad
As a result, the stable response will be as follows:

0(r) =0.01311 sin(10t —0.5779) rad

x(t) = xysinwt

/ 7 P i
Uniform
k 4 -‘— bar, mass m k
G : : D)
0
T
roor | I
A ) 2
a)

FIGURE 1.22 Uniform beam with mass m inhibited by a spring and a damper.
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FIGURE 1.22 (Continued)

1.9 A PRACTICAL ANALYSIS OF VIBRATIONS: FATIGUE
FAILURE CAUSED BY VARIABLE LOADING

Fatigue is a potential consequence of vibration on a building or machine. Vibration
control is crucial to prevent component failure caused by fatigue resulting from oscil-
lating loads. This evaluation is crucial when the structure and/or machine undergoes
resonance circumstances. In the occurrence of resonance, oscillation is linked to
significant amplitudes. Consequently, the probability of parts experiencing failure
or malfunction as a result of low cycle fatigue rises. In this part, we will provide
a concise overview of the fundamental principles of fatigue and then elucidate the
correlation between the phenomena of resonance and the subsequent malfunction or
structural failure induced by fatigue.

1.9.1 INTRODUCTION TO THE CONCEPT OF FATIGUE

During the tensile test of the material, the load is incrementally applied to provide
sufficient time for complete strain to develop, resulting in the creation of the stress-
strain graph. However, there are many instances in which tensions have altered or
where they fluctuate between certain values (Figure 1.28).

0., = Minimum Stresses o, = Average Stresses
0, = Maximum Stresses o, =Stress range
o, = Stress amplitude o, = Static or Stable Stresses

Frequently, machine components experience breakage as a result of repetitive or
fluctuating pressures. However, thorough examinations indicate that the maximum
stress levels generated were lower than the ultimate strength of the material and, in
numerous instances, even lower than the yield strength. The salient characteristic of
such failures is the frequent recurrence of tensions. This phenomenon is referred to
as fatigue failure [8] due to this specific cause.
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FIGURE 1.23 This figure illustrates many types of tension-time occurrences. The stress
components depicted in Figure 1.23 are as follows.
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1.9.2 RELATIONSHIPS BETWEEN TENSION AND LIFESPAN

In order to assess the durability of the material when subjected to fatigue loads, the
samples are subjected to varying stresses, and the number of loading cycles required
for the sample to fail is recorded. Subsequently, they represent the outcomes in the
form of a graph known as S-N (Figure 1.24).

Basquin presented a mathematical equation to represent the S-N curve within the

range of N < (10)°. To enhance the fatigue resistance of the sample, it is advisable to
subject it to a specific number of cycles.

S,=aN" (1.37)

The constants a and b are defined as follows, where N is the number of cycles that
result in failure:

(fS.) bllog[%] (138)

S 3 ]

The fatigue resistance coefficient, denoted as f, may be derived from the curve pre-
sented in Figure 1.25.

The objective of vibration analysis is to mitigate the occurrence of resonance
phenomenon. In linear systems, when the frequency of the excitation matches the
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natural frequency, resonance occurs and results in a peculiar rise in the amplitude
of oscillations. The occurrence of low cycle fatigue is observed when the device has
prolonged operational circumstances. We will see a harmonic motion characterized
by a significant oscillation range, resulting in the rapid deterioration of the machine
components shortly after its initiation. Therefore, the examination of vibrations holds
a prominent position in the field of engineering. In the context of machines function-
ing under near-escalation settings, the challenge of managing fluctuations to prolong
equipment lifespan arises. This matter is addressed in control talks, coupled with the
usage of energy absorbers.
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2 An Introduction to the
Nonlinear Vibration

2.1 INTRODUCTION

The previous chapter focused on the analysis of equations and linear systems. While
we often analyze systems in a linear manner, in reality, these systems are nonlinear
[1]. Nonlinear analysis should be employed if the range of motion is not limited. In
order to accurately depict a physical system, it is typically necessary to employ a non-
linear model. This is because linear analysis of the system’s whole behavior cannot
effectively anticipate the events that arise in nonlinear systems [2]. In order to study
nonlinear vibration issues, it is necessary to familiarize ourselves with the many phe-
nomena and concepts associated with these systems. This chapter will cover many
phenomena in nonlinear vibrations, as well as the topics that will be discussed in the
subsequent chapters.

2.2 BRIEF REVIEW OF NONLINEAR OSCILLATIONS HISTORY

Nonlinear behavior manifests in numerous real-world occurrences. Consequently,
scholars from various disciplines investigate nonlinear systems. The allure of non-
linear dynamics may elucidate why numerous scholars are drawn to the examination
of nonlinear systems.

The study of dynamical systems originated in the mid-1600s with the introduction
of differential equations by Newton. Poincaré played a pivotal contribution in the
advancement of nonlinear dynamics throughout the late 1800s by utilizing qualitative
analysis to study dynamical systems. His work was indeed a significant advancement
in the field of nonlinear systems and led to the initial insight into chaos. Nonlinear
oscillations are a fundamental aspect of dynamics. During the early 1900s, scholars
were highly interested in studying nonlinear oscillations and their applications in the
fields of physics and engineering. Over the course of these years, several influential
scientists, including Van der Pol, Duffing, Cartwright, Levinson, Littlewood, Bogoli-
ubov, Krylov, Levenson, Minorsky, Vitt, Andronov, Birkhoff, and Kolomogonov,
have achieved a significant advancement in the field of nonlinear oscillatory systems.
Table 2.1 succinctly outlines their contributions in the aforementioned field [3].

According to Table 2.1, Russian scientists made significant contributions to the study
of nonlinear oscillatory systems in the early 1900s. The advancement of high-speed
computers after the 1950s was a significant breakthrough in the study of nonlinear
oscillations. The study of nonlinear oscillatory systems has led to significant advance-
ments in the field, thanks to the use of newly developed computers. These advance-
ments have provided both theoretical and practical insights into nonlinear systems [4].
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TABLE 2.1

Important Contribution in the Field of Nonlinear Oscillatory Systems

(Early 1900s)
Renowned Scientists

B. Van der Pol
G. Duffing
M. Cartwright and
J. E. Littlewood
N. N. Bogoliubov and N. M. Krylov

A. A. Andronov and A. A. Vitt

A. Kolmogorov

Reported Contributions in Nonlinear Oscillations

Introduction of relaxation-oscillations

Observation of cubic nonlinearity

Relaxation-oscillations and the topological approach for
solving of nonlinear problems

One of the first educational tools in the field of nonlinear
mechanics and also developed the asymptotic methods
in nonlinear mechanics

Self-excited oscillations and one of the first educational
tools in the field of nonlinear oscillations

Nonlinear diffusion equation

G. D. Birkhoff Dynamical systems with two degrees of freedom

N. Levinson Transformation theory utilized for nonlinear equations
N. Minorsky Parametric excitation

M. E. Levenson Analyzed the Duffing equation

J. A. Shohat Studied the Van der Pol equation

Between 1950 and 1955, Hayashi authored several papers and conducted research on
subharmonic, forced oscillations, and the stability of nonlinear systems. In the 1950s and
1960s, a small number of researchers directed their attention towards studying nonlin-
ear oscillations in the field of plasma physics. Over the course of these years, Crandall
emerged as a highly engaged scientist in the area of nonlinear vibrations, making note-
worthy advancements in random vibrations and the application of perturbation theory.

Notable scientists who have made significant advancements in the field of nonlin-
ear oscillations, particularly in the area of structural mechanics, throughout the latter
half of the 20th century include T. Yamamoto, Y. Ishida, A. H. Nayfeh, D. T. Mook,
R. Rand, F. C. Moon, and E. H. Dowell, among others. Lorenz’s discovery of chaos
was a significant breakthrough in the field of nonlinear dynamics, with a profound
impact on study in the area of nonlinear oscillatory systems.

Table 2.2 presents the primary achievements of the experts listed before in the
field of nonlinear oscillatory systems [3].

The aforementioned experts formulated the fundamental principles underlying
the science of nonlinear oscillations. After their initial studies, other researchers
expanded the scope of the discipline to include not only large structures but also
nonlinear oscillations in micro- and nano-systems. Currently, several research stud-
ies have been conducted on the interaction between fluids and structures, as well as
the nonlinear modelling of their oscillatory systems. Chaotic vibration analysis of
structures is a burgeoning research area in the study of nonlinear oscillatory systems.

Over the past 20 years, there has been a significant growth in the number of
research initiatives focused on nonlinear oscillatory systems. Researchers such as
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TABLE 2.2
Important Contributions in the Area of Nonlinear Oscillatory Systems
(1950-2000)

Scientist Major Contributions in Nonlinear Oscillations

A. H. Nayfeh Enriching field of nonlinear vibrations with writing more than five
highly cited books and 400 papers during 1970-2000

T. Yamamoto He published more than 130 papers and a number of books in the

field of nonlinear vibration with special focus on rotor dynamics
Y. Ishida The main contribution of Ishida is nonlinear vibration, vibrations
suppression and rotor dynamics
R. Rand High influence in the field of nonlinear oscillations with publishing
more than 150 papers about vibrations of beam, Van der Pol
oscillators, parametric excitation, and chaos

F. C. Moon He is one of the pioneers in the field of chaotic vibrations and
explored chaos in structural systems

E. H. Dowell One of the highly influential researchers in the field of nonlinear
dynamics with special focus on fluid-structure interaction

M. P. Paidoussis Paidoussis is one of the most influential scientists in the field of
dynamical modelling of pipes and shells

R. A. Ibrahim He is one of the pioneers in the field of fluid sloshing and nonlinear
oscillations

Amabili, Chen, Kerschen, Bergman, Awrejcewicz, Mickens, Cveticanin, Inman,
Balachandran, Esmailzadeh, and Spanos have made significant contributions to
the advancement of novel works in the field of nonlinear oscillations. Table 2.3
displays a portion of their recent advancements in the field of nonlinear oscillatory
systems [3].

2.3 NONLINEAR SOURCES

Nonlinear systems are characterized by the absence of the concept of superposition
principles in their description. Nonlinearity is a common occurrence in structural
mechanics, manifesting in many forms and conditions. These include nonlinearities
associated with geometry, material properties, inertia, and friction.

Material nonlinearity refers to substances that have stress-strain relationships
characterized by elastic-plastic behavior. Nonlinear geometry is designed to accom-
modate nonlinear interactions between displacement and strain. This particular form
of nonlinearity is often addressed in study. The sources of this nonlinear behavior
include the tension of the middle plate, significant curvature in structural parts, and
substantial rotation. Inertial nonlinearities occur due to the concentration or disper-
sion of mass. These nonlinear types are expressed in the governing equations as the
time derivatives of the displacements. Friction-induced nonlinearities of significant
magnitude arise from dry friction, cohesion-slip, and residue. These nonlinearity
phenomena are present in the governing differential equations [5, 6].
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TABLE 2.3
Major Contributions in the Area of Nonlinear Oscillatory Systems (Last
Two Decades)

Scientist Contribution in Nonlinear Oscillations

M. Amabili An influential researcher in the area of nonlinear oscillatory systems with
focus on shell structures and fluid solid interaction

L. Q. Chen An important figure in nonlinear vibration energy harvesting and
vibration of axially moving continua

L. A. Bergman Development of vibration-based energy harvesting and nonlinear
structural dynamics

B. Balachandran Analysis of nonlinear phenomena in beams, milling process, and different
types of structures

R. E. Mickens Development of new types of nonlinear differential equations arising in
nonlinear oscillatory systems

A. F. Vakakis Significant contribution in the field nonlinear normal modes and its
applications in vibrations

P. D. Spanos Analyzing of nonlinear and random vibrations is the main focus of his
research

E. Esmailzadeh Analyzing of nonlinear vibrations of beam- and plate-type structures

Another source of nonlinearity arises from boundary conditions that exhibit
nonlinearity in terms of both equality and inequality. An instance of nonlinear
inequalities may be observed in the interaction of elastic objects, where the relative
displacement of contact sites along the contact route must not exceed or be equal to
the initial distance between these places [7]. Table 2.4 provides a concise overview
of the several origins of nonlinear mechanical vibrations.

2.4 EXAMPLES OF NONLINEAR VIBRATION

This section explores instances of nonlinear nature of the systems with a single
degree of freedom, which are used to describe the nonlinear characteristics seen in
physical systems.

We analyze a conservative system with one degree of freedom, where the govern-
ing equation is a simple nonlinear differential equation:

1)+ f(x,5)=0 Q.1

2.4.1 SimpLE PENDULUM

Examine the simple pendulum as depicted in Figure 2.1. The motion equation of this
pendulum is given by the differential equation [8]:

ml*6(r) +mglsinf = 0 (2.2)
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TABLE 2.4

Various Sources of Nonlinear Mechanical Vibrations

Source

Material Nonlinearities

Geometric Nonlinearities

Boundary Condition Nonlinearities

Friction and Damping Nonlinearities

Electromechanical Coupling

Parametric Excitation

Internal Resonances

Rotational Effects

Impact and Collision

Nonlinear Aeroelastic Effects

Description

Arise from the inherent properties of materials where the
stress-strain relationship is not linear, such as in rubber or
biological tissues.

Occur when deformations are large enough that linear
assumptions (like small angle approximations) no longer
hold, e.g., in pendulums, beams, plates, and shells.

Result from constraints that change with displacement, such as
contact problems, or supports that exhibit nonlinear stiffness.

Caused by nonlinear friction or damping mechanisms, such as
Coulomb friction or damping that varies with velocity or
displacement.

Nonlinear behavior arising from the interaction between
mechanical and electrical systems, as in piezoelectric
materials and magnetoelastic effects.

Generated by periodic variation of system parameters, such as
in Mathieu’s equation where stiffness varies with time.

Occur when energy is transferred between modes of vibration
within a system, leading to complex motion and nonlinearity.

Nonlinear vibrations in rotating systems due to gyroscopic
forces, centrifugal stiffening, or dynamic unbalance.

Nonlinear response from transient forces during impact or collision
events, resulting in high-frequency content and large deformation.

Arise from the interaction of aerodynamic forces with flexible
structures, leading to phenomena like flutter or limit cycle
oscillations.

YLLLLLILLI LIS LI LIS L1111 Y,

FIGURE 2.1 Simple pendulum.

T

Which can be rewritten as follows:

é)’+§sin9:0 2.3)



An Introduction to the Nonlinear Vibration 35

The foundation of a nonlinear differential equation is in the comparison of the Equa-
tion (2.1).

f(0) = §sin 0 2.4

It is a well-known fact that for small angles 0, the value of sin 6 is about equal to 0
(sin 8 = 0). Equation (2.2) is reduced into linear terms as a consequence.

0+w0=0 (2.5)

In which:

—] (2.6)

The presence of significant angular momentum is responsible for the emergence of
the nonlinear state in this particular example.

2.4.2 A PARTICLE THAT 1S CONFINED AND CONNECTED
BY A SPRING WITH A NONLINEAR BEHAVIOR

For our second example, we will analyze the motion of an object with mass m on
a horizontal plane without any friction. This object is coupled to a spring that does
not follow a linear relationship (as seen in Figure 2.2). The differential equation
governing the motion of the mass is given by the function x(¢) which describes its
location [5].

O+ f(x)=0 Q.7)

The function f(x) represents the force exerted by the spring on the mass. The lin-
ear spring equation, f(x)= kx, refers to a spring with a fixed value of k. The force
exerted by a nonlinear spring is described by a deformed nonlinear function, as
shown in Figure 2.2. The nonlinear component diminishes the force for a soft spring,
but it amplifies the force for a hard spring. In this section, we consider the motion to
occur in states where force is present and absent, along a curved path. We see that
there is no loss, which results in the system being damped. In this particular instance,
the presence of nonlinearity is mostly attributed to the behavior of material rather
than to significant deformations.

Generally, the function f(x) in Equation (2.7) can be expressed in three
different ways:

1. f(x) = kx, representing a linear spring.

3

2. f(x)= k[x + %], representing a hardening spring.
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FIGURE 2.2 (a) System of mass and spring. (b) Specifications of spring.

3

3. f(x)= k[x — %], indicating a softening spring.

2.4.3 ParticLE IN A CENTRAL FoORrce FiELD

As an illustration, we analyze the motion of a particle on a flat surface subjected to
the effects of a central force field (Figure 2.3) [5].

The equation that governs the motion of the particle with mass m may be derived
by expressing Newton’s second law in the r-6 coordinate system:

m(i — r6*)+mF(r)=0 (2.8)
m(rf +2i60) =0 (2.9)
If the field is gravitational, the variable m indicates the mass of the particle. Con-

versely, if the field is electric, m represents the electric charge of the particle. The
Equation (2.9) can be expressed by means of integration as follows:

70 = p (2.10)

The variable p is a constant. This equation is a conservation angular momentum.
Results obtained by eliminating 6 from the Equations (2.9) and (2.10) are as follows:

2

L L F(r)=0 @.11)
"

By substituting the dependent variable » with its reciprocal u =r ' and replacing
the independent variable ¢t with 6, Equation (2.9) may be simplified. Ultimately, the
derivatives are transformed in the following manner:
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FIGURE 2.3 Particle in a central force field.
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ar " g @1
Thus, Equation (2.11) becomes the following:
d—zu—i—u—LFl =0 (2.14)
do’ put u '

The nonlinearity of the system in this instance arises from the effects of inertia and
material characteristics.
If a particle with mass m is experiencing a gravitational force F, which is given by
F= G—ZO, where m, is the mass of the fixed object, G is the universal gravitational
r

constant, and r is the distance between the centers of the two masses (as shown in
Figure 2.4), we can express this equation using the chosen variables as follows:

F=Gm mou2 (2.15)

By inserting the aforementioned sentence into Equation (2.14), we will obtain the
following:

—Gmu® = —h*u? d—zu—lhzu4 (2.16)
0 de* u ’

The result obtained following simplification as follows:

ﬂ—i—u— G m,
do? 'S

(2.17)

The equation described by the second-order linear differential equation is nonhomo-
geneous. It is noted that the equation shows a linear relationship, when considering
the force as the gravitational attraction [9].
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2.4.4 MECHANICAL VIBRATION WITH DRy FRICTION

The presence of nonlinearity is evident in the damping equation of the system
(Figure 2.5). The system exhibits nonlinearity as a result of the dry friction
between the mass m and the belt movement. This system involves two coeffi-
cients of friction: the static friction coefficient (u, ) represents the force required
to initiate movement of the item by dry friction, while the kinetic friction coef-
ficient (u,) represents the force required to maintain the object’s motion. The
tangent component of the force is generated by the friction surface (F), which is
the result of multiplying the friction coefficient by the force perpendicular to the
surface [8].

The stages of the system movement, as depicted in Figure 2.5 (a), follow the
velocity-force diagram illustrated in Figure 2.5 (b). Initially, the mass is posi-
tioned on the conveyor belt. The spring elongates as a result of the movement
of mass m along the belt. As the spring is compressed, the spring force acting
on the mass intensifies, surpassing the force of static friction. Consequently,
the mass initiates sliding motion and swiftly moves towards the right. Conse-
quently, the spring force is discharged until it is halted by the kinetic friction
force. Subsequently, the spring starts the process of reaccumulating its potential
energy. The variation of the damping force with the velocity of mass is seen in
Figure 2.5 (b). The equation for mass movement may alternatively be expressed
as follows:

mi+F(x)+kx=0 (2.18)

The friction force F is a nonlinear function of x, as shown in Figure 2.5 (b). When %
is significantly big, the damping force is positive, resulting in the removal of energy
from the system. When x has small values, the damping force acts in the oppo-
site direction and transfers energy to the system. Despite the absence of external
stimulus, this system exhibits oscillatory motion. The term used to describe these
self-generated vibrations is mechanical vibrations.
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FIGURE 2.5 Dry friction damping.

2.4.5 VARIABLE MASS SYSTEM

Conventional systems assume that the mass and spring components remain con-
stant during the solution process. However, in systems with changeable mass, a
more comprehensive approach is required to accurately analyze the dynamics.
A widely recognized example of a system that exhibits changing mass is a rocket.
The fluctuating mass of a missile is a significant challenge in conducting a com-
prehensive and dynamic analysis since it introduces a nonlinear impact on the
system.

Now contemplate the system including a mass that can vary, as seen in Figure 2.6.
The mass of this system is dependent on x, in the case of big x shifts, and the motion
equation is as follows:

%(m)'c)Jrkx:O 2.19)

The aforementioned relationship is a nonlinear differential equation resulting
from a changing mass.

2.4.6 PARTICLE IN A SPINNING CIRCLE

As an illustration, we analyze the movement of a mass (m) that is sliding without
friction down the edge of a circle with a radius (R). This circle is also spinning at
a constant angular velocity ((2) while maintaining a distance equal to its horizontal
diameter. The particle m is subject to the forces depicted in Figure 2.7 [5].

Based on the force diagram provided, while using Newton’s second law in two
distinct directions, we will have the following:

—mg+ Ncosf = mRO sin 6 + mR6* cos

.. . (2.20)
N sin6 = mRQ)? sin @ — mRO cos @ + mRH* sin 6

Now we can exclude N from the two aforementioned relationships:
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mR*0 = m*R? sinfcos ) — mgR sin 0 (2.21)

In this particular example, the nonlinearity arises as a result of the combined effects
of inertia and large deformation.

The governing differential Equation (2.21) can also be derived using the Lagrange
technique. To express this, we shall arrange kinetic energy and potential energy in
sequential order:

T= %mRZ (92 + O sin’ 9) (2.22)

v=—mgRcosf (2.23)



An Introduction to the Nonlinear Vibration 41

By formulating the Lagrange equation, we obtain the following:

i[a_T] _oT_ 0w (2.24)
dt\o6) 00 00

Ultimately, by incorporating the energy relationships of the movement and potential
into the Lagrange equation and conducting calculations, the equation of motion (2.21)
is derived. Earlier, various nonlinear sources were discussed as an example. The
subsequent discussion will explore the methods for analyzing nonlinear problems.
Table 2.5 displays notable equations that describe nonlinear mechanical vibrations.

TABLE 2.5
Some Famous Nonlinear Mechanical Vibration Equations.
Equation Name

Equation Description

Duffing Equation ¥ +26% + ax + Bx’ = ycos (wt) Describes the motion of a damped
oscillator with a more complex restoring
force.

Van der Pol Equation % — u(1—x*)x +x=0 Models electrical circuits and biological

Pendulum Equation

Korteweg—de Vries
(KdV) Equation

Lorenz Equations

Mathieu Equation

Hill Equation

Lotka-Volterra
Equations

Klein-Gordon
Equation

Burgers’ Equation

.o
0 +=sin(@) =0
Lsm()

u, —6un,+u, =0

iy
dr?

d’x
F+f(t)x:0

x=ax—Fxy
y="bxy—ry

O+ m*a+ 22" =0

u, +uu, =vu,

+(a 72qcos(2t))x =0

systems; exhibits self-sustained
oscillations.

Governs the motion of a simple
pendulum; nonlinear due to the
sin(f) term.

Describes waves on shallow water
surfaces; famous for its soliton solutions.

Describes atmospheric convection;
famous for chaotic solutions.

Describes parametrically excited systems;
used in the study of vibrating systems with
periodic coefficients.

General form of a second-order linear
differential equation with a periodic
coefficient; arises in the stability analysis
of dynamic systems.

Models predator-prey dynamics;
nonlinear interaction terms between
species populations.

Relativistic version of the wave equation
with a nonlinear term; used in field
theory.

Simplified model for turbulence and
shock waves; nonlinear advection term.

(Continued)
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TABLE 2.5 (Continued)
Some Famous Nonlinear Mechanical Vibration Equations.

Equation Name Equation Description
Rayleigh Equation Ft+e(x®—Di+x=0 Models self-excited oscillations like those
in a clarinet reed or steam engine
gOVernor.
Sine-Gordon Equation @, —@  +sin(@)=0 Appears in the study of crystal disloca-
tions and nonlinear wave propagation.
Fermi-Pasta-Ulam- X, =, —x)—(x,—x,) Studies energy distribution in a nonlinear
Tsingou (FPUT) +al(x,,, —*, ) lattice; r.evealed insights into the
Problem —x,—x )] foundation of chaos theory.
AW (Ablowitz-Weiss) u, +u, +ou’ + fu’ =0 Nonlinear wave equation; appears in
Equation various physical contexts, including

shallow water waves and nonlinear
optics.

2.5 AN IMPORTANT POINT

When studying the behavior of nonlinear systems, we come across significant terms
and phrases, such as primary resonance, secondary resonance, internal resonance,
jumping phenomenon, parametric excitation, limit cycle, and saturation phenome-
non. These terms are used to describe the behavior and phenomena observed in the
analysis of nonlinear problems [4]. In the subsequent chapters, we shall elucidate
several terminologies with meticulousness.

2.6 INTRODUCTION TO QUALITATIVE
AND QUANTITATIVE ANALYSIS

There are two methodologies for examining the nonlinear systems [4]:

1. Qualitative analysis: The method of qualitative analysis, often employed in
nonlinear dynamics, utilizes phase plate drawing concepts, such as stable
equilibrium point, unstable equilibrium point, fixed point, separation point,
saddle point, and others.

2. Quantitative analysis: The quantitative approach involves studying the
behavior of the nonlinear system by analytical and semi-analytical
approaches, such as perturbation, which is utilized in the analysis of nonlin-
ear vibrations.

The subsequent chapters will thoroughly analyze the behavior of nonlinear systems
using two distinct approaches: quantitative and qualitative.
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3 Qualitative Analysis of
Nonlinear Vibration

3.1 INTRODUCTION

Dynamics, despite its interdisciplinary nature, is fundamentally a field of physics.
In the late 1800s, Poincaré introduced a novel approach to equations, prioritizing
qualitative analysis above quantitative analysis. Instead of scrutinizing the precise
locations of the planets at any given moment, he instead raised a different inquiry:
Is the solar system inherently stable, and would the planets continue to travel indefi-
nitely towards infinity? He devised a proficient geometric methodology to scrutinize
such inquiries. The field of dynamics is commonly linked with nonlinear oscillators
and their utilization in the domains of physics and engineering. Nonlinear oscil-
lators are crucial in the advancement of several technologies, such as radio, radar,
phase-looked loops, and lasers. Nonlinear oscillators have the capability to model
novel mathematical techniques from a theoretical standpoint. Prior to delving into
the realm of nonlinear systems, it is imperative to get a comprehensive understand-
ing of the fundamental principles within this discipline. This chapter examines the
fundamental principles involved in the qualitative analysis of nonlinear systems [1].

3.2 PHASE PLANE

The visual display phase screen can be defined as the distinctive features exhibited
by certain forms of differential equations. Phase plane is utilized in applied mathe-
matics, specifically in the domain of nonlinear systems analysis [1].

The differential equation regulating a nonlinear system is expressed in its generic
form as follows:

X+1(x,%t)=0 (3.1
If the time (¢) does not appear explicitly in the differential Equation (3.1), the system is

referred to as autonomous. Autonomous systems, by definition, lack any form of input.
Put simply, their equations do not explicitly include the independent variable of time.

X +£(xx)=0 (3.2)

In order to represent the second-order differential equation in the state space, we
shall define x, = x and x = x, as follows:

(3.3)
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It is noted that the second-order differential Equation (3.2) can be transformed into
two first-order differential Equations (3.3). Similarly, by representing the differential
equation in the state space, a general n order differential equation can be converted
into n first-order differential equations.

Alternatively, when and x, are plotted on a Cartesian coordinate system, the
resulting graph is referred to as the phase plane. It represents the trajectory of x, and
x,, often known as the path line.

When x, is equal to zero and f (x] ,xz) is equal to zero, these points are referred to
be singular points. This signifies the condition of balance or stability of the system.
To determine fixed points, also known as fixed points, in a second-order differential
equation, one only needs to substitute the differential Equation (3.2) into the state
space Equation (3.3) and set it equal to zero:

X, =X, =0
. (3.4
X=%,=—1f(x,x,)=0

The solutions derived from solving the aforementioned algebraic equation will result
in the attainment of fixed points.

In order to determine the fixed points of the n -th order differential equation, we
must first input the equation into the state space and then transform it into » -th order
differential equations. This will provide the following results:

X, X,
x={ 1 ana, x =% (3.5)
X,
In summary:
x=X(x) (3.6)

To determine the singularity locations, it suffices to evaluate the function at x = 0.
Therefore, we will possess the following:

X (c)=0  for i=12,...,n (€X))

The symbol “c” denotes the collection of points that symbolize solitary points. Points
that are not solitary are referred to as normal points. There are typically six types of
fixed points, also known as singularity points:

¢ Stable node

¢ Unstable node
* Saddle point

¢ Stable focus
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¢ Unstable focus
* Central point

These will be thoroughly examined during the conversation.

3.2.1 PHASE PLANE ANALYSIS

Phase plane analysis is a graphical technique employed to examine the stability of
second-order systems. According to this analysis:

1. Generating trajectories matching to various initial conditions, andsubsequently
analyzing the qualitative qualities and attributes of the resulting curves.
2. We obtain valuable data on the system’s stability and other patterns of motion.

The analysis was initially presented by mathematician Henry Poincaré in the 19th century
AD [1]. The significance of this study is in its ability to examine second-order systems.

* The resulting response lines may be graphically shown as curves, which
offer a straightforward means of comprehending the qualitative behavior of
the system.

e The study of the behavior of nonlinear systems under various initial con-
ditions may be conducted by employing analytical solutions for nonlinear
equations.

* This technique is applicable not just to nonlinear weakening but also to sys-
tems exhibiting strong and rigid nonlinearity.

* Several pragmatic and utilitarian systems can be modeled as second-order
systems for the purpose of analyzing the phase plane.

However, the phase plane analysis approach has a limitation in that it can only be
used to second-order systems. The investigation of higher-order systems using this
method becomes computationally and geometrically intricate.

3.2.2 TEeCHNIQUES FOR GENERATING PORTRAIT ON THE PHASE PLANE

While the demand for phase drawing methods has diminished with the introduction
of computers, the ability to create phase pictures remains valuable for regulating
computer-generated outcomes. The techniques for applying a design onto the phase
plane are as follows:

* Analytical method
¢ Isocline method

¢ Delta method

¢ Lienard method

¢ Pell method
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3.2.2.1 Isocline Method to Ascertain the Trajectory
of Motion in the Phase Plane
The term “isocline” is of Greek origin and signifies “same inclination”. The isocline

d
line approach involves determining the places on the x x, plane where the slope d—xz
X

is constant. These lines and curves are referred to as the slope and are used to plot th]e
course of the two-order systems. Indeed, by picking an arbitrary point as the initial point
on the x, x, plane, we may determine the trajectory by considering the multitude of lines
present. Trajectories on the isoclines are tangent to the slopes of each identical isocline.
Therefore, the isocline lines represent the set of points on the x,x, plane that have the

d
same slope e Isocline lines can be either straight lanes or curved paths [2, 3].

'xl
By dividing Equation (3.3) by each other, we may deduce the following:
dx,  f(x.x,)
—_—_———,—— = X, N X. 3.8
dx, X, ¢( : 2> 68

If x, =0 is equal to zero on the x, axis and f(x,,x, )= 0 is not equal to zero, then
2 q 1 1»%2 q

. Cooedx,
the slope of the trajectory, represented by the ratio of —2, is infinite. Therefore, the
trajectory becomes perpendicular to the x, axis. X
Upon reevaluation, the slope of the trajectory line at Point x:

S(x):&:M (3.9)

dx, f, (xl ,xz)
An isocline is characterized by a constant slope o, where the function S(x) is equal
to + (S(x) ==+). All points on the curve f, (x,,x,)= af (x,,x,) have a tangent with
a slope equal to a. Furthermore, it should be noted that the omission of time in
this context implies that the replies x,(¢) and x, (f)cannot be immediately derived.
Furthermore, it is only possible to examine qualitative aspects of behavior, such as
stability or oscillatory response.

3.2.2.2 The Procedure for Generating a Phase
Portrait Utilizing Isocline Method

1. Plot the a curve in the state space, also known as the phase plane, as shown
in Figure 3.1.

2. Create short lines with an a slope. It is important to observe that the orien-
tation of the line is determined by the positive or negative signs of f, and f,
at that specific position.

3. Iterate the procedure for an enough quantity of a in order to populate the
phase plane with a complete set of lines.

Example 3—1I: Let’s examine the mass and spring system illustrated in Figure 3.2,
which is described by the following differential equation:

X+wx=0

Plot its trajectory in the phase plane.
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— X)) =a

/ /
fi=0 fi<0
f,>0 f <0

FIGURE 3.1 Schematic of the lines with positive slope.

Displacement
x(t) = X sinw,t

SANAGE
\

Time

T

FIGURE 3.2 Amplitude diagram to time of a one-degree freedom system including mass
and spring.

Response: The second-order differential equation is represented in the state space.
Therefore, the following items will be included:

X, =X,
. 2
X, = —w’x,

Next, we obtain the result by doing division on two equations:

x,dx, = —w’x,dx,
Which can be written:
dx Wwix
—S=-—t=a @)
dx, X,

Based on the aforementioned correlation, it may be expressed as follows:

X, =——X, (b)
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2
. . . . . w
The equation described earlier represents an equation with a slope of ——, com-
e}

monly referred to isoclines. By continuously varying a, it is possible to generate
different lines.
Alternatively, it may be expressed based on the equation (a):

o ©
dx,
Thus, based on the equations (b) and (c), it can be inferred that by choosing a certain value
of a, a line can be constructed where all the lines of the trajectory have a same slope a.
Figure 3.3 demonstrates that joining lines with the same slope but different direc-
tions result in the creation of an oval curve along the line of those directions. If we
desire to delineate the line of trajectory in an analytical manner, it may be expressed
based on the equation (a) as follows:

_ 2
X,dx, = —w”x,dx,

By doing integration on both sides, we will obtain the following:

2 2.2 2
X, twx =c

The equation earlier represents an oval and indicates that the locus of the garlic is
the closed path of the oval. Figure 3.4 displays the plotted line of garlic for various
values of c.

Example 3-2: Let’s examine a pendulum without friction, as shown in Figure 3.5.
The dynamic equations that control the state space are as follows:
X, =X

X, = —sinx,

1

29

*2 / Isocline

Trajectory

FIGURE 3.3 The isoclines of a simple harmonic oscillator.
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X3

==

Trajectories

FIGURE 3.4 Drawing the trajectory for different values of c.
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mg

FIGURE 3.5 Schematic of the frictionless simple pendulum.

Which can be written:

S(x)= &: _sinx,
dx, X,

Consequently, the relationship of the lines will also be equivalent to the following:

X, =——sinx,
c

One can achieve the task of drawing a line by utilizing the aforementioned equation
and seeking assistance from specific slopes on the isoclines. Given the initial point

X, = [E,O], the solution is depicted in Figure 3.6.
2
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|
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X

FIGURE 3.6 Geometric structure of the phase plane of the frictionless pendulum equation
using the isoclines approach

Example 3-3: Let’s examine a pendulum with friction, where its dynamic behav-
ior may be described by the relationship between its state variables as follows:

X, =x,, X,=-05x,—sinx
Which can be written as follows:

S(x)= —0.5x, —sin x, _

X,
Response: The relationship between the lines may be expressed by the slope of the
given relationship.

X, = sin x,

C054c

By choosing the initial point x, = [5,0], it can be noticed that its trajectory is con-

tracting and converging, like the behavior of a spring moving towards the origin. By
varying the value of c, it is possible to design lines with varied slopes. Conversely,

. . dx, .
the value of the gradient on each line or curve, represented by —=, is constant and

[TPR1]

equal to “c”. This constant serves as a reliable reference for accuratlely drawing a line
in the phase plane. Figure 3.7 depicts the procedure described earlier, which resulted
in the creation of the trajectory.

The subsequent statement is a theorem that establishes the presence and unifor-
mity principles utilized in qualitative analysis, which relies on the depiction of a
sequential line.
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12

4

FIGURE 3.7 Geometric structure of the phase plane of the pendulum equation with friction,
obtained using the method of isoclines.

3.3 THE INVESTIGATION OF EXISTENCE
AND UNIQUENESS THEOREM

The theorem of existence and uniqueness implies that lines with distinct orientations do
not intercept. If two lines of trajectory collide, there will be two solutions that originate
from a same point, which coincides with the collision point, so contradicting the singular-
ity aspect of the theorem. Put simply, a trajectory line is unable to travel in the other way.

Due to the nonintersecting nature of the trajectory lines, the fuzzy pictures con-
sistently exhibit a tidy look in relation to them. Alternatively, they might deteriorate
into a complex network of intersecting curves (Figure 3.8). Indeed, the presence of
existence and uniqueness acts as a barrier to this occurrence.

In other words, the aforementioned can be said as follows:

Assuming that:

i=f(x) xerR

If f is a smooth vector function and f a f are continuous, then there exists a solution
for )"c'(t), and it is unique for every initial condition. Thus, it can be concluded that
the vector function f, being a uniform function, ensures that there is no interference
based on the initial condition while sketching the trajectory.

3.4 STABLE SYSTEMS

Stable vibration systems are characterized by the preservation of energy inside the
system, without any dissipation. The equation for these sorts of systems is as follows:

X+ f(x)=0 (3.10)
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FIGURE 3.8 An illustration of trajectory lines.

Now, we substitute the variable X with the value of xd—, results in:

X
dx
t— = A1
xdx—i-f(x) 0 (3.11)
Or
Xdix+ f (x)dx =0 (3.12)

The generic form of equations for stable systems may be obtained by integration as
follows:

2 x
% + [f (x) dx = E = constant (3.13)

Based on the equation provided, it is noted that in stable systems, the total energy,
which is the sum of kinetic energy and potential energy, remains constant. We will ana-
lyze the behavior of stable systems using graphical representations and phase planes.
Example 3—4: Examine the simple pendulum depicted in Figure 2.19.
Based on the preceding section, it can be readily demonstrated that the equation
governing the motion of the pendulum is as follows:

§+§sin9 =0

0 +wsind =0, W? = % (3.14)

Assuming x, =0 and x, = 0, we apply Equation (3.9) to the state variables, yielding
the following outcome:

X=X =5
. 2 . = . 2 .
X, +wisinx, =0 X, =—wsinx,
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FIGURE 3.9 Simple pendulum with mass m.

Dividing earlier equations will result:

b _ psinn (3.15)
dx

1 X2

We will multiply the sides.
x,dx, +w’sin x,dx, =0
Through the process of integration, it reaches a final determination:
1
Exj +u’ (1 —cos xl) = E = constant (3.16)
Regarding the Equation (3.16), E is a fixed quantity that is directly related to the

overall energy of the system. An alternative method can also be used to establish the
Equation (3.16). To fulfill this objective, it may be expressed as follows:

. 1 :
Kinetic energy T = Emlze2

Potential energy U = mgl (1 —cos 9)

Thus, the total energy of the system will be equivalent to the following:
T+U= %mIZQZ + mgl(l fcos9>

The results are obtained by dividing the parties by mi”.

_ Total energy £

2

%9’2 +§(1 — cos6) (3.17)

ml

Based on the Equation (3.13), the motion equation of a single degree of freedom
(X + f(x) = 0) may be expressed in the generic form:

%xz—i-F(x):h
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. 1 o
In a continuous system, the terms — x> and F (x) represent the kinetic energy and

potential, respectively. These quantities are regarded as constant and are equal to h.
The subsequent are the classifications of fixed points that we meet in the qualitative

examination of the behavior of dynamic systems. In order to achieve this objective, we

examine the potential function F (x) and the constant value £, as seen in Figure 3.10.

. . .1,
The graph of Figure 3.10 may be generated by plotting the function — x> 4 F (x) = h.

Figure 3.10 demonstrates a clear correspondence between the route of the
line marked with (T,,) and the energy level (hn). The points labeled as (S) rep-
resent the saddle points, whereas the one labeled as (C) represents the center
point. Fixed points, also known as central points, correspond to extreme poten-
tial energy. Figure 3.10 shows a clear correlation between the saddle points and
the highest energy level, whereas the centers (C) are associated with the lowest
energy level.

Paths that intersect at the highest point in the saddle points (T3 and TS)
(Figure 3.10) are referred to as separatrics. The particle’s trajectory near Point (S) is
considered unstable in the vicinity of saddle Point (S) because small displacements
around Point (S) do not result in a closed path. The point that corresponds to the
highest potential energy is referred to as the unstable fixed point. Conversely, in
the central area of the neighborhood, the trajectories are not open, resulting in peri-
odic answers. The particle’s movement and its associated trajectory near the center
are steady. The stable fixed point is the fixed point that corresponds to the minimal
potential energy, as shown in Figure 3.11.

To gain a deeper comprehension of the notion of a stable and unstable fixed
point, let us examine the pendulum depicted in Figure 3.12. The pendulum depicted
in Figure 3.11 (a) exhibits a state of stable balance when it is positioned at its lowest
point. By displacing the mass from its state of static equilibrium, it will undergo
oscillations around its equilibrium position, which is located at the center (c). The
trajectory of the mass in the phase plane will be curved. However, in the pendu-
lum seen in Figure 3.11 (b), referred to as the reverse pendulum, the fixed point is
located at its maximum height and belongs to the category of unstable fixed points.
Therefore, even a small departure from the fixed point, known as the saddle point,
will cause the mass to be displaced and prevent it from returning to its original
position.

Analysis of the enclosed trajectory in Figure 3.10 reveals that the duration of
rotation is dependent on the extent of movement. In nonlinear systems, the period
of rotation or frequency is contingent upon the initial conditions. Typically, the tra-
jectory on the left and right sides of the center is asymmetrical. As a result, the
midpoint of the trajectory is shifted and moved away from the center of the stable
equilibrium denoted by (C ) by increasing the range of motion. This phenomenon is
commonly referred to as a steady streaming or drift from the original trajectory. It
is important to observe that when the amplitude of 7, (Figure 3.10) increases, the
trajectory, which encompasses the closed path of the oval, will move in a bigger
oval shape. The center of this oval will be located distant from the center of static
equilibrium.



56 Nonlinear Vibration of Smart Continuous Structures

FIGURE 3.10 Phase plane for a conservative system having a single degree of freedom [4].

) @

a) b)

FIGURE 3.11 Simple pendulum in a (a) stable equilibrium and (b) unstable equilibrium.
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Z Vo

FIGURE 3.12 Stable node, (a) a.> 1, (b) a < 1.

3.5 ANALYSIS OF THE QUALITATIVE BEHAVIOR
OF SECOND-ORDER NONLINEAR DYNAMIC
SYSTEMS USING THE LINEARIZATION
APPROACH AROUND THE FIXED POINT

Prior to delving into the specifics of qualitative behavior analysis for second-order
nonlinear dynamic systems using the linearization approach around the fixed point,
it is crucial to take into account the following two key considerations [4]:

* The study of phase planes in nonlinear systems relies on the analysis of
phase planes in linear systems, as nonlinear systems exhibit behavior that is
almost identical to linear systems in the vicinity of the fixed point.

* Nonlinear systems have distinct features, such as multiple fixed points and
limit cycles, which give rise to intricate patterns.

Initially, through the process of linearizing the differential equations that regulate a
nonlinear system at the point of equilibrium, we want to conduct an analysis using
a linear model. Given a second-order nonlinear differential equation in state space
form, we possess the following:

.

:fl(xl’xz)
di L dn_ Slaen) (3.18)
%:fz<x19x2> dx, fl(xl,xz)

We have to get balance points:

=% =0 = fi(x.x)=f,(x,x,)=0 (3.19)
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A (xm’xoz) =1 (xowxoz) =0 (3.20)

The fixed point is located at (x,,,x,, ). To simplify the issue without sacrificing its
generic nature, we will suppose that the fixed point is located at the origin, namely,
at (0,0). Therefore:

Ox, Ox
X=X —Xy =>—=—
ot 0ot

(3.21)
S .
y=4x, 02 ot _8t

The new fixed point is determined by the alteration of the aforementioned variable,
resulting in the origin (0,0) remaining unchanged. Given two functions, f, and f,,
which are functions of two variables, their Maclaurin expansion around the fixed
point (0,0) is as follows:

x=f(x.y)=£(0,0)+a,x+a,y+ Higher order sentences

(3.22)
y=1 (x,y) =1 (0,0) +a,,x+ a,,y+ Higher order sentences
In which:
0 0 0 0
a, = i > a, = i s ay = i ) Ay = i (3.23)
Ox (0.0) dy (0,0) Ox (0,0) (0,0)

The utilization of linear expressions in the Maclaurin expansion and the omission
of higher-order terms is justified by the insignificance of x and y fluctuations in
the vicinity of (0,0). The Jacobian matrix is defined as the matrix resulting from
the expansion coefficients based on the given Equation (3.23). In the vicinity of the
fixed point, the trajectories of a nonlinear system have a behavior that closely resem-
bles the linear trajectories of the system in that region. Presently, we possess the

following:
O 2
y y

Based on the response, we have the following format:

X (3.25)
y—Ye .

By substituting the given solution into the Equation (3.24), we obtain the following:

A B -

a a

11 12

a2] a22

a, 4ap A ap

a a a,, — A\

21 22 22
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A

We have a problem with getting eigenvalues:

a11_>‘ ap,
-2

Therefore, the eigenvalues of the problem will be equal to the following:

detA=0 = =0 (3.26)

a a

21 22

1
AnA, :E(piA),Az \/pz_4‘]’ P=a, +ay, q=a,a, —a,a, (3.27)

X X
If { Yl} and {YZ} are eigenvectors associated with eigenvalues ()\2,/\1 ) respectively,
2

and assuming they are ()\1 = O) and ()\2 = 0) as well as ()\, = /\2), the answer can be
written as follows: (where ¢, and ¢, are arbitrary constants).

X X
{x} =c, { '}e“ +c, { z}ew (3.28)
y Y Y,

In the upcoming discussion, we will see that the qualitative dynamics of the system
may be characterized by describing the distinct values. To solve the Equation (3.24),
a straightforward approach involves decoupling and utilizing the T -transformation

{ } \ | { | } { ]{1 | } ( )
y 1 2 2 2

Matrix T represents the modal matrix, which contains eigenvectors. The general-

ized coordinates are denoted by {ul } The governing differential equation may be
expressed as follows: %
U
(3.30)
M2

|

|
Based on the theorem of linear algebra, specifically the algebra of matrices, the fol-
lowing is established:

-1 —1

Xl X2
Yy

Xl XZ
Yy

Xl X2
vy

a, a,(|X, X,

a Y Y

21 a22

—1
a, a,
3.31
v v (3.3D)

1 2

Xl X2
a

X, X [N 0
Y, YzHo Azl

21 a22
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So we will have the following:

L.tl
|
Both u,, and u,,, are constant. It is noted that two equations are distinct and may be

readily solved using the aforementioned method. By eliminating the variable t from
the aforementioned two equations, we obtain the following:

A 0
0 A

L A,

D _ Mt
u, u, =\u, — u, (t) =1, e

‘ A
1y (1) =y [”—] oa=3 (3.33)
1

Uy

If u,, = 0, the half-trajectory corresponds to the axis u, (Figure 3.13).

Considering the aforementioned information, it can be concluded that by com-
puting the eigenvalues of the coefficient matrix in the Equation (3.24), it becomes
convenient to express the solution of the differential equation in terms of the Equa-
tion (3.32) rather than Equation (3.28). This approach facilitates the analysis of the
qualitative characteristics of the equation. Based on the values of A, and ),, the fixed
points may be categorized as follows.

1. ), and )\, are real and uneven values, i.e., p° > 4q.
Next, given that A, and A, have the same or opposite sign, we specify the
type of movement.
a) if A, and )\, have same symbols (¢>0), the fixed point is called
the node.

a-1) if A\,\, <0— p <0, as a result, the fixed point, a node, will be
stable as Figure 3.12.
a-2) if A\ A, >0— p>0, as a result, the fixed point, a node, will be
unstable as Figure 3.13.
The behavior of the trajectory going through the origin is contingent
upon the sign «. If « is a positive value (A, and A, have the same sym-
bols), the origin is called a node or nodal point (as seen in Figure 3.12
and Figure 3.13). When the value of a is greater than 1 (a > 1), the tra-
jectory intersects the axis (”1) tangentially, as shown in Figure 3.12 a
and Figure 3.13 a. Conversely, when a is less than 1 (a < 1), the trajec-
tory intersects the axis (uz) tangentially, as shown in Figure 3.14 b and
Figure 3.13 b. Figure 3.12 depicts a stable node, indicating that both )\
and ), are negative. Conversely, when A and )\, are positive, it signifies
that as t grows, the point is diverging from the origin, which is referred to
as an unstable node (Figure 3.13).

b) If both )\ and ), are real and equal, then the equation p* = 4¢ holds. In
this scenario, the trajectory will consist of straight lines that intersect the
origin. If A <0, the fixed point (origin) will be stable, and if A <0, the
fixed point will be unstable (Figures 3.14 a and b).
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a) b)

FIGURE 3.13 Unstable node, (a) o> 1, (b) a < 1.

For instance, we examine the scenario in which the roots possess the character-
istics of being both real and equal. There are two potential modes in this case:

A0
[B]=
0 A
Or
Al
[B]=
0 A
We’ll have [B] for the first case:
u, = Au,, i, = A, (3.34)
So:
U =u, ex ()\ = Bt
L =u, exp(Nt), U, = ity exp(At), = (3.35)

Uy Uy
The point of origin is referred to as a node. The stability of the node’s origin is
determined by the sign of A. If A < 0, the origin of the node is stable (Figure
3.14 a). Conversely, if A > 0, the origin of the node is unstable (Figure 3.14 b).

A<0, =X <0 A=A>0
Regarding the second scenario, we will have [B]:

i, = Au, +u,, U, = A, (3.36)
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FIGURE 3.14 Stable node when the eigenvalues are equal and the Jacobin matrix is diagonal.

So:
u, = (1, + ) exp(Ar), Uy = iy, exp(Ar) (3.37)

Furthermore, in this particular scenario, the point of origin is referred to as
anode. If A > 0 (Figure 3.15 a), the origin of the node is stable. Conversely,
if A <0 (Figure 3.15 b), the origin of the node is unstable.

The semicircle represents the point where u,, = 0 equals zero on the u, axis.
Regarding the Equation (3.37), the following information is available:

1
B M D asi—o0 (3.38)
u, Uy + Uyt t

Which is for u,, = 0 mode.

Based on the Equation (3.37), it is determined that u, is unable to undergo
a change in sign. Consequently, every trajectory line must be positioned
either in the top half or the bottom half of the plate. Furthermore, when t
approaches infinity, the values of u, and u, converge, and the ratio u, /u,
tends towards zero. Thus, all the lines of the trajectory pattern converge
towards the origin in the lower half of the plane, exhibiting a horizontal
slope and originating from the left side. All the lines of the trajectory con-
verge towards the origin in the upper half of the plate, originating from the
right side and with a gradient of zero (Figure 3.15).

. If A\, and ), are real but opposite to the sign (q < 0) and the sign p is not

important.

In this scenario, one of the solutions converges towards the origin, while
the other diverges towards infinity. In this particular situation, the origin
represents the saddle point and corresponds to an unstable equilibrium.
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FIGURE 3.15 a) Stable node, b) unstable node.

Figure 3.16 displays the structure of the trajectory line. The axes u, and u,
are unequivocally integral curves.

A <0, A>0 A >0, A <0

In mathematics, an integral curve is a parametric curve that provides a unique
solution of an ordinary differential equation and/or system of equations. If the dif-
ferential equation is represented as a vector field or slope field, then the associated
integral curves are tangential to the field at every point.

If )\, and ), are complex conjugate(p” < 4q).

A =0,+i0, — u (t)=u,e™ — u ()= (uloeg")emz’

A =06,—i0, —u, (t) - uZOeAZI — u, (t) _ (”zoeﬁlt )e—i(i’zt

The equations depicted earlier illustrate the motion of a logarithmic spiral. In this
scenario, the point of equilibrium is referred to as the focus point or spiral point or
focal point. If 6, is negative (6, < 0), both the asymptotic stable motion and the focus
point will be stable. The expression (p < 0) and (g > 0) is equal to the condition
shown in Figure 3.17.

If 6, > 0, the focal point will be unstable. This is equivalent to ( p> 0) and (q > 0)
(Figure 3.18).

It is important to understand that the 6, sign just denotes the direction of rotation.
If 0, is greater than zero (6, > 0), the motion is in the counterclockwise direction.
Conversely, if 8, is less than zero (6, < 0), the motion is in the clockwise direction.
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FIGURE 3.17 Stable focal point.

If 6, equals zero (6, = 0), meaning that p equals zero ( p= 0), then the mixed radial
vector will have a constant value. Consequently, the phase plane is introduced as
a circle with the center being the fixed point. There has been sporadic movement,
resulting in stability. The fixed point in this instance is located in the center or vertex
point (as seen in Figure 3.19).
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FIGURE 3.18 Unstable focal point.

FIGURE 3.19 Vertex or center point.

3.6 REVIEW OF A FEW POINTS

1. The nature of the fixed point is determined by the polarity of the eigenvalues.
An instability arises when the real component of the eigenvalues is posi-
tive, while the system remains stable when the real part of the eigenvalues is

negative.

2. All the characteristics of linear systems are widely recognized.
3. The characteristics of nonlinear systems are only established within a lim-

ited region.

w

65

Figure 3.20 depicts the various states of the poles and the names of the fixed points

associated with each condition.
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FIGURE 3.20 Different types of poles according to their eigenvalues and corresponding
fixed points.
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Example 3-5: Find the solution to the initial value issue given by the equations
X =x+y and y = 4x—2y using the initial conditions (xo,yo) = (2,73) .
Answer: the corresponding matrix is equal to the following:

x| 11 fx
y)ol4 2l
Firstly, we determine the unique values of matrix A. The equation can be described
as a characteristic equation: \"2+X-6 = 0. Therefore:

Next, we acquire distinct vectors V = (vl,vz) that correspond to certain values in
such a way that:

vi| (0

v, 0

-1 1
—4

-1 1
4 —2-)

Given )\ =2, we may deduce that the matrix

v, 0 L
= multiplied by
Vv, 0

the vector (v,,v,) equals the zero vector (L1) (v,,v,)=(L1). This equation has a
trivial solution (vl,vz) = (1,1) or any scalar multiple of it. (Certainly, every scalar
multiple of a unique vector will always provide another unique vector, with an
inclination towards selecting the most straightforward option, but all possibilities
will be valid.) Similarly, when J, is equal to -3, the equation takes on a eigen-

1 1
—4

value

0
[vl][o]. The equation (vl,vz):(1,74) has a trivial solution
V2

(v,,v,) = (1,—4). To summarize:

ol ool

A generic response can be expressed as a linear mixture of specific replies. Thus, the
answer will be applicable in all cases.

X(1)=c, [1]e te, [ 14]6_3,

To get the initial condition (xo, yo) = (2,73) in the final state, we compute the coef-
ficients ¢, and c,. At time ¢ = 0, we will possess the following:

bl
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Which is equivalent to the following algebraic equations:

2=c¢ +c,,
—c=1c=1
—3=c¢, —4c,.
With a fixed date, the public response results:
x(t)=e"+e™
y(t)=e" —4e™

Which is solving the initial value problem.

Fortunately, it is not necessary to do all of these processes in order to create a
phase picture of a linear system. Our sole requirement is to get knowledge of the
distinctive values and their matching distinctive vectors.

Given that the system’s eigenvalues are \, =2 and A\, = 3, let’s draw phase shape.
The initial unique answer experiences exponential growth, whereas the subsequent
unique solution diminishes and eventually vanishes. This is the genesis of a zenith
point. The manifold is defined by the line created by the vector V, = (1,—4), which
corresponds to the specific solution that is decreasing in magnitude. Likewise, there
are a small number of unstable branches, such as the line formed by vector ¥, = (1,1).
Similar to the Zen dots, a single line of garlic moves towards several unstable
branches, causing the need for # — oo (as seen in Figure 3.21).

3.7 CLASSIFICATION OF FIXED POINTS

By now, you are likely fatigued from the numerous instances and eager for a straight-
forward category. Fortunately, this category exists. The associated equilibrium and sta-
bility point type may be visually shown in a straightforward diagram (Figure 3.22) [2].

\ | /

\\

FIGURE 3.21 Phase plane image.
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The second-order differential equation in the state space is defined based on the
linear conditions surrounding the fixed point in the following manner:

Ol 2t

Based on the response, we may observe the following structure:

X (3.40)
y—Ye .

By substituting the previous solution into the Equation (3.39), we obtain the following:

X X X
/\e”{ }: { ]»e” N { }e)\t:()
Y Y Y

Therefore, we have a eigenvalues for solving the problem:

a a

11 12

a a

21 22

a, 4a, a; —A a;

a, Qy ay, Ay — A

A

a, —A a
det A=0 — | " 2 o=0— )\I,Azzl(pi ,p2—4q)
ay ay —A 2
p:all+a22’ q:alla22_a21a12

In Figure 3.22, the p-axis, Trace, and the g-axis are the determinants of matrix A.
The schematic information is derived from the subsequent relationships.

P2—4g=0

unstable nodes

saddle points

non-isolated

fixed points
stars, degenerate nodes

FIGURE 3.22 The fixed points classification of a linear system on the page (p, q).
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1
AI,ZZE(pi«/Z),A=p2—4q g=A\N\, p=X\+\ (3.41)

The second and third expressions in Equation (3.41) can be obtained by writing the
characteristic equation in the form (A -\ )()\ =A)=A—pA+q=0.

According to Figure 3.22, the following is observed:

If q is < 0, the eigenvalues are real and have the opposite sign. So the fixed point
is a saddle point.

If q is greater than zero (g > 0), the eigenvalues exhibit characteristics that resem-
ble either sign (nodes) or complex conjugates of spirals and centers. It should be
noted that the nodes exhibit a p* —4¢g > 0 correlation, whereas the spirals adhere to

a p” —4q < 0 correlation. The equation p* —4q = 0 represents the border separating
nodes from spirals. This share includes both the star nodes and the degenerate nodes.
p determines the stability of nodes and spirals. When the value of p is less than
zero (p < 0), the real components of both eigenvalues are negative. Consequently,
the fixed point is deemed stable nodes, and spirals that are unstable have a positive
p value (p > 0). Stable centers are naturally positioned on the boundary line where
p =0, resulting in a combination of exceptional values.

If q equals zero (¢ = 0), then at least one of the eigenvalues is also zero. There-
fore, center, a balancing point, does not exist in isolation. Under these circum-
stances, there are stationary points throughout the whole length of a line (as seen in
Figure 3.23). Alternatively, if A =0, a stationary points plate will be present.

Upon reexamination and with a more extensive analysis, it is evident that
Figure 3.22 may be regarded as Figure 3.24. The primary components of the fixed
points in this form are saddle points, nodes, and spirals. They are present in signifi-
cant portions of spots on the plate (q, p). The centers and nodes of the star, as well as
the equivalent and non-isolated fixed points, correspond to the boundary line curves
on the plate defined by the coordinates (q, p). Among these borderline instances,
centers have much more importance. They often arise in frictionless mechanical sys-
tems with steady energy.

It is emphasized that the parabolic curve with the equation p’ —4g=0in
Figure 3.24 is a boundary line that consists of border nodes, star nodes, line p =0
centers, and line ¢ = 0 and is known as non-isolated fixed points. Among them, the

FIGURE 3.23 Phase plane corresponding to one of the eigenvalues of zero.
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FIGURE 3.24 The fixed points classification for a linear system on the page (p, q).

centers have particular significance. Due to even the tiniest variation, the system may
encounter either stable or unstable situations.

3.7.1 T

The trajectories of a nonlinear system are located in a neighborhood surrounding the
fixed point, which is close to its linear trajectories.

If the equation originates from a linear state, a stable node, a stable focal point,
or a saddle point, then in a limited vicinity of the fixed point, the trajectory of a
nonlinear system will exhibit behavior similar to that of a stable node, a stable focal
point, or a saddle point, respectively. If the linearized state equation originates from
an unstable node, an unstable focal point, or a saddle point, then the behavior of the
course line of a nonlinear system in a small neighborhood of the fixed point will
resemble that of an unstable node, an unstable focal point, or a saddle point, respec-
tively [4].

It is important to mention that the phrase mentioned earlier does not apply to
boundary lines, such as central, equivalent, star nodes, and non-isolated fixed points.
Undoubtedly, the center and non-isolated fixed points are quite sensitive within the
boundary lines. By making a modest adjustment, such as including a damper, the
central point of the system will tend to move towards either a stable or unstable spi-
ral. This scenario is true for non-isolated fixed points. However, the stability criteria
for equivalent and star nodes remain unchanged with minimum modifications. For
example, unstable spirals transform into unstable nodes, yet their instability persists.
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3.7.2 Hyrersolic Fixep PoiNTs, TOPOLOGICAL
EQUIVALENCE, AND STRUCTURAL STABILITY

In a second-order system, if both eigenvalues Re()\) = 0 are not equal to zero, the
fixed point is referred to as hyperbolic. The hyperbolic fixed points exhibit robustness
and their stability type is unaltered by minor nonlinear perturbations. Conversely,
fixed points that are not characterized by delusions are feeble and easily broken.

The Hartmann-Grobman theorem states that the local phase image closely approx-
imates a hyperbolic fixed point, with a topological coefficient that aligns with the
linearization phase image. The stability of the fixed point is specifically determined
by linearization. Topological alignment refers to the process of achieving topological
homeomorphism or mapping topology through continuous deformation and inver-
sion. This involves drawing the image of the local phase onto another, ensuring that
the line of the trajectories aligns with the line of other trajectories and the direction of
time (path of vectors) is preserved. An illustrative instance of hyperbolic fixed points
can be referred to as the saddle point, whereas for non-hyperbolic fixed point, as the
center point. The Hartmann-Grobman theorem addresses the matter of stability of
points in the phase plane when there is a little change or deviation from the equilib-
rium state, using eigenvalues.

3.8 QUALITATIVE BEHAVIOR OF N-ORDER NONLINEAR
DYNAMIC SYSTEMS BY USING THE LINEARIZATION
APPROACH AROUND THE FIXED POINT

Let’s consider the differential equation that governs a system in state space with n
dimensions. This equation is a first-order differential equation.

X=F(3) eR", (3.42)

)'c.:F(x],xz,x3,...,x") i=12,....n (3.43)

i i

F is a uniform function with a real value.

The function F(X) can generally exhibit nonlinearity. We need to compute the
fixed points.

F=0—F(%)=0 (3.44)

Given the desire to shift the fixed point to the origin, we may do this by modifying
the variable as follows:

(3.45)
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Assume that by substituting the variable change mentioned earlier into the Equation
(3.43) and expanding the function F; ( Vi>YasVaoe-os yn) around the origin, the resulting
relationship is as follows:

¥(1)= A3 (r): (3.46)

Where the Jacobian matrix is defined as follows:

OF, OF OF,
a=|2% 95 OF . F= F; (3.47)
dy, 0Oy, Ay, :
OF, OF, OF, b
Where the initial conditions are as follows:
¥(1) =5, at t=0 (3.48)

Let’s define the vector 55(1‘) as 5)’(1‘) =Tu (t), where T is the modal matrix (a matrix
holding eigenvectors) and ¥, is are generalized coordinates. With this definition, the
governing differential equation may be expressed as follows:

Tii (1) = ATa(1) — i(r)=T"'ATi(r) (3.49)
Where, J = T~ 'AT is referred to as the standard form of Jordan.
(1) =Ji (1) (3.50)

Based on the theorem of linear algebra, the following is known:

A 0
J=T"AT=|: . (3.51)
0 - A
So the J matrix is a diagonal matrix of eigenvalues.

1, Al

u Au - -

=N —a(n) = A4 (3.52)

U Au
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In which:
A=+ " (3.53)

And i, is obtained as follows according to the initial conditions of ¥,.
Yo =Tiy — Uy =Ty, — u(t)=A(t)T""¥, (3.54)

As previously stated, the presence of the trajectories on the phase plane is indica-
tive of second-order differential equations. Put simply, it is not feasible to depict an
exceedingly intricate and unattainable curve by elevating the degree of the differen-
tial equation.

3.9 ANALYSIS OF NONLINEAR SYSTEMS USING A PHASE PLANE

When discussing phase plate analysis in nonlinear systems, it is crucial to take into
account aspects related to limit cycles.

According to the Van der Pol oscillator system, besides the fixed points, the sys-
tem also exhibits a closed curve. All the trajectories entering and exiting this curve
will be inclined towards it. If the trajectory follows the curve, it will proceed along it
and oscillate about the origin, eventually leaving the curve [4]. Figure 3.25 is a curve
that exemplifies the occurrence of limit cycles in some nonlinear systems.

In the phase plane, a partial cycle is referred to as an independent closed curve.
The closed phase route of this curve signifies the rotational character of its move-
ment, while the discrete nature denotes the short duration of the cycle. Consequently,
the nearby pathways either incline towards it or diverge from it. It is important to
highlight that in the case of a mass or a satellite, the presence of several closed curves
prevents these curves from being limit cycles. These cycles are interconnected. Limit
cycles may be classified into three distinct types:

1. Stable limit cycles: have a characteristic where all trajectories surrounding
them get increasingly directed towards the cycles as time progresses.

2. Unstable limit cycles: in these cycles, all the trajectories surrounding them
are eliminated as time progresses.

3. Semi-stable limit cycles: some pathways around these cycles tend to
approach them as time passes, while other paths move away from them.

Example 3—6: The system that follows is assumed:

X, =X, — X, (xlz —l—x; —1) (3.55)
)'czz—xl—x2<x12+x§—l> .
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FIGURE 3.25 Types of limit cycles: a) stable, b) unstable, and c) semi-stable.

By establishing the polar coordinates using the following definition:

l r:wlxlz—l—x;

§=tan"'(x,/x,)

(3.56)

Now, derivative of Equation (3.56) based on time, we have the following:

ﬂ - d(x12 +x§)”2

dr dt

i (22 + 12 ’1/2+ . 21 2)
XX (X T X Xy Xy (X T Xy

=[x, (o 2 1) (a2 +22)

o, [ =y (a2 = 1)) ()

= (4 2) (& —1)(x2 +ad) = ()
Conversely, in regard to 6, we have the following:

2

do d(tan’1 (x2 /x, ))

_ - X, X, — X, X, - |
dt dt N r
X, 1—1——2
xl

172

(3.57)

(3.58)

In the unit circle with a radius of 1 (r = 1), the Equation (3.57) and (3.58) are repre-

sented as follows:

(3.59)
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If the value of r is less than 1 (r < 1), then the derivative of r is positive. Conse-
quently, the trajectories within the unit circle converge towards the circumference.
If the value of r is greater than 1 (r > 1), then the derivative of r will be negative. In
other words, the trajectories outside the unit circle converge towards the circle. In this
scenario, the limit cycle is stable, as seen in Figure 3.26.

Other examples later show that their limit cycles are, respectively, unstable and
semi-stable:

X, =X, + X (xf—i—xj—l)

X, =—x +x, (xlz +x; —1)

The earlier relationships represent an unstable limit cycle, the diagram of which is
shown in Figure 3.27.

X2 converging
A PR
trajectories

limit
cycle

FIGURE 3.26 Stable limit cycle.

Xy diverging

Xq

cycle

FIGURE 3.27 Unstable limit cycle.
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FIGURE 3.28 Semi-stable limit cycle.

The connections later depict a set of equations that pertain to a semi-stable limit
cycle. The associated graph may be seen in Figure 3.28.

o 2 2
X, —xz—xl<xl + x5 —1)

X, =—X, —X, (xf—!—x;—l)

3.10 CASES OF THE EXISTENCE OF LIMIT CYCLES

In the discussion of the existence of limit cycles in nonlinear systems, three important
theorems can be mentioned:

3.10.1 POINCARE THEOREM

If an autonomous second-order system (without input) exhibits a limit cycle, then
the number of limit cycles is equal to the sum of the number of stable fixed points and
one (N =S +1). Let N be the total count of nodes, centers, and centers enclosed by
the limit cycle. S represents the count of saddle points encompassed by the limit cycle.
The Poincaré theorem is sometimes referred to as the index theorem. An immediate
consequence of this is that the limit cycle must encompass at least one fixed point
(because the absence of a saddle point would leave us N =1).

As we have seen, in previous examples, each limit cycle encloses at least one fixed
point.

3.10.2 THE POINCARE-BENDIXON THEOREM

If a path of the automated system of order two (3.56) remains in the finite area (), then
one of the following three statements is true:

1. The path leads to a point of equilibrium.
2. The path leads to a stable limit cycle.
3. The path itself is a limit cycle.
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)'cl (t):f2(xl,x2)
3.60
5(0)= £, (x.x,) (3.60)

3.10.3 BENDIXON’S THEOREM

In the context of an autonomous nonlinear system, the presence of a limit cycle in
the () area of the phase plane is impossible if the Equation (3.61) remains unchanged
and non-zero in that region.

% + % (3.61)
Ox, Ox,
Example 3—12: The following nonlinear system is assumed:
. — 4 2
).Cl g(x2 ) + xlzxz (3.62)
X, = h(x2)+4x, X,
According to Bendixon’s theorem, it can be written as follows:
oh | o 2, 2
I 2 Ay 3.63
Ox, Ox, ( 2 ) 569

Given that the equation mentioned earlier is positive at all points except the origin, it
may be concluded that the system does not have a border phase plane at any location.

It is important to mention that the aforementioned situations are specifically appli-
cable to second-order systems and do not apply to high-order systems. In higher-order
systems, it is possible for complicated lateral behaviors to emerge, in addition to fixed
points and limit cycles.

Example 3—7: Plot the amplitude of the changes in variable x with time t for the
Van der Pol oscillator, given the initial conditions (-1,1) and (-3,3).

Answer: To plot a graph illustrating the variation of x with respect to t, we may
utilize the Van der Pol oscillator based on the derived relationships from the preced-
ing example.

jc'+s<1—x2>5c+x:0

x =X, X1:X2
. - *
i=X, |X,=-eX,(1-X])-X,

Therefore, by calculating the equations mentioned earlier, one may graph the ampli-
tude of variations in the Van der Pol oscillator over time for various initial conditions
as Figure 3.29.
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FIGURE 3.29 Amplitude diagram of changes x by time t for the Van der Pol oscillator for dif-
ferent initial conditions (a) with initial conditions (-3,3) and (b) with initial conditions (-1,1).
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3.11 A GEOMETRIC INTERPRETING A DIFFERENTIAL EQUATION

Graphical analysis can be more advantageous and less complex than mathematical
formulas when qualitatively analyzing the behavior of nonlinear systems in certain
scenarios [1].

In the following, we will propose a technique that utilizes vector fields to analyze
certain behaviors of differential equations, which we will subsequently explain.

In order to introduce this methodology, we begin with a straightforward illustra-
tion. Let us examine the subsequent nonlinear differential equation:

X = sin(x) (3.64)

The solution to this equation, obtained by the process of isolating and then integrat-
ing, can be expressed in closed form as follows:

csc x, +cotx,

t=In (3.65)

cscx +cotx

The previous response, albeit correct, had an intricate and perplexing explanation.

Now, the question at hand is whether it is feasible to respond to the subsequent
question using the aforementioned answer:

Given the initial knowledge of x at time ¢ = 0, it is feasible to ascertain the position
of x at any specified time ¢ > 0. However, what happens when t approaches infinity?

Contrary to the previous question, there exists a straightforward graphical analy-
sis method that can provide a qualitative answer by depicting the vector field of the
differential equation (60-3) in the form (Figure 3.30).

Prior to elucidating this approach, we shall initially establish the concept of fixed points.

Fixed points are positions where the derivative of x with respect to time is zero,
indicating that the particle is not in motion.

At these specific locations, the velocity is precisely zero, indicating a complete
absence of flow.

Fixed points can be categorized according to their stability as follows:

1. Stable fixed points, also known as attractors or sinks, are points in a system
where a particle, when slightly moved, would travel back towards the fixed
point. These locations are commonly referred to as “sinks” due to their abil-
ity to attract the flow.

FIGURE 3.30 Displaying a vector field.
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2. Unstable fixed points, often known as repellers or sources. In the case of an
unstable fixed point, a particle will move away from the fixed point if it is
even slightly displaced. These spots are sometimes referred to as “sources”
due to their ability to reject the flow.

The concept of sinks and sources refers to the flow of substances or energy into or
out of a system. A sink is a location or component that absorbs or removes substances
or energy from the system, while a source is a location or component that adds or
supplies substances or energy to the system.

Sinks are stable fixed sites towards which the flow is directed from both sides.
Particles in close proximity to these locations will experience an attractive force and
ultimately settle at the sink.

On the contrary, sources are unstable reference points from which the flow
diverges. Particles in close proximity to these spots will experience repulsion and
disperse away from the source.

Based on the definition provided earlier, we will proceed to explain the methodology.

In this context, ¢ represents time, x represents the position of a hypothetical par-
ticle moving down a straight line, and x represents the velocity of that particle. The
differential equation x = sin (x) defines a vector field on the line, where it determines
the velocity vector x at each x. In order to depict the vector field, it is advantageous
to graph the derivative of x with respect to time (x) against x and subsequently rep-
resent the velocity vector at each x by drawing arrows along the x-axis. The arrows
indicate a rightward direction when the derivative of x is greater than zero, and a
leftward direction when the derivative of x is less than zero.

Here’s a more tangible perspective on the vector field: envision a continuous flow
of fluid along the x-axis, where the velocity varies at different locations based on the
rule x = sin(x). As depicted in Figure 3.30, the direction of the flow is towards the
right when the derivative of x is greater than zero (x > 0) and towards the left when
the derivative of x is less than zero (x < 0). When the derivative of x with respect to
time is equal to zero, there is no movement, and these points are referred to as fixed
points. In Figure 3.30, there are two types of fixed points: stable fixed points, rep-
resented by solid black dots, and unstable fixed points, represented by open circles.
Stable fixed points are typically referred to as attractors or sinks because the flow
moves towards them, while unstable fixed points are known as repellers or sources.

3.12 THETHEORY OF THE BIFURCATION

In general, any qualitative change in the structure of the field vector or the same
phase image (number of fixed points and/or stability of fixed points) in which fixed
points are created, lost, or their type of stability changes is called bifurcation, and
any places where these parametric changes occur are called bifurcation points [1].
The significance of bifurcation theory is in its capacity to identify the emer-
gence of transient and unstable models inside a system as certain control parameters
undergo changes. Take, for instance, the buckling of a beam. If a little weight is
placed on the beam, as seen in Figure 3.31, the beam is capable of enduring the load
and maintaining its upright posture. However, when the force is substantial, the ver-
tical orientation of the beam becomes unsteady, perhaps causing the beam to buckle.
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FIGURE 3.31 Beam a) in a stable state and b) in a buckled (unstable).

In this context, the weight acts as a control parameter that affects the upward
movement of the beam from its vertical position. It serves as the dynamic variable x.
Now, we will examine the many kinds of bifurcations.

3.12.1 SADDLE-NODE BIFURCATION

A saddle-node bifurcation refers to a process where the formation and destruction
of fixed points occur due to the alteration of a parameter. Indeed, within this bifur-
cation, one may see a transition in the system’s condition from a state of stability to
instability, or vice versa. Consequently, when a parameter undergoes a change, the
two fixed points shift closer to one another, collide, and then vanish [1, 5-7].

An illustrative instance of a tangled obstruction in a system of primary order may
be demonstrated as follows:

i=r+x (3.66)

The parameter “r” can take on positive, negative, or zero values. When the value of
r is negative, there will be two fixed points, one of which is stable and the other is
unstable (as shown in Figure 3.32 (a)).

When r approaches zero from the bottom, the quota moves upward, and the two
fixed points move towards each other. When r = 0, the fixed points at x* = 0 become
one at a semi-stable fixed point (Figure 3.32 (b)). This type of fixed point is very
sensitive, and as soon as r > 0, it disappears, and in this case, there is no fixed point
(Figure 3.32 (c)).

In this example, because the vector fields for » >0 and r <0 are qualitatively
different, it is said that a bifurcation happened at » = 0.

3.12.2 GRrarHIC CONTRACTS

The most common way to describe a bifurcation is to reverse the axes of Figure 3.33
so that it is horizontally plotted in the role of an independent variable. It is logical
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FIGURE 3.32 Fixed point in different situations.
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FIGURE 3.33 Saddle-node bifurcation (horizontal).

that r, playing the role of an independent variable, should be plotted horizontally
(Figure 3.34). The disadvantage is that now, the x-axis has to be plotted vertically,
which at first looks a little strange. Figure 3.34 is called a bifurcation diagram for a
saddle-node bifurcation. The display of arrows, according to Figure 3.33, is some-
times and not always shown in some forms.

3.12.3 TRANSCRITICAL BIFURCATION

In some scientific issues, there are certain situations where there was a fixed point for
all values of a parameter, and it does not go away. For example, in the logical equa-
tion and other simple models for the growth of a particular species type, regardless of
the amount of its growth rate, there is a point of equilibrium in the zero population.
Such a fixed point, however, may change its stability by changing the parameter, but
there remains a fixed point. Transcritical bifurcation is a standard mechanism for
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FIGURE 3.34 Saddle-node bifurcation (vertical).
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FIGURE 3.35 Fixed point behavior for different values of r.

such changes in sustainability. The conventional form for a transcritical bifurcation
is as follows:

i=rx—x* (3.67)

The Equation (3.67) seems to be a logical equation, but now, we allow r and x to be
able to have both negative and positive values. In Figure 3.35, we can see the field
vector in exchange for the change r. Note that there is a fixed point in x* = 0 for all
r values. So that by changing the values of r, this fixed point does not disappear.

As can be seen in Figure 3.35, for » < 0, there is an unstable fixed point at X =r
and a stable fixed point at x = 0 (Figure 3.35 a). As r increases, the unstable fixed
point approaches the origin and becomes one with it, i.e., when r = 0 (Figure 3.35 b).
Finally, when r > 0, the origin has become unstable, and now, x" =r is stable (Fig-
ure 3.35 c). Here, a shift in sustainability is said to have taken place, between the two
fixed points.
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FIGURE 3.36 Transcritical bifurcation.

Pay attention to the difference between the saddle-node and transcritical bifurca-
tions. In a critical state, two fixed points, after a bifurcation, do not disappear. But
only their stability changes.

In Figure 3.36, the bifurcation diagram for the transcritical bifurcation is shown.
So that the parameter r is considered an independent variable, and the fixed points
x" =0 and x" = r are represented as dependent variables.

3.12.4 Pi11cHFORK BIFURCATION

Now, we are examining the third type of bifurcation, which is called pitchfork bifur-
cation. This bifurcation is common in physical issues that are symmetrical. In many
issues, for example, there is a partial left-right symmetry. In such cases, fixed points
tend to appear and disappear as symmetrical couples. In the example of the buck-
ling beam (Figure 3.31) if the load is small, the beam is stable in the vertical posi-
tion. In this case, there is a corresponding fixed point with zero deflection. But if the
load exceeds the tolerance threshold, the beam may buckle left and/or right. In these
conditions, the vertical position becomes unstable, and two new symmetrical fixed
points, corresponding to the shape in the left or right arc, are born. There are two very
different types of pitchfork bifurcation. The simplest variant of these bifurcations is
called supercritical bifurcation, which will be discussed at the beginning [1, 5-7].

3.12.4.1 Supercritical Pitchfork Bifurcation
The conventional shape of the supercritical pitchfork bifurcation is as follows:

i=m—x (3.68)

Note that the Equation (3.68), under the variable x — —x, is immutable. This means
that if we paste x with —x and then remove the resulting negative sign on both sides
of the equation, we return to the Equation (3.68). This immutability is the mathemat-
ical definition of left and right symmetry, which was mentioned earlier. Figure 3.37
illustrates the relation-related field vector (3.68) for different values of r.
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FIGURE 3.37 Field vector for different values of r.
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FIGURE 3.38 Supercritical pitchfork bifurcation diagram.

The reason for using the phrase “pitchfork” becomes more apparent when we
draw the bifurcation diagram of Figure 3.38. In fact, the phrase “three-pronged fork™
could have been a better phrase.

3.12.4.2 Subcritical Pitchfork Bifurcation

In the supercritical state, in which the relation x = rx — x° was discussed, its third-order
sentence is the system stabilizer such that it acts as a return force that pushes x(t)
back towards x = 0. Now instead of the third-order phrase, the unstable form is as
follows:

i=r+x (3.69)

We will have a subcritical pitchfork bifurcation, the diagram of which is shown in
Figure 3.39.

Compared to Figure 3.39, the fork is inverted. Non-zero fixed points x* = +J—r
are unstable and exist only under the bifurcation r <0 from which the subcritical
expression is derived. More importantly, that, the origin is stable for r <0, and
unstable for r >0, as it was in the supercritical state. But now, the instability for
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FIGURE 3.39 Diagram of the subcritical pitchfork bifurcation.

FIGURE 3.40 Symmetrical bifurcation relative to the x-axis.

r > 0, with the third-order expression, is not contradicted. In fact, the third-order
sentence helps to move the line of trajectory towards infinity.

In real physical systems, the so-called explosive instability is in contrast to the
sustainability effect of high order expressions. Suppose that the system is symmetri-
cal relative to the x-axis (Figure 3.40). The first sustainability expression should be
x°. Thus, the standard example of a system with a subcritical pitchfork bifurcation
is as follows:

i=rm+x —x (3.70)

Figure 3.40 illustrates a bifurcation diagram for the Equation (3.70). For small x
values, the situation is the same as in Figure 3.39. The origin is stable for » < 0, and
the branches bent backward make unstable fixed points, creating a bifurcation in
r = 0. A new feature caused by the expression x” is that unstable branches return and
become stable at r = r, (where r, <0). For all values of r > r,, these stable branches
of the large domain exist.
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FIGURE 3.41 Phenomenon of jumping and hysteresis in the bifurcation.

Other points to be made about Figure 3.40 are as follows:

1. In the r, <r <0 range, there are two different qualitatively stable states,
which are the origin and fixed points of the large domain. The initial condi-
tion x, determines which fixed point is approached in exchange for ¢ — oo.
One result is that the origin is stable in small disturbances, and this sustain-
ability is a local one and not a general one.

2. Different stability modes make it possible to create jumping and hysteresis phe-
nomena by changing r. Suppose the system is in state x° = 0 and we increase
the parameter r slowly (Figure 3.41). It remains stable until the value r = 0.
At point r = (0, we see a jump to the large domain branch. As r increases fur-
ther, the situation moves along the branch of the large amplitude. Even when
r is reduced to less than zero, we need to reduce r to less than r, to get back to
origin from jump mode. This irreversible defect is known as hysteresis.

3. Bifurcation in r, is a saddle-node bifurcation in which stable and unstable
fixed points are born.

3.12.5 TecHNICAL TERMS IN THE BIFURCATION

Typically, in the theory of bifurcation, various other names are used. Supercritical
bifurcation is sometimes called forward bifurcation and is dependent on continu-
ity or second-order phase passage in statistical mechanics. Subcritical bifurcation
is sometimes called upside-down or backward bifurcation. Subcritical bifurcation is
linked to discontinuity and first-order phase transitions. In engineering texts, super-
critical bifurcation is sometimes called soft and safe because non-zero fixed points
are born on a small range. In contrast, subcritical bifurcation is difficult and danger-
ous because we see zero bounces to the large range.
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4 Solution Methods

4.1 INTRODUCTION

Nonlinear systems exhibit a broad spectrum of phenomena that are not observed in
linear systems. The intricate nature of nonlinear systems results in intricate equa-
tions, which in turn makes it challenging to find precise solutions for these nonlinear
equations [1]. This chapter provides a comprehensive quantitative analysis of meth-
ods used to solve nonlinear equations. When precise solutions are not available, the
analysis of nonlinear systems is conducted using approximate and numerical solving
methods [2].

This chapter is divided into two main sections. In the first sub-chapter, we analyze
solutions in the time domain. One widely recognized and highly effective method is
the perturbation method, which is further explored through various types of pertur-
bation methods for solving nonlinear equations [3, 4].

In the second sub-chapter, we analyze solutions in the space domain. One of the
methods that is widely used in the space domain is the solution of governing differ-
ential equations based on the weighted residual method [5, 6].

4.2 DIFFERENT WAYS OF SOLVING PROBLEMS
USING THE PERTURBATION METHOD

1. Straight forward expansion method
2. Lindstedt-Poincaré method

3. Multiple time scales method

4. Averaging method

5. Harmonic balance method

Prior to delving into various ways of disruption, we will initially familiarize our-
selves with the disruption method. It will become evident that the disruption method
is an exceedingly effective tool for quantitatively analyzing nonlinear systems.

4.2.1 INTRODUCTION TO PERTURBATION METHOD

Some engineering issues have a parameter that is tiny in magnitude. Typically, the
differential equation, or more correctly, the function involved, is analytical. In the
context of disturbance problems, it iS common to come across a small parameter,
denoted as o. This parameter enables us to express the function x(¢), which solves the
differential equation [7], as a series of powers that either increase or decrease in value.

x(e,t) = x,(t) +ex, () + & x, (1) +... @1
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Next, we substitute the series (4.1) into the main equation and equate the coefficients,
such as £*. Thus, we arrive at a system of equations derived from the solution of the
variables x, (7). Regarding the convergence of the series (4.1), the Poincaré theorem
demonstrates that this series converges in the vicinity of € = 0. Therefore, using this
approach, an accurate approximation may be obtained. We’re going to look at the
different types of the perturbation method.

4.2.2 STRAIGHTFORWARD EXPANSION METHOD

Direct techniques are the fundamental and uncomplicated forms of the perturbation
method. However, because to the requirement of several words to obtain the correct
response, it typically yields limited success. For a comprehensive description of the
technique, please refer to the citation [6].

4.2.3 LINDSTEDT-POINCARE METHOD

This approach is typically employed when seeking harmonic and quasi-harmonic
solutions. Typically, a concise and effective response may be achieved with a limited
amount of phrases. This approach will involve a limit cycle. To obtain further details,
we shall employ the Lindstedt-Poincaré technique to solve the Duffing equation.

Examine the subsequent differential equation:

2
d—f+x+eax3:0, e>0 @2
dt
The system in question is known as the Duffing oscillator, which is a model that
incorporates nonlinear reinforcements such as springs.

The Lindstedt method is a straightforward technique used to analyze the rela-
tionship between the rotation period and scope in the Duffing Equation (4.2). The
method involves expanding time to construct an approximate solution for the alter-
nating domain-period relationship.

T=uwt, “.3)
In which:
w=1+ke+ke +... 44

That unknown k; coefficients are obtained in the solving process. We have a substi-
tution connection between Equation (4.3) and Equation (4.2).

d*x

dr?

+x+eax’=0 4.5)

2
w
Now, we expand the variable x as a series of powers in €.

x(7) = x, (1) +ex, (T)+52x2 (m)+... 4.6)
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Given the expansion of the power series in Equation (4.3) and Equation (4.6), the
results obtained using the Lindstedt method are only expected to be valid for small
values. By substituting Equation (4.6) into Equation (4.5) and setting it equal to zero,
we can determine the coefficients corresponding to €”.

0. d2x0

d’x d*x
bl x =2k —L—ax; (4.8)

T dr

d’ d’ d’
2 E 0 =2k S 2k, + ) S Bady, (4.9)
T dr
The solution to Equation (4.8) is as follows:

X,(T)=AcosT 4.10)

In this context, A represents the extent of movement, and we have selected the phase
in a subjective manner. This is permissible due to the autonomous character of Equa-
tion (4.2), which lacks any dependence on the independent variable 7. By substituting
Equation (4.7) into Equation (4.8), we obtain the following:

2
d x,
2

-

+x, = 2Ak, cosT — A’acos’ T @.11)

By simplifying the phrase cos’ 7, we have the following:

dle

2
T

3 3
+x = [2Akl — 3A4 a]cow — A4a cos37 “4.12)

To obtain a response that is periodic, we require the coefficients of the cos7 on the
right side of Equation (4.12) be zero. This crucial step is referred to as eliminating
exacerbated or secular sentences. So:

3
24k — A2, .13)
4
Which results:
3
k=2aA @.14)

By achieving this outcome in Equation (4.3), we get the approximate correlation
between amplitude and frequency as follows:

w:1+k,6+0(62):1+§o¢A26+0(52> 4.15)
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The rotation period, denoted as 7', may be expressed T = 27/w.

7= _ 27 —271'[1%(11425+0<52>] 4.16)

1+§OLA2€+0(62)
8

We can proceed to acquire approximations of higher order. By replacing Equation
(4.14) with Equation (4.12), we may determine the solution for x, (7) as follows:

3

Aza(cos 317 —cosT) @.17)

x (1) =

In this case, the amplitude of vibrations, denoted as A, is chosen such that in the
complementary response (4.6), the initial displacement x, is equal to A. By solving
Equation (4.17) for x,, we may eliminate secular expressions and derive an expres-
sion for k,. This process has the potential to continue endlessly.

To comprehend the dynamics of the Duffing Equation (4.2), we initiate the pro-
cess by expressing it as a first-order system:

dx dy 3

— =y, — =—X—cax 4.18

dt Y dt @19
Equation (4.18) describes a trajectory on the x — y phase plane, representing the move-

ment of a point over time, given the initial condition (x(O), y(O)). The trajectory of the
integral curve passing through that location is defined by the following equation:

dy
7 3
dy _dr _ —x—eax 4.19)
de  dx y
dt
Equation (4.19) represents a straightforward integral that yields:
2 2 2
r +—+ca X constant (4.20)
2 2 4

Equation (4.20) represents the fundamental concept of energy stability. Given that
« is a positive value, Equation (4.20) exhibits a continuous arrangement of closed
curves surrounding the origin. Each object exhibits a periodic motion described by
Equation (4.2) that changes direction over time. Given that « is negative, any move-
ments that start at the origin will be alternating, as depicted in Figure 4.1. In this
particular scenario, Equation (3.14) exhibits two extra equilibrium points apart from

the origin, namely, x = £1/+/—e«, y = 0. The integral curves passing through these
locations delineate alternating movements between restricted and unconstrained
growth, referred to as separatrix, so to speak (single: separatrix).

By performing numerical integration using Equation (4.2), we can observe that
the period of oscillation in alternating motions is contingent upon the closed curves
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FIGURE 4.1 Phase plane for the Duffing equation.

present in the phase plane we were initially situated in. This phenomenon is a form
of nonlinear vibration that is connected in the period based on the amplitude. In the
upcoming episode, we will employ a perturbation technique to investigate it.

4.2.4 MurtipLe TIME SCALE METHOD

This approach is applicable to nearly any problem and, similar to the Poincaré
method, provides a reasonably accurate solution using only a limited amount of
phrases. The primary challenge associated with this approach is in the difficulty of
converting it into a structured set of instructions in the form of programmed code.
Put simply, it is extremely difficult to computerize.

To acquaint this technique, please examine the following differential equation:

X+2ex+x=0, ekl “.21)
With intial conditions as follows:
x(0)=0, x(0)=1 4.22)

We will employ the direct expansion technique to solve Equation (4.21), resulting in
a non-uniform response. In order to address the issue, the concept of employing the
multiple scale method will be proposed. By utilizing this approach, the challenges
associated with the straightforward expansion method can be resolved efficiently,
with minimal effort yielding positive outcomes. Hence, the overall response of the
straightforward expansion method will be as follows:

x(e,1) = x,(t) +x,(t) + €°x, (t) + - 4.23)
Let us evaluate the solution to the equation in the following manner:
x(e, 1) =x,(t)+€ x,(1) +O<52) @.24)
By substituting Equation (4.24) into Equation (4.21), we obtain the following:

Xy +e X, +2e(xy +ex)+x,+ex, =0 4.25)
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By substituting the initial condition (4.22) into the assumed answer (4.25), we obtain
the following:

MO =0= x5O +ex@=0 _ [ x0)=x0)=0

) . . ) ) 4.26)
x(0)=1—%,(0)+¢ x,0)=1 %,0)=1 x0)=0
To obtain the result, we set the coefficients of " to zero.
Applying 1.C.
e’ ¥ +x,=0—x,(t)=c, sint+c, cost = x,=sint @27

et ¥ +2%, +x =0— % +x =—2cost

Based on the discussions on differential equations, it is established that the response
x,(¢) can be derived in the following manner:

Homogeneous response  Particular response

x,(t)=c, sint+c, cost —tsint 4.28)

By substituting the initial conditions stated in Equation (4.26) into Equation (4.28),
we obtain the following:

x,(0)=0
5(0)=0

c3=c4=0

x,(t) =tsint 4.29)

Therefore, the solution for x(¢) can be expressed as follows:
x(t) = x,(t)+€ x,(t) = sint —e t sint (4.30)

The expression (¢ ¢ sin?) in equation (4.30) is referred to as secular, and it induces a
non-uniform reaction in the system, as seen in Figure 4.2.

Figure 4.2 illustrates that for small time intervals, the answer obtained via the
straightforward expansion method closely matches the expected response. However,
for big-time intervals, the presence of variable ¢ causes the response to deviate and
demonstrate the extent of the increasing and growing process. Put simply, the sys-
tem’s response becomes faulty as the value of et approaches 1 (et — 1). According
to the statement, the expansion fractures. Conversely, we are aware that the precise
reaction of the system is as follows:

x(H) = (1 —&? )é e~ sin

1 —52)5 z] @.31)

The amplitude of the answer can be expressed as follows:

Lo 1
A=(1—52)2d:[l—gsz—km](l—at—&—szﬁ +.) 4.32)

expansion of **

expansion of *
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FIGURE 4.2 Non-uniform response to the system resulting from the straightforward
expansion method.

The amplitude of answer A can be delineated as follows:
A=1-ct+0(e) (4.33)
The answer in this instance will be as follows:
x(t)=(—¢t) sinwt 4.34)

In which:
w= 1—152 4.35)
5 .

Upon comparing Equation (4.30) and Equation (4.34), it is evident that when ¢ is
small, the precise solution and the solution derived through the straightforward tech-
nique are identical.

Subsequently, the problem of expansion interruption is addressed by employing
the multiple time scale method. This method is utilized to resolve the non-uniform
response that arises from the straightforward expansion method. Thus, the answer in
the direct technique can be rectified in the following manner:

x(e,t) — x(T, T,, T, ) 4.36)
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The time scale T, (n =0,1,2,---) is defined as follows:
T =¢e"t 4.37)
Typically, the following interpretation of time scales is employed:
T, =t — fast(sec)
Which denotes swift fluctuations or consistent lengthy strides
T, =et — slow (min) (4.38)
It indicates a gradual transformation or incremental progress.
T, = £t — too slow (hr)
What denotes subtle alterations or minute increments.

To rephrase the nonlinear differential Equation (4.21) and subsequently solve it using
the method of multiple scales:

x(e, )~ x, (T, T,, T,) +ex, (T, T,, T, )+ e°x, (T, T,, T, ) + - @.39)
By assigning values to variables x and X, we obtain the following:

. _dx  Ox _dI, Ox dI, Ox _dI,
I=—=—X—F—xX—+—x—>
d 0T, dt 0T, dt 0T, dt

(4.40)
ar* dt\dt) dt\oT, dt 9T, dt OT, dt
By establishing the D, operator, the following may be deduced:
0
=— 4.41
o, .
In which:
d 2
i D, +eD, +¢°D,
e 4.42)
7= D; +2¢ D,D, +¢* (D} +2D,D,
The values of x and X will be as follows:
%= Dyx+eDx+e D,x
4.43)

¥ = Djx+2¢ D,Dyx+¢€ (D} x +2D,D,x)

By substituting Equation (4.39) into Equation (4.43) and arranging the terms in
ascending order of ", we obtain the following:

x=Dyx, + E(DI)CO + Dyx, ) +¢? (D2x0 + D, x, —|—D0x2)

" 2 2 2 (2 2 (4.44)
X=Dyx,+ E(Dox1 + 2D0D1x0) +e (Dox2 +2D,D,x, + D, x, + 2D0D1x0)
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By substituting Equation (4.44) into Equation (4.21) and setting the coefficients cor-
responding to " to zero, we obtain the following:

e’ Dyx,+x,=0—x,(T,.T,.T,) = a(T,.T, ) cos|T, + ¢ (T,.T, )|
=A(T,.T,)e" + A(T,,T,)e ™ = A(T,,T, )™ + CC

e's Dyx, +x, =—2D,D,x, —2D,x,

e’ Dix, +x, =—2D,D,x, —2D,D,x, — D} x, —2D,x, —2D,x,

(4.45)

That CC is complex conjugate. The answer can be expressed in both triangle and
polar formats, commonly employed to streamline the polar state. Therefore, it is
feasible to write the following:

x(t) = Ae" + Ae™" 4.46)

. . | . .
Given the equation A = Eae’o, the following result may be obtained:

| e | 5
x(t)=—ae®e" +—ae e =~ “+9)

2 2 2

ale+9) 4 ol

=acos(t+¢) (4.47)

Now we have:

Dyx, +x, = —2iAe™ —2iD,Ae™ + CC = -2i(D,A+A)e" +CC  (448)
it et il

secular term

It is crucial to emphasize that the first differential equation, which involves x and its
derivatives, has a solution consisting of the sum of the homogeneous response and
the particular response. This combined solution is known as the general solution to
the differential equation. Subsequent differential equations will have a homogeneous
response that includes x,, x,, and so on. Furthermore, their derivatives are required.
Put simply, in equations starting with x,, only the particular response is considered.

Next, we must eliminate the secular terms in the resulting equation, which can be
done by writing the following:

DA+A=0—A(T,,T,)=B(T,)e " (4.49)

Given that we only consider the particular response as the answer in question, it can
be concluded that the left-hand expression in Equation (4.48) is a secular expression
and is set equal to zero, resulting in (xl = O). By substituting the solution of Equation
(4.49) into the variable (xo) in Equation (4.45), we obtain the following:

X, (TO’TI’TZ) = B(Tz)e"T”e'Tl +CC 4.50)
To answer the third relationship, we will use Equation (4.45), which represents x,:

Dé)c2 +x, =—2DyD,x, — Df)c0 —2D,x, 4.51)
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Since ( X, = 0), the remaining expressions are excluded. By substituting Equation
(4.50) into Equation (4.51), we obtain the following:
D;x, +x, =(—2iD,B+B)e " ™ +CC 4.52)

[ —'
secular term

The response to the secular expression would be the following:

i

2D,B+iB=0— B(T,)=ce? 4.53)

i

1
In the absence of constraints on problem-solving, considering the equation ¢ = —ae'’,
the following result will be obtained: 2

1 -3

B(Tz) = Eae 4.54)
It is important to acknowledge that when we take into account the solution in a com-
bined manner, all the constants are likewise combined. The answer (x, ) can now be
expressed as follows:

L

% (T,.T,.T,) = %aei[o S +cc 4.55)

By substituting the values (ToTsz) into Equation (4.38) and carrying out mathe-
matical calculations, we obtain the following:

x, =ae ' cos

t— %ezt + ¢] (4.56)

By substituting Equation (4.56) into Equation (4.39), the solution of Equation (4.21)
using the multiple time scale method can be derived as follows:

: @.57)

x(t,€) = x, = ae”" cos

1,
t——et+
5 ¢

In order to determine the precise solution of Equation (4.21) using the second-order
differential equations with constant coefficients, the following expression will be
obtained:

$$4+2es+1=0 — s=—c+iVl—¢ (4.58)

To streamline the precise solution to the equation, one must perform the following steps:

2
x(t) =ae ' cos [l%]t—i—(b 4.59)
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The final response utilized the following extension.

1

07555:1—%s?+~' (4.60)

Upon comparing the answers, Equation (4.57) and Equation (4.58), it becomes evi-
dent that the two solutions are the same, and the limitation of the small-time values
are eliminated using the multiple time scales method. It is important to reiterate that
when solving differential equations, if trigonometric functions are employed, they
are considered to be constant throughout. In the complex number method, all the
constants are complex, as noticed during the solution process.

It is important to note that assuming the initial conditions x(0) =0 and x(0) =1,
which resulted in the solution (4.31) using the straightforward expansion method, we

can assume ¢ = % by applying it to the solution (4.59) and considering the expansion

(4.60). This will yield the same solution (4.31) as obtained through the straightfor-
ward expansion method.

Now, we will attempt to solve the Duffing differential problem, which is a type of
weak nonlinear differential equation. For this purpose, we initially solve the equa-
tion using a straightforward approach, which reveals the emergence of non-uniform
response circumstances. Subsequently, we will finalize the answer using the multiple
time scale method. The Duffing equation is widely recognized as the most renowned
nonlinear differential equation, defined as follows:

¥+x4ex’=0, ekl “4.61)

Equation (4.61) demonstrates that the presence of the nonlinear spring gives rise to
the third-order nonlinear expression. Initially, we will attempt to solve the differen-
tial Equation (4.61) using analytical methods. Therefore, the following items will be
available:

¥ = f(x) 4.62)

And:

$dx= f(x)dx — [ x dic = [ f(x) dx = h(x)
x 4.63)
2

—h() — i= g — B~ [
g(x)

By acquiring knowledge about g(x) and solving the integral mentioned earlier, one
can determine x(#). However, the analytical solution of the integral is quite intricate,
necessitating the employment of numerical methods.

To solve the Duffing Equation (4.61) using the straightforward technique, we ini-
tially analyze the solution as follows:

x=x,(t)+ex @)+ 4.64)
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By following the instructions for solving the problem using the straightforward
technique, we may substitute the answer (4.64) into the Duffing Equation (4.61) and
include the appropriate coefficients £". This will get the following result:

e X, +x, =0— x,(t)=acos(t +¢) 465

et ¥ +x +x =0 +x =—a cos’(t+¢)

. . . . . 1 3 .
Applying the trigonometric relationship [cos3 t = —cos3t+—cost |, we obtain the
following: 4 4

x,(t) = é a’ cos(3t+3¢)— % ta’ sin(t + ¢) (4.66)

Since the statement [g ta’ sm(t +q§)] is a secular expression and is multiplied by ¢,

the final result of the equation obtained via the straightforward method is
non-uniform. Now, employing the various time scale technique, we will once again
solve Equation (4.61). Let us analyze the solution to Equation (4.61) in the following
manner:

x(t,e)=x, (T, T;) +ex, (T,,T,) + - @.67)

By substituting Equation (4.67) into Equation (4.61) and subsequently isolating the
coefficients £” and &' and setting them to zero, we obtain the following:

0 2
e :Dx, +x,=0
o \ (4.68)
€ : Dyx,+x, =—-2D,D,x, — x;

For this instance, we will utilize trigonometric functions instead of mixed ones,

which will naturally result in a little lengthier process. The solution to the first equa-
tion in Equation (4.68) is as follows:

x,(t) = a(T;)cos|T, + (T, )] 4.69)

By substituting the value of Equation (4.69) into Equation (4.68), we obtain the
following:

DgxI +x, = 2a/sin<T0 +¢) +2a¢>’cos(T0 +¢))fa3 cos’ (TO +¢))

3
= 2a’sin (T, +¢) +[2a¢, _3%

cos (To + <Z>) - icﬁ cos (3T0 + 3¢) 4.70)

non—secular term
secular term
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In order to eliminate secular expressions, we employ the following procedure:

a’=0— a=a, = Constant = 0

@.71)
a¢’:§a3 — ¢’ :gag — :gang +@, , ¢, = Constant

The equations derived in Equation (4.71) are referred to as frequency equations. The
solution of Equation (4.61) can be expressed as follows:

x(t) = a, cos +ex, 4.72)

t—&—%aéat—i—(bo

By calculating the differential Equation (4.70) using the non-secular expression as the
only non-homogeneous term, the general solution of the equation may be obtained.
This will yield the expression x, (7;,T, )

x (T,.T,) = 3i2a3 cos (37, +30) @.73)

By substituting the value of Equation (4.73) into Equation (4.72), the final solution can
be expressed as follows:

Xy ex

x(t) = a, cos

3 2 1 3 2
t+—a,et+ ¢, |+—¢ca; cos(3t+3¢)+ 0|t
& %] 1559 0s(31+39)+0(c*) w

= a, cos

3 1
t+§a§et+¢0]+3—2€a3 cos

3t+%a§at+3¢0}+0(52t)

It is important to mention that in Equation (4.74), the error is represented as 0(e).
Typically, the error in the multiple time scales method is denoted as O (5"t> , which is
also equivalent to O(T").

Another instance involves solving the Duffing problem by making a little
modification, employing the technique of Multiple time scale, and presenting
the solution based on the algebra of mixed numbers. Examine the subsequent
correlation:

X+ wéx +eax’ =0, ekl 4.75)

In the modified form of the Duffing Equation (4.75), it is important to mention that
the o parameter is regarded as a coefficient for a nonlinear expression. This coef-
ficient can be assigned positive or negative values based on certain conditions. The
value wé reflects the natural frequency of the linear differential equation. The solu-
tion to Equation (4.75) can be analyzed in the following manner:

x(t,€) = x, (T, T,) +ex, (T,.T,) 4.76)
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By adding the Equation (4.76) into the Equation (4.75) and then separating the coef-
ficients ¢’ and &', we will have the following:

0. N2 2.
e Dyxy+wyx, =0

| ) s , @.77)
€ : Dyx, +wyx, = —2D D, x, — ax;
Based on Equation (4.77), the x, response can be represented as follows:
%, (T,.T,) = A(T,) ™" +CC (4.78)

By substituting the value of Equation (4.78) into Equation (4.77), we obtain the following:
Dy x, +wpx, = (—2iw,A' —3aA’A) ™" + CC+ NST 4.79)

The NST phrase in Equation (4.79) denotes the non-secular terms in equation. In
order to exclude non-secular terms in Equation (4.79), we formulate it as follows:

2iw, A" +3aA’A =0 (4.80)

. . A . - . .
The expression A’ is A’ = d— Given the response A and its complex-conjugate a,
1
the following can be deduced:

A=La(r)e ™
12 4.81)
A— Ea(Tl)e—w(Tl)

If A is partially heterogeneous, then both a and ¢ will be functions with real values.

. . 1. .
In respect to Equation (4.81), the coefficient of — is used solely to establish pro-

portionality in the final outcome. By substituting the values of Equation (4.81) into
Equation (4.80), we arrive to the following assertion:

) 3 . 3 .

. / ! i¢ 3 . / !/ 3

iwya'e” —awyp'e” +=aa’e” =0 — |iwya' —aw,p’+=aa’ [e? =0
8

4.82)

€720

3
— iwya’ —aw,p’ +§aa3 =0

Given that the final Equation (4.82) is a combination of several terms, it is necessary
to arrange its real and imaginary forms in a manner that both have a value of zero:

a'=0— a=a, = Constant = 0
4.83)

’:3—aa3—>¢/:3—aa§—>¢:3_aa§T1 + ¢,

8w, 8w, 8w,
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Hence, based on the outcomes derived from Equation (4.83), the response x,, can be
expressed in the following manner:

3a
i[wOTO +%—(‘a67‘1 +¢bo}
wo

| 1
X (T,.1,) = Eae""e‘””T" +CC= 5%

0°°1

+CC
4.84)

=a, cos t+¢,

3ac ,
Wy +—a;¢€
8w,

Hence, the value of x, as determined by trigonometric functions, can be expressed
in the following manner:

x(1) = a, cos[wt + ¢ | 4.85)

In Equation (4.85), w is defined as follows:

w=uw, >

0

1+3—°‘a§s] (4.86)
8w

During the examination of the frequency response (4.86) from a physical standpoint,
several observations can be made:

1. The frequency w, which is not linear, depends on the domain q.

2. The expression [83_a2 aéa] represents a change in the linear frequency w,.
wU
3. For o > 1, the spring exhibits hardening behavior, while for « < 1, it exhibits

softening behavior, both of which have an impact on the frequency values.

4.2.5 AVERAGING METHOD

The method of averaging can be categorized into various techniques, such as
Krylov-Bogoliubov method, the Krylov-Bogoliubov-Mitropolsky technique, the
generalized method of averaging, averaging using focal variables, averaging using
series and lie conversions, and averaging using Lagrangian. The subsequent approach
employed is the as Krylov-Bogoliubov method. To obtain a more thorough analysis
of the various methods of averaging, please consult the fifth chapter of Nayfeh’s [7]
book and the references [8-10].

To elucidate the Krylov-Bogoliubov approach, let us examine the generic struc-
ture of the subsequent weak, nonlinear second-order differential equation:

ii+wu=c f(ui), ekl 4.87)

In Equation (4.87), f (u,u) is a nonlinear function. When the value of ¢ is equal to zero
(¢ = 0), the solution of Equation (4.87) can be expressed in the following manner:

u = a cos(w,t + B3) (4.88)
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Both a and 3 are constant variables that undergo gradual changes, in contrast to f,
which experiences quick fluctuations. In order to achieve an approximate solution
when € = 0 and has a small value, Krylov and Bogoliubov made the assumption that
the solution could still be expressed in terms of Equation (4.88) and be subject to the
following condition, involving time-dependent variables a and 3:

i = —aw, sin (wyt + 3), (4.89)
By taking the derivative of Equation (4.88) with respect to ¢, we obtain the following:
i = —aw, sin (wyt + B) + dcos (w,t + B) — aBsin (wyt + ), 4.90)

So:
acos(wyt + ) —afBsin(wyt +3) =0 4.91)

The expression is regarded equivalent to zero because the variations in the variables
a and [ are significantly slower than the time variable. Specifically, @ = O(¢) and

B=0() imply that they can be treated as almost constant in comparison. Once
again, we shall do a derivation from Equation (4.89) with respect to .

ii = —aw; cos(w,t + B) —wyasin(wyt + B) — aw,Beos(wyt +6)  @.92)

By substituting Equation (4.92) into Equation (4.87) and utilizing the solution from
Equation (4.88), the following are the results:

w,asin (wyt + B) + aw, B eos (w,t + B)

4.93)
=—cf [a cos(wyi + B),—aw, sin (wy! + 6)]
Equations (4.91) and (4.93) can now be employed to express a and B
a= _if[a cos (wyt + ), — aw, sin (wyt + B)]sin (w,t + 3)
“ 4.94)
= Lf{a cos(wyt + B), — aw, sin (w, + B)]cos(wot +3)
aw

0

It is important to note that when we calculate the average of a slow variable such

as a and ﬁ over a short period of time, these variables will converge to their mean
value. This is the fundamental principle behind the averaging method. An illustrative
instance is the process of calculating the mean value of a gradual variable, such as the
alteration in human height, within a brief temporal interval, such as an hour. Indeed,
the variable (height) and its average will be equivalent within the span of one hour.

By incorporating the parties involved in the initial Equation (4.94) into the time
interval (O, 27r), we will obtain the following:

fozﬁa s f:ﬂe flacos(wyt +B3), —aw, sin(w,t + 3)|sin (wyt + B) dr (4.95)
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When we integrate across a slow time scale, denoted by a, with respect to a rapid
variable, t, we assume that g is a constant value because there is no change in the
time frame (O, 27r) . Hence, we can extract it from the integral and record it explicitly:

i fomf[a cos(wyt + B), — aw, sin (wyt + ﬁ)]sin (wot +B) di (4.96)

27w,

By substituting the variable ¢ with w,t 4 3 (¢ = w,t + 3), we obtain dp = w,dt + Gdt,
and we can neglect £ due to its small magnitude (as indicated by the order ¢).

f flacosg, —aw, sing|sing do (4.97)

27rw0

f f a cos ¢, —aw, s1n¢] coso do (4.98)

27rw0

The computable value can be derived from Equations (4.97) and (4.98) of domain a
and phase (3.
Example 4—1: Let’s examine the subsequent Duffing equation:

ii+wu+eau’ =0

Determine the frequency equations of the system using the method of averaging.
Answer: Considering that f (u, u) = au’ and taking into account the Equations (4.97)
and (4.98), it is possible to express the following:

{ U=acos¢o

U =—aw, sin¢g

By substituting “u” and “u” into Equations (4.97) and (4.98), respectively, we obtain
the following:

2T
a=—"2 [Tdcos’ ¢sing dp=0
27w, /0
. 2 .
aB = £ a’ cos qucosd)dgzﬁf’%aS a=p3= dae a’
27w, 8w, 8w

The system’s frequency equations will ultimately be the following:

a=0= a=a, = Constant

5 3ae & 2

ﬁ - = ﬂ - —610 T + ﬁo
8w0 8w,

The expected outcome for us, in the context of the Duffing equation, is that the

domain “a” remains constant while the S-phase becomes a function of the normal

frequency w,.
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4.2.6 THe HARMONIC BALANCE METHOD

Harmonic balance is a technique employed to determine the stable state response of
nonlinear differential equations, typically applied in the context of nonlinear elec-
trical circuits. Harmonic balance is a frequency domain technique used to compute
a stable state response, distinguishing it from other time domain methods for stable
state analysis. The term “harmonic balance” originates from the technique that origi-
nated with Kirchhoff’s current law in the frequency domain. When a sinusoidal signal
is applied to the nonlinear component of a system, it generates harmonics at multiples
of the fundamental frequency. This allows us to represent the system’s response as a
linear combination of sinusoidal functions. By ensuring that the current and voltage
sinusoids are balanced, we may meet Kirchhoff’s law. Additionally, this technique is
frequently employed in the simulation of circuits containing nonlinear components
and is also extensively utilized in feedback systems that exhibit limit cycles.

The harmonic balance method is utilized to achieve stable state responses when
addressing nonlinear vibration problems. Indeed, this approach fails to provide us
with the system’s temporary answers. Furthermore, it should be noted that this strat-
egy assumes that the system response is periodic.

To further elucidate the harmonic equilibrium method, let us once again examine
the Duffing equation:

i+ wgu +ou’ =0 4.99)

Given that our solution is periodic, we express the answer to the problem as a har-
monic series in the following manner:

M
U= Z;)Am cos (mwt +mf3,) .100)

= A, + A cos(wt+ 3)) + A, cos (2wt + 23 ) +...
Given the assumption that ¢ = wt 4 (3, the following equation holds:
u=A,+Acosp+A, cos2p+... (4.101)

For the sake of facilitating calculations, we introduce the term “deviation sentence” or
“drift” to refer to A,. When there is a second-order nonlinear expression in the equa-
tion, this statement will indicate a value that is not zero. Because the Duffing equation
does not contain a second-order nonlinear term, the equation can be simplified to
A, = 0. The solution of Equation (4.99) can be succinctly described as follows:

u=A cos¢o 4.102)

By substituting the value of Equation (4.102) into Equation (4.99), we get the
following:

—AW’ cosg+w, A cosp+aA’ cos’p=0 @.103)
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Using the trigonometric relationship of cos’ ¢ = lc:os 30+ i(:osqﬁ, we have the
following: 4 4

—(w?* —wp)A, cos —i—iaAf cos3¢+ 3aA13 cos¢p=0 4.104)

Given that our approximation is limited to the term cos¢, we can omit the term

1 . . .
ZozA,3 cos3¢ in Equation (4.104). Next, the system’s frequency response will be

acquired in the following manner:

) R 3 , A =0 3a¢ 2
05§ =0 = —(w —wi |4 +=aA’ =0 = w=w |[I+—5A’| (4.105)
4 4w,
The solution to Equation (4.99) is as follows:
u=A cos(wr + 3, (4.106)

The values of A, and 3, are derived from the provided initial conditions.

The natural frequency Equation (4.105) is determined by the A, domain resulting
from the initial conditions, which is a characteristic of nonlinear systems.

Example 4-2: Let us examine the equation of a simple pendulum:

t+sinu=0

Or,
.. 1 5
i+u——u =0
6
Considering the system response as u = A, cos¢, we may conclude the following:

1
—AWw’ cosp+ A, cosq&—gAl3 cos’ p =0

By following the procedure outlined in the preceding section and taking into account
that the solution solely comprises the terms cos ¢, it can be expressed as follows:

A =0 1 A, is small 1

cos¢¢0;sAl{(1w2)%Af‘0 = uﬁ:lng,z = w:leAf

4.2.7 EXAMINATION OF NONLINEAR VIBRATIONS IN THE DAMPER

For certain vibration problems with nonlinear damping, the paths of motion converge
towards a closed curve. This closed curve represents a periodic solution of the
system, regardless of whether the paths approach or move away from the origin.
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This implies that any solution to the system, as the variable ¢ approaches infinity
(t — 00), is compelled towards an intermittent solution. The closed curve is referred
to as the limit cycle.

To provide a more comprehensive clarification, we will analyze the Van der Pol
equation [8] as follows:

i—a(l-x*)i+x=0, a>0 @.107)

The Van der Pol equation, introduced in 1922, describes a linear oscillator with
nonlinear damping, as shown in Figure 4.3. Consult reference [8] for a compre-
hensive explanation of the process for deriving Equation (4.107) as illustrated in
Figure 4.3. Let’s examine the Van der Pol oscillator equation:

5é+w2x+6(x2 —1);&:0 @.108)

Later, we shall observe that solving this equation results in the emergence of a limit
cycle, which is a characteristic of nonlinear systems. In order to solve the equation
earlier, we will employ the Lindstedt-Poincaré approach. When the value of ¢ is equal
to zero (¢ = 0), we obtain a simple harmonic oscillator that exhibits a set of periodic
responses, which are characterized by the parameter w. We observe the proliferation
of chaos as a recurring dominant pattern. Let’s start by considering Equation (4.108).
This relationship will hold true when ¢ is much smaller than 1 (¢ < 1). Expanding
turbulence to encompass a wider range of frequencies enables it to effectively accom-
modate nonlinear behavior through the introduction of the created time variable. For
this particular situation, we compose the following:

T =Wt (4109)

The frequency of the response, denoted by w, is expressed as a series of capabilities
based on the variable €.

w=1+ke+ke> +-- @.110)

In Equation (4.110), w, =1 represents the frequency of the basic harmonic oscilla-
tor. To determine the constant k; (i =1,2,---), further calculations are required. This

i,

FIGURE 4.3 Flow circuit diagram for the Van der Pol oscillator.
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incentive provides ample flexibility to ensure the elimination of secular expressions
at every stage of the expansion of turbulence. The Van der Pol Equation (4.108) can
be derived by employing variable change (4.109).

2
df+x+s<xzfl>w£:0 @.111)
T dr

2
w

By substituting the series expansions for x(7) and w, we obtain the following:
d2
(14 2ke + (K +2k, ) * +0(g3))[d7(x0 tex, +ex, +)]
(2 +ex, 8%, ) 2 (xp + 2, €7 (] + 25, )+ — 1) @112)
d
(1+5k1 + €%k, +-~-)E<xo +ex, +¢e’x, +) =0

We have a category for each order of the associated coefficients ¢ that is equal to
ZEero.

0(50): X, +x,=0
0(51) DX X =X, (l—xoz)—Zklx(:
y , , , 4.113)
0(62) X, X, =x (1 — xé) —2x,%,x, — 2k, x,
—<2k2 —|—k12)x(/; +k, <l—x§>x(;
The equation O(c°) represents the response of x,(7) = B, cos 7. In order to eliminate

secular terms in O(e'), it is necessary to know the value of B,. By employing the
solution of x, (T) for 0(6' ), the following result is obtained:

x, +x, = —f, sinT(1— B} )cos’ T + 2k B, cos T 4.114)
The general solution of Equation (4.114) can be expressed as follows:

3

B
x,(1)= TO_BO

BB
[—%cos7}—3—gsin37 +2k,B,cosT + B, cosT+ A sinT  (4.115)

The constants A, and B, are arbitrary. It is important to observe that the function
“1cosT” produces an endless output when evaluated at t # — co. Indeed, the solution
can be written in the following order:

3

B 3
x(T)= B, cosT +|——B, —Lcost|—22sin3r
4 2 32

“4.116)

+2k,B, cosT +¢eB, cosT 4 €A, sinT
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Thus, if 7 is in order of O(1/¢), and each phrase in the sequence is smaller than

the one before it, this will disrupt the expansion of the disorder. The divergence of
the response induced by the secular expression occurs when there is limitless and
unbounded growth. Given our search for periodic solutions, it is necessary to exclude
secular statements. If we select B, = 2, this secular phrase will be non-negative at
the minimum at this level of approximation.

Following the resolution process, the final outcome will be denoted as x, (7):

x,(T)= B, cosr—isin3r+%sin7' 4.117)

The result is obtained by placing x,(7) and x,(7) on the right side of the relation
0(62 )

" o ) , "
Xy + X, =X (1 —Xo ) —2x,x,%) — 2k, X,

" 1 .
=X, +x,= Zcosv'—k2B1 s1n7'—%cos37

5 4.118)
+ 3B, sin37 + ZCOS 57+ 4k, cosT
1 . 3 . 5
= |4k, +Z cosT+2B, sinT —Ecos37' -+ 3B, sin37 —I—ZCOSST
. 1 .
By choosing k, = ——, and B, = 0, the secular expressions are excluded. The frequency
(0 (52 )) will now be represented as follows:
2
€
6 “4.119)

Equation (4.119) demonstrates that the presence of a nonlinear expression leads to a
decrease in the frequency of oscillation, resulting in an increase in the period. The
magnitude of the oscillation is determined by the following equation:

[sin 37 —3sin 7']

x(7) = x,(T) +ex, (1) + € x,(T) = 2cosT — ¢ 7

4.120)
, [5cos57 —18cos37 +12cos 7|

96

—¢&

Figure 4.4 showcases a captivating aspect of the response. Irrespective of their
starting conditions, all trajectory lines are eventually approached by a closed curve
called the limit cycle. This curve depicts a non-harmonic oscillation of the stable state.
This phenomenon is exclusive to specific nonlinear vibration problems and does not
occur in any other concerns. If the starting point is located within the limit cycle, the
resulting response manifests as outwardly expanding spiral arcs. Conversely, if the
starting point is located beyond the limit cycle, the resulting behavior will be inward
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FIGURE 4.4 Schematic of trajectories and limit cycle for the Van der Pol oscillator equation.

A o
—kx
ONNC:
— Tra—n)
(a)

FIGURE 4.5 Mechanical system to perform self-regulating oscillations.

spiraling curves. As previously mentioned, the limit cycle in both stages results in a
specific closed curve. A notable attribute of the limit cycle is that the greatest value
of x, irrespective of the value of a as determined by Equation (4.107), consistently
approximates 2. The value B, = 2 after solving the Van der Pol oscillator equation,
which is the range of values for the answer template (4.120).

Allow me to provide an additional illustration of a mechanical system that exhib-
its negative damping. Examine Figure 4.5, which depicts a block with mass m placed
on a rough belt that is traveling at a constant speed of x,. A mass m is connected to a
spring that is attached to a rigid object. Let x represent the displacement of the block
from the equilibrium position of the spring [8, 11].

mi+kx— f(x—x,)=0 4.121)



Solution Methods 113

The variable “f” represents the friction force acting between the block and the
belt in Coulomb’s experiment. Let us now add the new variable u, which is defined
as follows:

u=x—k'f(-%,) 4.122)
By variable change of (4.122), Equation (4.121) will be as follows:
ii+wju+F@)=0 4.123)

Where w; = k/m and,

Fay=m™ [f (=)= f (i) (4.124)

If the value of x, is not excessively big, the function F(i) will exhibit a level of cur-
vature similar to that depicted in the diagram of Figure 4.5. It should be noted that
if X, <|x,|, then the slope of F(i) at the origin is negative. If the value of X, at the
origin is quite big, then the derivative of F(i) at the origin will be positive. Therefore,
negative damping only happens when the value of x, <|x, |.

It is important to observe that dry friction can be employed to demonstrate neg-
ative damping in various other mechanical systems. Rayleigh had employed the
same reasoning to elucidate the creation of vibrations in the violin wire resulting
from the action of drawing the bow across its width. Dry friction induces self-ex-
cited oscillations in a pendulum attached to a rotating shaft, resulting in the shaft
exhibiting an unsteady motion within a loosely supported bearing. Dry friction can
be employed to elucidate the collision between the brake shoes and train wheels
during braking.

Example 4-3: It is preferable to address the issue of the Van der Pol oscillator by
employing the technique of multiple time scales and illustrating its phase diagram to
depict the occurrence of the limit cycle.

Response: Please examine the subsequent connection:

i—e (@ —1Di+x=0; x(0)=qa, i(0)=0,

By substituting the solution as a series expansion (xo +ex, +e’x, +) into the
given relation, we obtain the following:

> +2¢ o +e? o ® (% +ex, +e’x, +..)
oty OT,OT, ar oot |V ! P
0 0 0
+€{[(x§ +2e xx, —O—ez(xlz—l—Zexon))—l] ——t+e—+¢’ .. (x(,—l—exl —0—e2x2+...)

or, o7, T,
+(x0 +ex, +e’x, +..,):0
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Through re-separation in each order ¢, the following relationships are established:

0("): Lx, =0
2
0(e): 1y =225 (¢ )P0
oT,T, T,
2 2 2
O(?): Lx, =2 Ox__ 82+ 20 xO—(xé—l)%
oToT, |dT?  OT,dT, T,
~(x —1)%—2% o
oT, oT,
In which:
82
Lx = +1 X.
i \a 02 i

The solution to the problem (0 (e 0 )) will be as follows:
X, =A(T,.T,)e™ + A(T,,T,)e ™
By substituting this expression for x, into x,, we obtain the following:

0(e"): Lx, =-2i a—Ae"TO —8—Ae”7°
oT, oT,

_i{(|A|2 A—A)eiT" _(|A|2 Z—A)eﬂ% LAY _ A3 }

In order to avoid secular phrases with a time complexity of 0(e'), the condition

A
ZS—T =A— |A|2 A is imperative to establish. To explicitly solve for A by substituting
1
R(1;)e"™ o . .
A= , we derive distinct equations for the amplitude and phase A.
OR R K
o1, 2 8
w_,
or,

It is indicated that 6(7; ) remains constant, and we choose §(T;) =0 as well.

I

2R(O)e2
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The given initial conditions x(0) = a,, and x(0) = 0 indicate that R(0) = a,,. Therefore:

ct/2 it 2

% ¢ o=
(e”—l)ag—l—4+ \/l+(4/a§—l)e_”

aye

cost

Xg =

It has been observed that while considering the first sentence as an extension
response, the oscillator limit cycle of the Van der Pol remains stable. The initial
conditions of this response are exponentially absorbed, resulting in a somewhat poor
approximation for the limit cycle. If we advance the procedure once more, we will
regain the frequency correction of the Lindstedt-Poincaré approach. This matter can
be investigated as a practical exercise.

We will create a phase plane of the Van der Pol oscillator to visualize the limit
cycle behavior.

$+e(l—x*)i+x=0

x=X XlzXz

. _> *

i=X,  |X,=-eX,(1-X])-X,

Figure 4.6 displays the phase plane of the Van der Pol oscillator, illustrating the com-
plete cycle of the stable limit. Consult Refs. [8, 12] for a more comprehensive analysis
and comprehension of the image produced by the phase plane.

FIGURE 4.6 Phase plane of the Van der Pol oscillator.
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4.3 GENERALIZE DIFFERENTIAL QUADRATURE METHOD

4.3.1 INTRODUCTION

In the second section of this chapter, we study the finite element method. The finite
element method (FEM) is a versatile technique utilized in engineering to solve a
broad spectrum of equations, typically expressed as partial differential equations.
Over the past few decades, various solution techniques have been introduced to
address the governing equations of diverse problems. The physical formulation of
a problem can be transformed using three methods: the direct method, the varia-
tion method (also known as Rayleigh-Ritz), and the weighted residual method. This
sub-chapter will explore the various methods for solving the problem such as GDQ
and perturbation methods. Analytical methods in solving engineering problems are
always considered due to their high accuracy and are the first option in solving a
problem. But in many cases, these methods face limitations, including the complex-
ity of the governing equations, or the geometry of the problem, or the existence of
discontinuity in the problem-solving range. This issue has led to the emergence and
growth of numerical methods so that nowadays, various numerical methods have
been presented to solve engineering problems, among which we can refer to the finite
difference method, the boundary element method, the differential transform method,
the Ritz method, Galerkin Method, and so on.

4.3.2 HistoRY

The DQ approach, introduced by Belman in the 1970s, offers a superior alternative
to finite difference, finite element, and boundary element techniques for solving
initial value and boundary value problems in the fields of physics and engineering.
This method had an edge over earlier strategies in terms of its faster calculations
and utilization of fewer nodes. The DQ approach estimates the partial derivatives of
a function at a specific location by calculating a linear combination of the function’s
values at all points in the domain. This is in contrast to prior methods like finite
difference. This assumption was made since there was an improvement in accuracy
and a notable decrease in the amount of calculations required. Nevertheless, this
approach was hindered by constraints such as challenges in dividing the domain
into discrete sections and accurately determining the weight coefficients of each
domain point. The GDQ technique was introduced in the early 1990s by Shu and
Richards as an adaptation of the DQ method [13]. It was developed to address the
limitations of the DQ approach in solving two-dimensional Navier-Stokes equa-
tions. Since then, the GDQ method has been widely applied in solving elasticity
issues for sheets and shells. Calculating the weighted coefficients of the derivatives
in this method is more straightforward than the DQ method and can accommodate a
greater number of points without being restricted by point selection limitations. This
approach approximates the derivative at each place by combining the nodal values
at other points. Consequently, by utilizing this approach, the equations that control
the problem are transformed into algebraic equations, which can either be linear
or nonlinear depending on the nature of the problem. This method possesses the
capability to solve a wide range of equations, encompassing equations with variable
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coefficients, nonlinear equations, and eigenvalue equations. The GDQ approach has
been employed in numerous studies to address vibration issues and stress analysis
of rectangular sheets and cylindrical shells.

4.3.3 PRINCIPLES

The general principle in the method of DQ is to divide the problem-solving interval
into a network of points and solve the differential equation in this discrete network
of points. In this method, the goal is to estimate the derivatives of the function of
different orders in each of the problem-solving points according to the value of the
function in all points. In order to achieve this goal, consider a number of points like
(xl h ), (2, 5 ) yeees (xN Sy ) . To fit a unique polynomial for these points, Lagrange pro-
vided the following relation [14]:

F)=LOf +Lx)f, +...+ Ly (x)f, = Z:/:le(x)fj 4.125)
In which L, (x) are the Lagrange coefficients that:

1 X=X,
J
L_].(x): 0 (4.126)

x¢xj

In other words, the following relationship is established at point x = x

L=1L=L=L=..=L =L, =.=L

N—1

=L

N

=0 4127)

In order to calculate the derivatives of the function with r times of derivation from
both sides, Equation (4.125) can be written as follows [15, 16]:

r

d'L, (x)

N

Z (4.128)
=1

Therefore, to calculate the derivative of the function, it is enough to calculate the

derivative of the Lagrange coefficients. Many functions can be defined that satisfy

Equation (4.128), but the simplest function that can be considered is a polynomial

function that has the following general form:

(X7x')(X7x2) (x X 1)(x le) (xfo) ngl.(x—xk)

L= —J 4.129)

(xj —x1)<xj —xz)...<xj —xH)(xj —xH])...(xj —xN) H;V:l(xj —xk)

k=j

In this relation, I7 is the operator of successive multiplication of several expressions.
For ease of derivation, we can express the Equation (4.129) using the mathematical
operator Ln and its properties as follows:

Ln[Lj(x)] Zlen(x x)— Z“Ln(x @.130)

k=j
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By deriving both sides of the equation, Equation (4.130) can be written as follows:

4.131
Lj(x) dx ¢ )

1

1 X=X

1 odL) ¥

k
k=

.

And according to the Equation (4.129), the following relationship can be expressed:

N
dLj(x)foj'(x_Xk)zNj ! 4.132)
TV _ = x—x '
Hk:l(.xj X, ) k=1 k
o

=]

k=j

The Equation (4.128) can be rewritten as follows for the value of the first derivative
(r = 1) at an arbitrary point such as x = x;.

df N dL,(x) o
T LT LA 4.133
dx -y, Z dx f/ Z ij f/ ( )

J=1 x=x; j=1

In this regard, according to the Equation (4.132), the following relation can be presented.

[T (x —x,)

Ai(/'l) = 11{\7./ }1:]:1 1 (4134)
Hk:l(xj_xk) keej X T Xy
k=j
The Equation (4.133) can be expressed in the form of the following matrix.
daf —[A®
{E}N*l B [A ]N*N {f}N*l (4.135)

It should be noted that the superscript (1) in the relationship [A(” ], indicates the esti-
mation of the first derivative of the function.

According to Equation (4.133), it can be concluded that in expression Afi”, the first
subscript indicates the point where the value of the first derivative is estimated, and
the second subscript indicates the point where this value is the corresponding coeffi-
cient in the estimation of the first derivative.

By expanding Equation (4.134), it can be shown that all sentences will be equal

to zero, except for one sentence that will be ambiguously 9, which can be shown by
disambiguating as: 0

Hk:l(xi—xk)
ke i, j=123,..,N:i=j
N [T (x, )
AV = f0)=1" "k (4.136)
N
i, j=1273,....N
;xi X, b
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To estimate the second derivative, consider the following equation:

&Ef)onldr
{W}_[A“}{dx} 4.137)

which is expressed as follows using the Equation (4.135)

&f =[a"][a%]{r} 4.138)
dx? '
As a result, the value of the second derivative can be estimated as follows:
dZ
{d } [A%]{r} .139)
in which,
[A(”] _ [A“)] [A“)] (4.140)

As a result, in general, the following relationship can be expressed to estimate the
derivative r of a function.

[d f} [AV]{ £} 4.141)

In which,
[A”]=[AV][A" "] r=2,3,... 4.142)

It should be noted that with the aim of creating ease in notation in this booklet, the fol-
lowing convention is used to show the corresponding matrixes for different derivatives.

A=A",B=A? C=AY,D=A"Y, .. (4.143)

As a result, the following relationship can be expressed:

(L] -tatr). | S5} -ty |

in which,

][C]{f},{%}:m]{f},... @.144)

(B]=[AllAl,[c]=Al[B],[D]=1Al[C],.... (4.145)

It should be noted that matrixes [Al, [B],[C],... are known as weight coefficients
matrixes. Considering that the derivatives of the function are considered only in
certain points of the problem solving domain, it is obvious that with the increase of
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the number of points considered in the problem-solving domain, the accuracy of the
obtained answers increases, and finally, in a certain number of convergence points,
it will converge. In addition to the number of points that are considered, how the
points are distributed in the domain of problem-solving is also very important. The
simplest explanation that comes to mind in the first step is the uniform distribution
of points along the interval. If this type of explanation is used, the convergence
of the problem will be created for a very high number of points because with the
increase in the order of the derivative, the approximation error will grow at a high
rate compared to the increase in the order of the derivative. The best type of point
distribution that has been considered so far is the cosine explanation known as Che-
byshev-Gauss-Lobatto distribution. The characteristic of this type of distribution is
that the density of points considered in this type of distribution is higher near the
border points than the middle points. This distribution is calculated for the interval
[a,b] from the following equation.

v—at 2 s EDTIL 03 N (4.146)
2 N-1

Example: Using the DQM, we solve the given differential equation under the corre-
sponding boundary conditions.

fr+2f —4f =4x2—x) (4.147)
B.C: f(0)=f()=0 (4.148)

Using Equation (4.144), Equation (4.147) can be expressed in the form of the follow-
ing matrix:

(BI{f}+2[Al{f}—4{f}={4} 4.149)
In which:
g, =4x,(2—x,) 4.150)
The Equation (4.149) can be expressed as follows:
(K f}={q} @.151)
In which:
[K]=[B]+2[A]—4I 4.152)

And in this relation, I is identity matrix of order N. The given boundary conditions
for the vector f at the beginning and end points of the interval is equal to zero

=1 =0.
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As aresult, in order to satisfy the boundary conditions, the first and last row of the
vectors { f } and {q}, as well as the first and last row and columns of the matrix [K },
can be removed, and the Equation (4.151) can be expressed as follows:

& Hr}={d} .153)
In which:
K, Kz(/vq) 5 q,
K |=] - R A S R VA 4.154)
K(N—I)Z K(N—l)(N—l) fN—l Ay

To solve the system of equations obtained in Equation (4.153), we can write the
following:

ry=lkT g} 4.155)

And as a result, the vector of unknowns { f } according to the boundary conditions
of the problem will be obtained as follows:

{f}: {f} (4.156)

It can be shown that the exact solution of Equation (4.148) is as follows:
o =% —x @.157)

In Figure 4.7, the numerical solution of Equation (4.147) is drawn by the method
of square differences for different values of N, along with the exact solution of this
equation. These figures show well the convergence and high accuracy of the DQM.

4.4 WEIGHTED RESIDUAL METHOD

4.4.1 INTRODUCTION

The finite element method is a versatile approach used to solve various equations
in the realm of engineering, particularly those that manifest as partial differen-
tial equations. Over the past few decades, numerous techniques for resolving the
equations that govern various issues have been suggested. There are three methods
for converting the physical formulation of the problem: the direct method, the vari-
ational method (also known as Rayleigh-Ritz), and the weighted residual method
[17]. The challenge of determining the eigenvalue of Rayleigh and Rayleigh-Ritz
can be solved using methods that rely on the preservation of the Rayleigh residual
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FIGURE 4.7 Comparison of the exact and numerical solution.

method. These methods can be classified as variation methods due to the associ-
ation of Rayleigh residual with variation methods. Weighted residual approaches,
which belong to a distinct category, are employed for solving vibrational problems.
Galerkin method, collocation method, subdomain collocation, and the least squares
method are all classified as weighted residual methods. Weighted residual methods
directly address the governing differential equation and the boundary conditions of
a problem [18]. There are two distinct approaches to utilizing the weighted resid-
ual method. The first approach involves partitioning the geometry of the issue into
numerous small elements and employing the governing differential equation in con-
junction with the required shape function for each of these constituents. It is unnec-
essary to establish boundary requirements for these components. Ultimately, the
integration of the components results in the attainment of a fully formed geometry.
This technique is employed in the widely utilized finite element method. However,
in the second approach, a test function is used to make an educated approximation
for the entire object’s response. This chapter will examine the fundamentals of the
second weighted residual approach, specifically focusing on the utilization of the test
function.

4.4.2 PRINCIPLES

In general, the weighted residual approach is a highly powerful method for obtain-
ing approximation answers to ordinary differential equations or partial differential
equations [18].

Let us examine the given partial differential equation:

QAW —f=0 @.158)
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In domain:
(%) = (2,25, X5, Xy s X, ) 4.159)
Which A is differential operator. The given boundary condition is as follows:
Guw=g @I (4.160)

The differential operator G is used to represent the boundary condition.
Many engineering issues stated as ordinary differential equations and partial dif-
ferential equation can be solved by the following approximation:

U.G=5C ¢ (&
@ Z]: 6 (5) @.161)

x) = (xl,xz,x3,..., xn)

Leti=12,...,n and let ¢,(x) represent test functions that must satisfy the following
two conditions:

1. The boundary conditions have been implemented.
2. Match the physics of the problem.

By substituting U(X) in Equations (7.158) and (7.160), we obtain the following:

AU)—f=0
@)=s 4.162)
GU)—g=0
The R, and R, residues for the given differential equation within the problem’s
domain and subject to the boundary conditions can be expressed as follows:

R =AU)-f

(4.163)
R,=GU)—g

If the precise solution of the differential Equation (7.158) is available, the residues R,
and R, will be equal to zero. Nevertheless, in numerous real-world scenarios, the pre-
cise solution is unattainable, resulting in non-zero values for R and R,. To minimize
the residues mentioned earlier, we can set the integral to zero by equating the weighted
integrals of the residues to zero, with the appropriate determination of the coefficients
W, and W,. Consequently, it can be expressed as follows:

[ Wrdn=0

? (4.164)
[ wrda=0

r

Let W, and Wj, where (i, j= 1,2,...,n) represent a collection of weight functions
for R, and R, residues, respectively. If the selected form’s functions meet the
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boundary criteria, the value of R, becomes zero and the equation earlier is trans-
formed accordingly:

fg WR.d2 =0 (4.165)

When expressing the remainder of R, in the general case using R, the outcome is as
follows:

fg W R0 =0 (4.166)

The expression earlier reflects the weight residual approach, which is commonly
employed in numerical formulations like the finite element method. By substituting
the Equation (7.163) into the Equation (7.165), we will obtain the following:

f W,[A(U)— fld2=0 4.167)

The equation U, (x) = Z,:l C.¢,(x) represents a set of equations for i = 1,2,..., n that
can be expressed as follows:

Lw A[Z"lci¢i<x>

L W, A[’Z,Ciqsi(x)]f]dg =0

—f]d()zo

4.168)

fQW

The set of equations mentioned earlier represents the n equation, which is used to
find the unknown n coefficients c;.

The selection of a weight function in residual weight methods has a substantial
influence on the method’s performance. The primary distinction among various
weight techniques lies in the selection of weight functions.

The remaining weight methods that were previously stated are as follows:

A[ic,-qz(x)] - f]dﬂ =0

1. The Ritz method

2. Point collocation method

3. Sub-point collocation method
4. Least squares method

5. Galerkin method
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4.4.2.1 Ritz Method
In this method, we have w, =1, so:

f WRAQ = f RAQ=0 4.169)

4.4.2.2 Point Collocation Method
In this method, we have W, =6 (x— x,) or W =6(x—x,, x—x,, x—x;,..., x— X, ),
s0:

J. wiraQ= [ §(x— x)Rd2=0 @.170)

4.4.2.3 Sub-point Collocation Method
In this way, we have the following:

{1 Sfor xin (),
W.(x)= 4.171)

0 for x is not in €}

4.4.2.4 Least Squares Method

The initial step of this approach involves the definition of a function in the following
manner:

J(c,) = f _RRdS @.172)

We’re going to have a derivative of J:

f a(R B 40 4.173)

In accordance with the principle of the welghted residual method, the weight func-
tion in the least squares method is chosen as follows:

w, =& @.174)
Oc,

We’ll have a result:

W RAQ = —RdQ 0 @.175)
J, )5

4.4.2.5 Galerkin Method
In this procedure, we will have W, = ¢,(x) as a result:

f W RAQ = f HRAQ =0 4.176)
Q Q
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Example 4-1: To effectively disperse the temperature in a one-dimensional blade,
find the differential equation of heat transmission. The blade has a length of L =1.

2
d Z—HOOOxZ =0, T(0)=0, T(L)=0
X
. N . 250 3
The precise solution is given by the equation 7'(x) = xll—x).

Solution: Initially, we hypothesize the test function.

d’T

2
X

+1000x> =0, T(0)=0, T(L)=0
When i =1, we successfully solve the issue and obtain a result.

a’T
T,(x)=cx(l-x*)= R=R, = d—;+1000x2 = ¢, (—6 x)+1000 x*
X

Ritz method:

l
j; WleQ:fO 1% (—6¢,x+1000 x*)dx = 0 = ¢, — 1000
ﬂ(x)zgx(l_f)

Point collocation method:

The approximate solution can be expressed by choosing the point x = % =0.5:

LWIRdQ:f;é

x—l](—6clx—|—1000 )c2>d)c:0:>c1 _20
2 3

T,(x)= @x(l—f)
3
Least squares method:

OR i
W, =5 = 6r= [ (=62)(=6c,x+1000x)dx = 0= ¢, =125
T (x) =125 x(1—x?) :%Ox(l—xz)
Galerkin method:

T, (x) = ¢, P, (x)
B (x) = x(lfo)éfox(lfx2)<f6c1x+1000 )dx=0=c, :662
W =4



Solution Methods 127

Tl(x):%x(lfxz)

Figure 4.8 displays the comparison of the obtained responses.

Example 4-2: Let’s examine a basic component of an element structural system.
As depicted in Figure 4.9, this element is a solid with high formability, characterized
by one dimension that is significantly greater than the other two dimensions. The force
is applied just in the x-direction, which aligns with the member’s direction. The axial
displacement, denoted as u, is determined by solving the equilibrium equation that
governs this system.

d’u
EA—+b(x)=0
dx®
The letter E represents the young module, A is the cross-sectional area, and b(x)
represents the external axial load applied along the length of the element. Given the
boundary conditions u(x = 0) =0 and u(x = L) = 0, where L represents the length

of the element and assuming L =1, b(x) = 12x%*, A=1, E = 1. Determine the axial
displacement of this structural component.

Y - - - -Leastsquare
Galerkin

FIGURE 4.8 Temperature distribution response along the blade for precise method compared
to different methods.
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FIGURE 4.9 Simple structure under a distributed longitudinal load.
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Response: The precise solution is u, = —x"* -+ x, given that the estimated solu-

tion is as follows:

exact

u,(x)= c,.x"'x(x —L)

The unknown coefficients are represented by c;,, and the test functions are denoted by
&,(x) = x'"'x(x—L). By substituting the relation u(x) into the differential equation
of the truss member, the resulting function is as follows:

d*u(x)
dx’

When i =1, the estimated solution for u(x) can be expressed as follows:

R(x) =

+ b(x)

u (x)=cx(x—L)
The residue corresponding to it is denoted as R(x) when it is placed in the given relation:

dzul (x)

2
X

R=R (x)= er()c):>R:R1()c):2cl+12x2

When i =2, the approximate answer can be expressed as follows:
uy(x)=c,x(x—L)+c,x*(x—L)

The residue corresponding to it is denoted as R(x) through its placement in the
relation:

d2u2 (x)
dx’

R=R,(x)= —l—b(x):>R:R2(x)=2cl—&—02(6)6—2)—1—12x2

The Ritz method:
Given the assumption that i = 1, the following is true:

[ wiran= [ RdQ:O:>fO]<2q+12x2)dx:2cl+4:0
=c =2
And

u (x)= —2x(x—1)

The Ritz approach is employed just for i = 1, whereas for i = 2 and higher, the result-
ing equations will be the same.
Point collocation method:

. . . . . L
Given the assumption that i = 1 and the selection of the location x = — = 0.5, the
approximate solution can be expressed as follows: 2

[ WRao= [5(x~05)RaV=0 = ['6(x~05)(2¢, +124°)dr=0=¢, :f%
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Where:
u,(x)= —Ex(x -1)
2

Given that i = 2 and choosing two points on the truss member, we may determine
thatx:£:l andxzz—L:Z.
3 3 3 3

fQW,.RdQ:O:»fOlé x—%J(ch+cz(6x—2)+12x2)dx20

Also:

j:é[x—g](%l +c, (6x—2)+12x2)dx20

The values of ¢, and c, are determined by solving the integrals mentioned earlier.

. 2 .
Specifically, ¢, = 3 and ¢, = —2. Therefore, the following can be concluded:

u,(x) = —%x(x—l)—sz(x—l)

Sub-point collocation method:
We assume that i =1.

1
j;WleQ:LRdQ:O:fo (2¢, +122% )dx =2¢, +4 =0 = ¢, = -2
So:
u(x)=—2x (x—1)

Given that i =2 and splitting the domain into two subdomains as described, we
obtain the following:

Q:W =1 0<x<05
Q:W,=1 05<x<1

\fgz VV,.RdQ:O:>‘];0-5(2cl—|—CZ (6x—2)+12x2)dx:0
1 2
L[;j (201 +cz(6x—2)+12x )dx:O

By evaluating the integrals mentioned before, we get that ¢, =—1 and ¢, = -2.
Therefore:

u,(x) = —x(x=1=2x*(x=1)
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Least squares method:
Assuming that the i = 1:

W@R

| 2
dc,

[ wird2 = f 9 R4 fzzc +126%)dx =0 = ¢, =2

u,(x) =—2x(x—1)

Given the assumption that i = 2, we can conclude:

W — 8R _
3c
w, =R 6 n
E)c

fWRdQ Oéf —RdQ 0, f —RdQ 0
:>le(ch +c2(6x—2)+12x2)dx:0

[ (6x-2)(2¢, +¢, (6x~2)+125* )dx =0

By evaluating the integrals mentioned before, we get that ¢, =—1 and ¢, = —2.

Therefore:

U, (x) = —x(x—1)— 2x%(x—1)

Galerkin method:
Considering the function u,(x) = ¢,x''x(x — L) and the function U, (¥) = c,¢. (x),
where &, = x"'x(x — L), we may conclude that for i = 1:

The value

g, =x(x—L)

1
_ _ _ 2 _
fn W,Rd) = fﬂ(;SIRdQ =0= fo x(x—L)(2¢, +12x*)d2=0
of ¢, = —1.8 is determined by calculating the integral mentioned earlier.

u(x)=—-18x(x—-1)
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Fori=2
g, =x (x - L)
[ wraa= [ ¢RriQ=0
= j:x(x—L)(ch +c, (6x—2)—|—12x2>dx =0
1
fo x’ (x—L)(Zc, +c, (6x—2)—|—12x2) =0
By evaluating the integrals mentioned earlier, we see that ¢, = —0.8 and ¢, = —2.

Therefore: u,(x) = —0.8x(x —1)—2x*(x —1)

The answers to the problem are compared in mode i =1 in Figure 4.11 and in
mode i = 2 in Figure 4.10.

Based on the diagrams, the Galerkin response is more accurate compared to the
precise answer due to its reliance on the minimum energy approach. The Galerkin
response is consistent with the Rayleigh-Ritz variation method due to its shared reli-
ance on energy minimization.

Example 4-3: Take into account the beam that is simply supported, with the
torque M, applied at both ends.

The differential equation that governs the behavior of this beam, along with its
corresponding boundary conditions, can be described as follows:

&y
dx?
y0)=0, ¥»L)=0

EI%Y M,=0 xe[0.L]
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FIGURE 4.10 Diagram of the bar longitudinal displacement, comparing the results of
numerical methods with exact response in state i = 1.
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FIGURE 4.11 Diagram of the bar longitudinal displacement, comparing the results of
numerical methods with exact response in state i = 2.

FIGURE 4.12 Beam with simple supports exposed to bending torques.

The precise solution to the differential equation governing the motion of the beam
is as follows:

MO
y(x)=— 2E x(L—x)

Using the Galerkin method to solve the differential equation of the beam is preferable.
Solution: We hypothesize the test function in the following manner:

u(x) = Asin(Bx)
Where A and B are fixed coefficients.

The boundary conditions are incorporated into the test function, as seen in Figure 4.12.

u(x) = Asin[%} =C,2,

el
L

g, = sin
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~——
—_———— e =T

FIGURE 4.13 Comparison of the beam deflection obtained by Galerkin method with exact
response.
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Figure 4.13 shows the beam’s bending obtained from the Galerkin method and the
exact response.

It is important to highlight that the Galerkin approach is not exclusively restricted
to the components method. The Galerkin approach predates the development of the
finite element method. The primary distinction between the Galerkin technique and
the finite element method lies in the fact that, unlike the Galerkin method, the finite
element method does not specify the approximation function across the full physical
domain. The approximation function is specifically designed for individual elements
inside the physical domain. The Galerkin method is commonly employed in the finite
element method standard to derive element equations [18, 19].

The admissible functions corresponding to the various boundary conditions of
the plates are displayed. It is worth mentioning that as the beam can be viewed as a
one-dimensional object, the authorized functions described in Ref. [20] can also be
utilized for the beams.

The frequency w is determined by the values of K and N obtained from Ref. [20]
for v = 0.25, according to the following equation:

, ©DK

Ww=——

a'p N

By employing the weighted residual method described earlier, problems involving
partial derivatives, such as those related to location and time variables, can be trans-

formed into ordinary differential equations that just depend on the time variable.
These equations can then be solved using semi-analytical methods. The particular

@.177)



TABLE 4.1
Admissible Functions

Boundary Condition

Mode Shape

[cos 2mx 1] [cos 2my 1]
a b

[ 3mx X [ 27y ]
€Os—— —Ccos — || cos ——=—
2 b

a 2a

2.25

0.340

0.75

0.50

K

2 4
a a
124+8|—| +12|—
[b] [b]

2 4
a a
3.854+5(— 8| —
" [b] " [b]

2 4
0.0468 + 0.340[%] + 1.814[%]

2
4+ 2[3J + 0.75[3]
b b

2
2,67+ 0.304[2]
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3mx X Ty
cos———cos— || 1 —cos—
2a 2a 2b

[1 — COSE][I —cos Wy]
2a 2b

3mx X
COS—— —COS—
2a 2a

sin y
b

1.00

0.227

0.0514

0.50

0.333

1.00

2 4
a a

2.56+3.12|—| +2.56|—
[b] [b]

4

0.581+0.213

SPOYIOW UOoNN|OS

2
5] +0.031[3]
b b

2 4
0.0071+ 0.024[%] +0.0071 [%]

4

2
a a
1.284+1.25|— 0.50(—
" [b] " [b]

2

0.853+O.190[

a
b

2.56
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TABLE 4.1 (Continued)
Admissible Functions

Boundary Condition

Mode Shape

. TTX
sin—-
a

0.1134

0.0756

0.2268

0.25

0.1667

0.50

K

2

0.0156 + 0.0852 [%] 10.1134

2
0.0104 +0.0190 [%]

0.0313

2 4
0.25+0.50 [ﬂ] 1025 [3]
b b

2
0.1667 +0.0760 [g]

0.50
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solution is determined based on the type of boundary condition and simplified uti-
lizing the deliberate circumstances of the problem. This results in the partial dif-
ferential equation being transformed into a linear or nonlinear ordinary differential
equation with time variable [21]. The section on perturbation theory provided an
explanation of the technique for solving ordinary linear and nonlinear differential
equations [22].
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5 Forced Vibrations of
Nonlinear Systems

5.1 INTRODUCTION

Earlier sections explored the nonlinear free vibrations of a system with one degree of
freedom. The study of the free vibration of the Duffing differential equation, which is
a third-order nonlinear equation, focused on determining the natural frequency of the
nonlinear system. Several techniques rooted in the idea of perturbation were investi-
gated in order to address the differential equation. An analysis was conducted on some
phenomena, such as the limit cycle, that are characteristic of the nonlinear system.
Subsequently, we will analyze the nonlinear forced oscillation of a system with one
degree of freedom. This examination will reveal the occurrence of certain phenomena,
such as jumping, under forced conditions, which will be thoroughly explored.

5.2 FORCED HARMONIC VIBRATIONS IN NONLINEAR SYSTEMS

The initial focus will be on analyzing the stable response of a one-degree free-
dom system under nonlinear forced vibration. This analysis will be conducted in a
straightforward manner. Additionally, the phenomena of jumping will be explored in
both damped and undamped settings.

The equation governing a single-degree-of-freedom system with a nonlinear
spring and a damper with a constant c, subjected to a harmonic excitation with
amplitude F,, can be expressed as follows [1]:

m)'c'+cx+k(x+ax3):FO cos wt (5.1

The expression (x + ozx3) represents the force exerted by a nonlinear spring. If o is
positive, the spring will exhibit hardening behavior, while if & is negative, the
spring will exhibit softening behavior. In the context of Equation (5.1), it is note-
worthy that when the external force is represented as (EFO cos wt), the term €Fj is
referred to as soft excitation. Conversely, if simply F; is utilized, it is referred to as
hard excitation.

By employing the frequency response approach and considering the primary
equation, the stable response may be expressed as follows:

x(t) = Acos(wt—@) (5.2
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To simplify the analysis, it is advisable to incorporate the phase angle 6 into the input
force statement. Equation (5.1) is reformulated in this instance:

m55—|-cfc—|—k(x—|—ogx3):FE)cos(wt—i—@) (5.3)

Evidently, in this instance, the equation undergoes alteration solely on the right side.
By performing the operation of division on both sides of the Equation (5.3) with
respect to the variable m, we will obtain the following:

jé+2£w0)’c+w§x+hx3 =F, coswt+F, sinwt 5.4

Regarding the Equation (5.4), the forces F. and F, exerted on the unit of mass can be
described as follows:

F, F,
F.=-"cos0, F,=—="5in0 (5.5)
m m

Also, h= k—a, wp = E, and 2w, = £ The expression Ax’ in Equation (5.4) is the
m m m

nonlinear expression.
Next, the issue can be analyzed in two distinct components:

1. An analysis of the resonant oscillations of a nonlinear system in the absence
of damping.

2. An analysis of the resonant oscillations of a nonlinear system, considering
the influence of the damping effect.

5.2.1 AN ANALYSIS OF THE RESONANT OSCILLATIONS OF A
NONLINEAR SYSTEM IN THE ABSENCE OF DAMPING

Presently, we aim to examine the Equation (5.4) in a system without any dampening
component. Thus, the differential equation for the system without a damper will be
the following [1]:
¥+wix+hx’ =F, coswt (5.6)
By hypothesizing the solution as x (1) = Acos(wt), we obtain the following:
(—Aw2 + wéA) cos wt +hA’cos’wt = F, cos wt (5.7
It is important to observe that in the absence of a damper, the stable state reac-

tions, whether in phase (0 = 0) or in opposition 6 = 180" to the input force, exhibit a
phase difference. Furthermore, during the phase difference stage, the amplitude A
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undergoes a sign change. Based on the given explanation, only the term F cos wt is
chosen for study in Equation (5.7) from the Equation (5.6).

. . . . 3 1 .
Given the trigonometric equation | cos® wt = 7 cos wt — 7 cos 3wt |, it is important

to note that the term cos 3wt represents the third harmonic. However, since we are
specifically focusing on the first harmonic, this term is disregarded. The equation is
so reformulated as follows:

—AW +w A +%hA3 =F (5.8)

The third harmonic relationship and its accompanying reactions will be elucidated
in the subsequent sections.

It is important to reiterate that if 42> 0 in the context of Equation (5.8), we are
dealing with a spring that exhibits hardening behavior. Conversely, if 4 <0, the
spring exhibits softening behavior.

Figure 5.1 depicts the frequency response of a system without a nonlinear damper.
As the input frequency increases and approaches resonance, the amplitude of the
system increases, leading to an addition of the spring constant. The continuous inclu-
sion of the spring results in an increase in the natural frequency of the system and
causes the natural frequency to shift towards higher values. Put simply, in the linear
system, the line /' =0 that represents the normal frequency maintains a consistent
value (Figure 5.1 a). Based on the information provided, in a nonlinear system with
a stiffened spring, the spring constant and natural frequency both rise as the range
expands. In the context of the spring season, if this represents the photograph, then as
the distance expands, the typical frequency diminishes.

A wE 1 A+{34) (D) (AY=F

a5 F T T - r -
‘\\\\ undamped for h=0

30 = 4

36

355
“r 3 } 1

0.95 1 1.08
20 1
4

15 1

F=1 F=0
10 1

N S Fe0s
F=0.5Y Ay
o S F=1
5 Y \‘ I - J
-
A &\/ 7
T - &
B . .

FIGURE 5.1 Nonlinear frequency response curves in states: a) linear (h = 0), b) hardened
spring (h > 0), and ¢) softened spring (h < O).
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FIGURE 5.1 (Contiuned)

5.2.2 ANALYSIS OF THE RESONANT OSCILLATIONS OF A NONLINEAR
SysTEM, INCLUDING THE INFLUENCE OF THE DAMPING EFFECT

Considering the Equation (5.4) in conjunction with a damping mechanism, one may
formulate the equation for the system [1]:

¥+2Bi+wix+hx’ =F. coswt+F, sinwt 5.9

The equation 3 =¢w, is true in Equation (5.9). By substituting the solution
x(t) = Acoswt into the differential equation, we obtain the following:

—Aw? cos wt —2BAw sin wt +w; A cos wt +hA’ cos’wt = F, cos wt + F, sinwt (5.10)
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By utilizing trigonometric relations, we may express the equation as

3 1 . . .
cos’ wt = ZCOS wt—zcos&ut . Removing the term cos3wt eliminates the third

harmonic. Additionally, by introducing coefficients such as sinwt and coswt, we can
modify the equation as desired.

3
coswt 1 —Aw’ +w§A+ZhA3 =F, - Fsz _,_FC2 = F? 65.11)

sinwt : —2BAw=F,

However, by considering the Equation (5.9), it is noticed that F’ +F’ =F’.
Therefore:

2

3 +(28Aw) = F? (5.12)

(wj —<.‘)2)A—|—ZhA3

To construct the amplitude graph by frequency, we will use the given Equation (5.12)
with values F =(0.2,0.3,0.5), h=1/2,w, =1.

Figure 5.2 represents the frequency response curve, specifically for the hardening
spring mode (as shown by the rightward departure of the graph). The softening spring
mode also exhibits the same behavior, but its divergence will be towards the left. Non-
linear systems exhibit distinct behavior patterns. At specific points, the amplitude of
oscillation experiences abrupt rises or drops. Based on the diagram in Figure 5.2, the

—F=05
—F=03 |
— F=02

Amplitude

L)

FIGURE 5.2 Frequency response curve.
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jump phenomenon can be described as follows: when a constant force (F') is applied,
the amplitude of vibration increases gradually as the frequency of the excitation
increases. However, at point 3 on the curve, instead of moving to point 6, the oscil-
lation amplitude jumps to point 4. Subsequently, it continues to increase along the
specified path and reaches point 5. Similarly, as the frequency of excitation gradually
decreases, the oscillation amplitude follows a specific curve passing through points
5,4,6,7,2,and 1. It is noteworthy that when the frequency decreases, the amplitude
at point 6 deviates from its expected path towards point 3 and instead jumps to point 7.
This tendency is referred to as the phenomenon of jumping. As the fall persists, it
transitions from point 7 to 2 and thereafter to 1. The jump track with dimensions of
3-to-4 is commonly referred to as the jump down, while the track with dimensions of
6-to-7 is known as the jump up. Point 3 and point 6 (Figure 5.2) are saddle bifurcation.
The points mentioned represent the critical boundary between stability and instabil-
ity, as extensively explored in the part dedicated to the bifurcation theory.

The crucial aspect is that the trajectory from point 3 to 6, which is inherently unsta-
ble, is commonly depicted by a dash line. As depicted in Figure 5.3, there is no move-
ment in this particular direction. Furthermore, the diagram depicted in Figure 5.3
illustrates the frequency response of a spring that exhibits softening behavior.

Figure 5.4 indicates the presence of two stable oscillation domains for a given
excitation frequency. The region where oscillations are not sustained is referred to
as the unstable conditions. Additionally, the path from 3 to 6 is considered unstable
due to the absence of movement. In Figure 5.4, at a specific frequency, the diagram
displays three distinct amplitude values denoted as a, b, and c¢. The domain of point
b is unstable, and it is not visible. In the two remaining domains that exhibit stability
and correction, they are referred to as bistable stability; depending on the beginning
conditions, one of them emerges. The line that connects the vertices of the charts in
the term, as shown in Figure 5.5, is referred to as the backbone curve.

A
stable
------ unstable
k Fincreasing
0 Wy w

FIGURE 5.3 Frequency response curve for a softening spring.
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(a) & > 0 (hard spring) (b) h < 0 (softspring)

FIGURE 5.4 The phenomenon of jumping: a) hard spring and b) soft spring.
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Amplitude

FIGURE 5.5 Backbone curve in the frequency response.

It is important to observe that the occurrence of jumping is characterized by the

2 2
condition aA =00 or =0 (as shown in Figure 5.5). To calculate dw by deriv-
dw dA dA

ing the Equation (5.12) and setting it equal to zero, we obtain the following:
22 3,2 22 3,2 2 _
(wp —w )+ZhA (wp —w )+ZhA +(26w) =0 (5.13)
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FIGURE 5.6 Jump points in the frequency response curve.

By drawing the diagrams of Equations (5.12) and (5.13), one may identify jump points,
which correspond to the intersection of the two jump point diagrams (Figure 5.6).

5.3 FORCED VIBRATIONS OF SYSTEMS WITH
ONE DEGREE OF FREEDOM

The preceding section analyzed the steady-state response of forced vibrations in
a single-degree-of-freedom system using a straightforward approach. This section
focuses on the analysis of forced vibration response using the principles of perturba-
tion theory. The underlying phenomena of this study will be thoroughly examined.
In this part, we analyze a system with a single degree of freedom that is continuously
influenced by an excitation. Typically, the types of excitations include the following [1]:

1. An external excitation is a word used to describe a stimulus that appears as
a non-homogenous expression in the equations regulating motion.

2. A variable coefficient that appears in the governing equations and is depen-
dent on time is referred to as a parametric excitation.

In the following analysis, we investigate the nonlinear oscillations of a system with
one degree of freedom, which are caused by an external input. To fulfill this objec-
tive, please examine the subsequent equation:

ii+wyu=e f(ui)+E (5.14)

Where € is a small parameter. f is a nonlinear function that depends on the variables
u, i, and E, which represent an external force applied as an excitation. At first, the
excitation originates from an energy source that is presumed to be infinite or very
big, allowing the stimulated system to have a minimal impact on it. Here, E = F (t)
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This implies that E is not dependent on u, u, or ii. These sources are referred to as
perfect sources of energy. In the second scenario, the excitation originates from a
finite energy source, resulting in a sensible impact on the stimulated system. In this
scenario, £ = F (t,u,L't,ii). In other words, E is dependent on the state of the system.
A non-ideal energy source is the term used to refer to such a resource. Systems are
categorized into ideal and non-ideal energy sources based on their respective sources
of energy.

In this context, we are examining an ideal system where the system’s excitation is
derived by the aggregate of N harmonic sentences.

E(t)= zNan cos (21+6,) (5.15)

If the values of K, (domains), §), (frequencies), and , remain constant, the excitation
is considered stationary. Otherwise, it is considered non-stationary. When domains
and frequencies exhibit slow temporal changes, perturbation approaches resort to
analyzing non-stationary systems.

5.3.1  Systems EXHIBITING THIRD-ORDER NONLINEARITY

Here, we analyze the forced vibrations of a mass that is coupled to a spring with
nonlinear characteristics and is subject to viscous damping. The equation of motion
for the system can be expressed as follows [2]:

i+ wou = —2¢ i —e o’ + E (1) (5.16)

[ 1s a positive value, while o might be either a positive constant (representing a hard
spring) or a negative constant (representing a soft spring). As stated in the introduc-
tion, we make the following assumption:

E(t)=Kcos 2t (5.17)

5.3.1.1 Primary Resonance, 2 = w,

Instead of utilizing the excitation frequency {2 as a parameter, we will introduce
another parameter called the detuning parameter. This parameter quantitatively
quantifies the proximity of € to w,. By utilizing this parameter, we can effectively
distinguish between secular sentences encountered previously and other semi-secular
sentences inside the words of the governing equation for #,. Consequently, we put our
thoughts into writing:

N=w,+eo (5.18)
The value of o =O(1) within the Equation (5.18). When the value of o is equal

to zero (o = 0), irrespective of the magnitude of the excitation, the nonlinear the-
ory will forecast vibrations of infinite magnitude. The presence of damping and
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nonlinear effects in a real system restricts the magnitude of significant fluctuations.
Hence, to provide a consistent and accurate approximation of this problem, it is nec-
essary to reorganize the irritants such that the presence of damping and nonlinearity
is also accounted for. In order to accomplish this, we define a set as K = e k. This way
of organizing expressions aligns with the previously discussed considerations regard-
ing the primary resonance. Under these circumstances, we anticipate that in a system
exhibiting mild damping, when subjected to a low-amplitude excitation, a reaction of
considerable magnitude will occur. A soft excitation is referred to as K =€k when
considering the domain of the excitation.

The problem can be solved using several ways of perturbation, specifically the
method of multiple time scales, to obtain an approximate answer. Consequently, we
express the response in sentences that pertain to various temporal frames in the fol-
lowing manner:

u(te)=u, (T,.T,) +eu, (T,.T;)+... (5.19)
The values of T, and 7, are defined as T, =t and T, = e, respectively. Furthermore,

the expression of soft excitation in sentences including 7, and 7, is articulated in the
following manner [3]:

E (t) =ckcos (u)OTo + O'Tl) (5.20)

By substituting the Equations (5.19) and (5.20) into Equation (5.16) and setting the
coefficients € and ¢' equal on both sides, we derive the following:

€ Dyu, +wiu, =0 (5.21)
€' Diu, +wiu, = —2D,Du, — 2Dy, — cuy + k cos (w,T, +0T)  (5.22)

It is important to mention that, thus, the process involves both organizing and con-
sidering soft excitation, excitation terms, dampening, and nonlinear sentences in
Equation (5.22). The Equation (5.21) has a general solution that may be expressed as
follows:

u, = A(T, ) exp (iono)—I—Z(Tl)exp(—inTo) (5.23)

The function A (Tl) is an unknown function and will be derived by eliminating sec-
ular terms from u, . By establishing a connection between u, and the Equation (5.22)
and expressing COS(WOTO + O'T]) in a complex format, we obtain the following:

Dju, +wju, = 7[21'% (A/ + MA) + 304A2/_X] exp (inTO) —aA’exp (3iw0To )
1 (5.24)
+ Ek exp [i (wOTO +0oT, )] +cc
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The term “cc” refers to the complex-conjugate of the preceding sentences. If we
select response A for the given relationship, any secular terms will be eliminated
from the private response.

- 1
2iw, (A" + pA)+30A’A - Ek exp(ioT,) =0 (5.25)
In order to solve the Equation (5.25), we represent A in a diagonal manner:

A= %a exp (zﬂ) (5.26)

That, a, and (§ are all real numbers. By decomposing the complex number into its
real and imaginary components, we obtain the following:

!

1 k
a’'=—pa —|———Sin(aT] —ﬁ)
2 w,
3 1k 5.27)
aff’ = e g ———cos(oT1 —ﬁ)
8 w, 2 w,
The Equation (5.26) can be substituted into Equation (5.23), and the resulting out-

come can be substituted into Equation (5.19) to obtain the solution, which can be
expressed as follows:

uzacos(w0t+ﬂ)+0(e) (5.28)

That, a, and § are obtained using Equation (5.27). To turn Equation (5.27) into an
autonomous system, one can insert the following:

y=0T,—f (5.29)

Which results:

wO
(5.30)

In order to obtain a response, it is necessary to initially determine the locations of
the fixed points, followed by an examination of the motion within their surrounding
areas. The system response is considered to be in a steady-state motion since the
amplitude and phase remain constant at solitary points. The behavior of the trajec-
tory line in the vicinity of the singular points reveals whether a slight perturbation in
the condition of the steady-state motion leads to a decrease or an increase in move-
ment. Indeed, they demonstrate the steadfastness of the steady-state mode’s motion.
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5.3.1.2 Steady-State Mode Movements

Steady-state motion occurs when a’ =+’ =0, which corresponds to the singular
points of Equation (5.30). In other words, they are equivalent to the solution:

pa=——sin~y
w()
(5.31)
3a , 1 k
oca———a =———Cos7y
8 w, W,
By combining and including these equations, we obtain the following:
3a ) K
o —=2a | |a® == (5.32)
8 w, 4w,

Equation (5.32) represents an implicit equation that relates the amplitude of response,
denoted as a, to the detuning parameter o (which represents the frequency of exci-
tation) and the amplitude of excitation, denoted as k. The equation is referred to as
the frequency response in Equation (5.32).

The initial approximation for the equation answer to the steady-state answer is
achieved by inserting the Equations (5.29) and (5.18) into Equation (5.28).

U= acos (thJreatf'y)JrO(e) =acos (Qtf'y)JrO(e) (5.33)

Constants such as a and 7 are fixed values. Thus, the steady-state response aligns
precisely with the frequency of excitation. The response phase is determined by the
magnitude of the shift in the excitation phase —7. Graph a represents the frequency
response curve, which varies with o, for the specified values of ¢ and &, as mentioned
before. Each point on this curve corresponds to a fixed point on a different state
plane. Indeed, there exists a mode screen that accommodates any possible combina-
tion of settings.

In order to plot the frequency response curve using the Equation (5.32), we can
either solve the third-order equation for the a” in terms of o or solve o based on a.
The second mode is less complex and is expressed in the following manner:

3« K’ "
o= —a |’
8w, 4w,a

(5.34)

Figure 5.7 depicts a contrast between linear (a = 0) and nonlinear (a > O)
response curves. Equation (5.34) demonstrates that the greatest range, denoted as
a,=k/ (ZwO u), remains unaffected by the value of «. At this level of responsive-
ness, the linear outcomes exhibit symmetry. The response is concentrated within a
narrow range centered around the resonance frequency (denoted as Q2 =w, +€o),
resulting in an expanded frequency scale A in this region. The presence of nonlinear-
ity results in the bending of the amplitude curve and the distortion of the phase curve.
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FIGURE 5.7 Comparison of linear and nonlinear response curves: (a) linear domain,
(b) linear phases, (c) nonlinear domain, and (d) nonlinear phases.
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Multi-quantitative zones are produced in both scenarios. We shall further explore
how multi-quantitative zones contribute to the phenomenon of jumping. The arrows
in Figures 5.7 (a) and (c) depict the jump.

Figure 5.8 (a) demonstrates that the presence of nonlinearity causes a deviation
of the frequency response curve from the linear curve (a = 0). This deviation is
towards the right for hard springs (a > 0) and towards the left for soft springs (oz < 0).
Figure 5.8 (b) illustrates the variation in frequency response curves as the excitation

amplitude increases for a soft spring. As the intensity of the excitation rises, the fre-
quencyresponsecurvesdivergefromthe o = 0 axis. Themaximumdomainsarelocated

. . . 3 -
geometrically according to the equation o = g(a/ wo)az, as seen in Figure 5.8 (b)

with the fold line, commonly referred to as the backbone curve, as previously men-
tioned. It is observed that some frequency curves can have multiple values or only
one value, depending on the value of k.

Figure 5.9 depicts the impact of the damping coefficient p1 on the response curves.
Without damping, the peak amplitude is unbounded, and the frequency response
curve is composed of two branches on either side of its curve, with the equation

0= —(a / ‘Uo)az. In the reciprocal phase of 180", where 4 = 0 and ~ = nn, where n
is an integer, the Equation (5.31) is given. Hence, the Equation (5.33) signifies that
the response is either in phase or excitation. However, the existence of damping will
restrict the maximum range of the peak. Furthermore, the initial Equation (5.31)
demonstrates that = sin”' (Z,uawo / k). Consequently, the presence of damping in
the response phase leads to displacement.

——r——fT//.

FIGURE 5.8 Frequency response curves for initial resonances of the Duffing equation: (a)
nonlinear effect and (b) excitation domain effect.
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FIGURE 5.8 (Continued)

FIGURE 5.9 Damping effect in response of the Duffing equation to a primary resonance
excitation.

Figure 5.10 depicts the variation in response amplitude as a function of exci-
tation amplitude for various values of . The values « and i are consistent across all
curves. The curves are directly derived from the Equation (5.32). It should be noted
that, based on the value of o, certain curves can be classified as polynomials, while
others can be classified as monomials.
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FIGURE 5.10 Response amplitude as a function of the excitation amplitude for multi values
of detunig parameter.

5.4 HARD EXCITATION WITHOUT RESONANCE

When the frequency of €2 is significantly different from w_, the resulting excitation
effect will be minimal, unless the amplitude of the €2 is high. In other words, the
complexity of K is constant, denoted as 0(1). Thus, we delineate the excitation in
this manner [1]:

E(t)=K cos QT (5.35)
We employ the method of multiple time scales to approximate the response based

on the first resonance mode. In order to achieve that objective, we formulate the
response in the following manner:

u(te)=uy (T,.T,) +eu, (T, T,) +... (5.36)

By substituting the Equation (5.36) into the Equation (5.16), utilizing the Equation
(5.35), and equating the coefficients of €and €' on both sides of the equation, we
obtain the following:

Dlu, +w’u, = K cos T, (5.37)
D’u, +w’u, = —2D D, —2uDu, —au’ (5.38)
The Equation (5.37) has a general solution that can be expressed as follows:

u, = A(T,) exp (iw,T,)+ Aexp (if2T,) + cc (5.39)

°

Where A= %K (w?> —£2*)"" is concluded by placing u, in Equation (5.38).
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Du, + W, = —|2iw, (A" + pA) +6aAX +3aA’ A exp (iw,T,)
—afA® exp Biw,T,) + X exp (3i2T,)
+3A%Aexpli(2w, +2)T, ]+3K2A expli(2—2w,)T. ] (5.40)

+3A4L expli(w, +202)T, 14 3A4L expli(w, —202)T,
— A2ip2+3al +60AA]exp (i2T.) +cc

Secular or semi-secular expressions (small derivation from secular terms), which devi-
ate just slightly from secular expressions exp (£iw_T,), may arise when (2 = O(e).
In other words, for every given time, w, ~ (mwo + nQ), where m and n are integers
that satisfy the equation |m| + |n| = 3. This phenomenon is known as superharmonic

resonance when it occurs at a frequency of {2 ~ —w_ and as subharmonic resonance
3%

when it occurs at a frequency of (2 = 3w,. Hence, while eliminating phrases that
produce secular expressions, it is necessary to differentiate between four modes:

. . . . 1
a) The distant o is excited at frequencies of §w° and 3w_ ).

b) The frequency of the excitation is about {2 =~ o.
¢) The frequency of excitation is represented by the symbol 2, which is equiv-
alent to {2 zlw .

o

d) The excitation frequency is approximately {2 =~ 3w, .

The following section will address the following:

Mode A) will discuss later.

Mode B) is offered, followed by an examination.
Mode C) superharmonic resonance.

Mode D) subharmonic resonance.

Mode A)
In the state of non resonance, secular terms are excluded.

2iw, (A" + pA)+ 60 A+3aA’A =0 (5.41)

Assuming the Equation (5.41), let A =1/2aexp (iﬁ) , where a and 3 are real num-
bers. By decomposing the complex number into its real and imaginary components,

we obtain the following:

!
a =—pa

(5.42)

w,af =3a| X +%a2 a

Thus, for the initial estimation:
u:acos(w0t+ﬁ)+K(w§_QZ)*lcos Qt+0(e) (5.43)
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The values of a and 3 are derived from the Equation (5.42). The general response for
a is given by the equation a = a_ exp (—uT,), where a, is a constant value. Conse-
quently, the free (homogeneous) vibration response decreases over time so that the
steady-state response includes only forced (particular) response akin to the linear
state. While the equation for free vibration is diminishing, its frequency is deter-
mined by the particular response domain.

The B mode will be assessed using the exercise structure provided later.

It is preferable to analyze the solution of the differential Equation (5.16) while
considering the excitation force as Equation (5.35) with the assumption that the exci-
tation frequency is 2 =0.

Please be aware that Equations (5.39) and (5.40) are also applicable. Consult the
Ref. [1] for additional guidance and research.

5.4.1 SUPERHARMONIC RESONANCE [Q ~ %wc]

In the case of mode C, we indicate the closeness to —w, by introducing the detuning
parameter o in the following manner: 3

32 =w,+eo (5.44)

Furthermore, apart from the terms proportional to exp (+iw,T,) mentioned in Equa-
tion (5.40), there exists an additional term that gives rise to a secular trend in the u,
response. The expression is —aA exp (£3i2T.) . In order to exclude secular terms,
we represent the term 3§27, in terms of w,7, as follows:

30T, = (wo Jrea)TO =w, T, +eoTy = w, T, + 0T, (5.45)

By applying the Equation (5.45), we determine that secular sentences are excluded
inu,. If:

2iw, (A" + pA)+6a L A+3A° A+ alexp(ioT,) =0 (5.46)

In the given Equation (5.46), let A = laexp (i3), where a and 3 are real numbers.
By decomposing the complex number into its real and imaginary components, we
obtain the following:
A3
a'=—pa— Y2 sin (oT, - P)
w
° (5.47)

3
a-+ ad cos (T, — )

o

aﬂ’:3—a
w

o

A2 +la2
8

Equation (5.47) can be transformed into an autonomous system, which is not reliant
on time (¢), by incorporating:

y=0T,—f3 (5.48)
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Consequently, we obtain the following:

/ A
a =—pa— sin -y

§ (5.49)

, 3al 30 5, af

ay'=|lc———|la———a’ — cos vy
w, 8w, w,
Thus, for the initial estimation, we may express it as follows:

u=acos(32—~)+ K (w2 — Q) cos 2+ 0(c) (5.50)

The values of a and v are derived from the Equation (5.49).
The movements of the steady state align with a’ = v’ = 0. Indeed, they corre-
spond to the subsequent answers:

A}
—pa = sin vy
Wo
4.5
alt 30 4 iy
oc—3 a———a = cos vy
w, 8w, w,

The frequency response equation is generated by squaring and adding earlier equa-
tions as follows:

2

A3 s

1w +|o—3% ——aazJ @ =22 (5.52)
w, 8w, w,
By solving the Equation (5.52) for ¢ in terms of a, the conclusion is as follows:
172
A 3 2A°
c=3" |2 (5.53)
w() 8&}0 wOa

1 . . o
Therefore, when (2 ~ §w° , the expression representing the free vibration in response

to the equation does not go towards zero, even in the presence of damping and in
the comparison to the linear condition. Furthermore, the nonlinear system precisely
controls the frequency of free vibration, which is exactly three times the frequency of
excitation, resulting in an alternating response. The phenomenon of superharmonic
occurs when the frequency of free vibration is three times higher than the frequency
of excitation. The three curves in Figure 5.11 depict the formation of the response
through the combination of the particular solution and free vibration, as described
in Equation (5.50).

The various frequency response curves depicted in Figure 5.12. These graphs
illustrate the impact of altering o, A, and . The jumping phenomenon is caused
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FIGURE 5.11 Combination of the Duffing equation response to superharmonic excitation:
(a) free vibration response, (b) particular response, and (c) real response.

by the bending of the frequency response curves, similar to the primary resonance
condition. Furthermore, altering the sign « (as shown in Figure 5.12 a) results in the
creation of a symmetry centered around the line 0 = 0. This symmetry is denoted
by the Equation (5.53).
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FIGURE 5.12 (Continued)

5.4.2 SUBHARMONIC RESONANCE (2~ 3w, )
In order to examine subharmonic excitation for Equations (5.16) and (5.17) in State D,

we establish the detuning parameter o according to the following definition:
(5.54)

2=3w,+eo

Furthermore, the expression that corresponds to exp (+iw_7,) and the terms cor-
responding to exp [ii(Q—ZwO)TO] are considered secular terms in . The term

(£2—2w, )T, is written in accordance with the Equation (5.54) as follows:
(5.55)

(“Q - 2"‘)0>To =w,T, +eoT, = w,T, + 0T

To eliminate these terms in the Equation (5.40) that result in secular terms in u,, we

(5.56)

set the following:
2iw, (A’ + uA) +6aA+30A’A+3aAA” exp (ioT)) = o
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Let us establish a relationship between the complex number in Equation (5.56) and
. 1 . .
the expression A = 3 aexp (i3), where a and 3 are integers. By performing a process

of isolating the real and imaginary components, we obtain the following:

a' =—pa— 3ad a’sin (UTl —3ﬁ)
4w,
3 1 3a/ 37
af' = —a[Aergaz}aJrLazcos(aT, 73[3)

w() w()

In order to convert Equation (5.57) into an autonomous system, we establish the
following definitions:
vy=o0T, =30 (5.58)

We shall possess the following:

(5.59)

8w, 4w,

Therefore, the system’s response will be determined by the initial approximation in
the following manner:

U= acos [%(Qt—w)}—i—[((u;g —(22)7lcos Qt+0(e) (5.60)

The values of a and ~ are derived from the Equation (5.59).
Steady-state mode movements are associated with the following responses:

3a/d

—pa = a’sin ¥
Wo
) (s5.61)
[ 9aA ] 9a¢ ; 9ad ,
o— a———a =——a cosvy
w() 8(4]0 4w()

The frequency response equation can be found by removing Y from earlier equations.

2 2 2 42

ot 4 |o 2047 9 )] _Blal AT (5.62)

w, 8w, 16w;

The Equation (5.62) suggests that either a = o and/or
2

A? la*A?

o0 +|o 204 da o _8la & (5.63)
w, 8w, 16w,
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Which is the second order of a*. The solution is equivalent to the following:

a=pt(p’—q" (5.64)
Where:
8wo ., 64| 9aA*)
p=———6A"qg=—= 9" +|0— (5.65)
9 8la :

It is important to observe that g is consistently positive, and as a result, the non-trivial
amplitude of the system’s free vibration only happens when p > o and p° > g. These
conditions will be present in the following circumstances:

A<

4w,o aA? o 63aA’
27w

]— 207 >0 (5.66)

o 8w,

This necessitates that « and o possess comparable marks. Furthermore, it can be
deduced from the Equation (5.66) that, for a specific value A, non-trivial solutions
can only arise under the following conditions:

2w, 63a°A?

> 202 (5.67)
A 8w,

Non-trivial responses can only occur when certain conditions are met, given a spe-

cific value of 0.

ao

) 12
—— 63] (5.68)

The boundary in the plane (A - J) where non-trivial responses can occur is deter-
mined by the following relation:

2
63a/ :zi

dwop p

> 1/2
7 - 63] (5.69)

I

As depicted in Figure 5.13 for values of o > o.

Under these circumstances, it is feasible for a system in this state to exhibit a
response where the free vibration, despite the presence of damping, does not dimin-
ish to zero in comparison to the linear response. Furthermore, at a condition of equi-
librium, the nonlinear component is directly related to the frequency of autonomous
oscillation, which is one-third of the frequency of external excitation, resulting in a
periodic response. Subharmonic resonance refers to the occurrences where the fre-
quency of free vibration is one-third of the frequency of excitation.
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FIGURE 5.13 Areas where the subharmonic responses exist.

5.5 PARAMETRIC EXCITATION

5.5.1 INTRODUCTION

This section focuses on analyzing motions that arise as a consequence of excitation
that vary with time in the system. In prior episodes, we observed that excitation
manifest as variations in the governing differential equations, leading to their inter-
pretation as external excitation. However, in this section, we familiarize ourselves
with excitation that are expressed as coefficients in the governing differential equa-
tions. Mathematically, this form of excitation results in differential equations with
coefficients that vary with time. In certain sections of mechanics, this phenomenon
necessitates the resolution of partial differential equations with constant coefficients.
These excitations are referred to as parametric excitation since they are represented
as parameters in the governing equations, regardless of time. In contrast to external
excitations, where a small excitation can only produce a large response if the fre-
quency of excitation is close to one of the natural frequencies of the system, a small
parametric excitation can produce a large response when the frequency of excitation
is close to twice that of one of the natural frequencies of the system. This is known
as principle parametric resonance.

Faraday [4] was the initial observer of the phenomena known as parametric res-
onance. He observed that when a fluid-filled cylinder is vertically excited, surface
waves exhibit double excitation periodicities. Although the subject of parametric
excitation has not been extensively studied in the past, there is a considerable amount
of literature and publications dedicated to the analysis and use of this sort of exci-
tation. One notable source is McLachlan [5], which focuses on the theory and prac-
tical use of Mathieu functions. Bondarenko [6], Magnus, and Winkler [7] examined
the Hill’s equation and its relevance to engineering vibration problems in a separate
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study. Furthermore, there are several works available that discuss parametric exci-
tation, namely, Nayfeh [8], Evan-Iwanowski [9], and Kononenko [10].

5.5.2 PARAMETRIC EXCITATION IN A LINEAR SYSTEM

The Mathieu equation is the most basic form of differential equations with alternat-
ing coefficients, defined as follows:

ii +(8+2e cos 2t)u=0 (5.70)

Where 6 and p are constants, the values of which are within the Equation (5.70).
Equation (5.70) serves as the principal equation for numerous physical systems sub-
jected to cosine excitation. Take note of the pendulum depicted in Figure 5.14, which
is attached to the plate at Point O. The plate is vertically oscillating in a horizontal
direction. The function cos2¢ generates a parametric excitation in the system that
varies with the variable 7, representing time.

Let’s consider the Equation (5.70) with a minor modification as follows:

ii—l—wéu—i—eécos Ntu=0 (5.71)
The solution to Equation (5.71) can be obtained using direct approaches, averaging
techniques, or multiple time scales. However, in order to detect the system intensifi-

cations, we will employ a straightforward approach. Hence, the solution to Equation
(5.71) can be expressed as follows:

u(t, e)=u, (1) +eu, (t)+u, (1) +... (5.72)

Ie cos 2t

Ie cos 2t

FIGURE 5.14 Pendulum made of a uniform rod oscillating in two modes caused by the
vertical harmonic movement of the horizontal plane.
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By substituting the solution (5.72) into the Equation (5.71) and thereafter simplifying
and segregating the phrases based on the coefficients €, €', and £, we will obtain
three equations as stated:

e iy twiuy =0 — u, =acos(wyt+[)

1, e 2
e U +wyu, =—bu,cos St (5.73)
e i, +wou, = —6u, cos 2t

By substituting the solution of the first Equation (5.73) into the second equation, we
obtain the following:

ii, + wyu, = —ba cos 2t cos (wyt + 3)

:—%651{cos[(()—wo)t—l—ﬁ]+cos[(()+wo)t_g]} (5.74)

The particular response of u, can be derived from the Equation (5.74) in the following
manner:

ulz—léa cos[(Q—l—wo)t—l—B]+cos[(9—w0)t—ﬂ] 575
2 2(02+42w,) 2(02-2w,)

Now, by substituting the value of u, from the Equation (5.75) into the third Equation
(5.73), we obtain the following:

ii, +wou, = —bu, cos Ot
62
B
62
~ w2 )=l ot + )]}

When Q ~ 2w, in sentence (2—2w, ) in Equation (5.75), a phenomenon known as
the primary parametric resonance takes place. Furthermore, if we consider the stated
Equation (5.76), when the equation 22 — w, = w, holds true, a secondary resonance
will occur. This implies that when Q2 = w, , a secondary resonance will be observed.
Secondary resonance can be achieved by expressing the particular solution to Equa-
tion (5.76).

5.5.3 PRIMARY REsoNANCE CAuseED BY HARMONIC
EXCITATION IN THE LINEAR SYSTEM
In the last section, we determined that during the primary resonance, we will have

Q ~ 2w,. Next, we will examine the primary resonance by employing the averaging
technique. Once again, we will rephrase the Equation (5.71) [11, 12]:
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ii—l—wéu—l—sécos(?tu:O 5.77)

Applying the aforementioned relations (Equations (4.94) to (4.98)) of the averaging
approach, the following results will be obtained:

—aw, sin gzﬁ] sing do (5.78)

27Tw

af = f[a cos ¢, —aw, sin ¢] cos ¢ dp (5.79)
27w,
Considering the supplied expressions f (u,u) =6cosQtu and ¢ = (ZwotJr ﬁ) we
can substitute them into Equations (5.78) and (5.79) and then perform integration to
obtain the following result:
. dea
a= 4—sm[(2w0 -2+ 25}

Wy

5 (5.80)
: ca
afl = —-cos|(2w, —2)t+2
b 4w, [( 0 ) 6]
Equation (5.80) has our frequency equations. Next, we aim to eliminate the tem-
poral dependence from Equation (5.80). By defining v = (2w, —Q)r+23 and
¥ =2w, -2+ 28, Equation (5.80) can be expressed as follows:
a= ﬂsin
4w, 7
5 (5.81)
3
y = (2w, —2)+——cos
7= (2w, —02) 2, 7

The solution to Equation (5.77) is as follows:

u=alt) cos[w0t+ﬂ<t)]: a(t )cos

Lot ; 7] (5.82)

The values of a and v are derived from Equation (5.81).

In order to assess the stability of the system in linear mode, we deviate from the
prior procedure by initially analyzing the non-trivial solutions (a = 0) of the system,
followed by an examination of the trivial solutions (a = 0). Assuming that (a = O),
let’s divide both frequency Equations (5.81):

da _ ¢ sin yd~y

5 (5.83)
a €
4w, |(2w, —92)+ 2—% cos 7y

We will compute the integral of the aforementioned equation.

Ina= —%ln[Zwo (2w, —£2)+ 8¢ cos 'y]+lnc (5.84)



Forced Vibrations of Nonlinear Systems 167

The domain “a” is formed from the Equation (5.84) as follows:

a— ¢ (5.85)
\/2% (2w0 - Q) + 6e cos ~y
If:
2w, (2-2
cos ¥ = M (5.86)
O

Subsequently, the occurrence of a — oo triggers a strong need and thus leads to an
unstable state of the system. If —1 < cos~vy <1, then:

2w, (2 —2w,) = +be — 2=2w, :I:(S—E (5.87)

2w,
To determine the stability or instability of the system, it is essential to create a graph
that illustrates the relationship between the parametric excitation domain (6 ) and the

excitation frequency (Q) .

Unstable

Stable Stable

FIGURE 5.15 Stability behavior of the system in exchange for different values of the para-
metric excitation domain (5 ) .
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If we make the assumption that (a = 0), then:

a= &—asin
4w, 7
(5.88)
5= (Zw —Q)+5—€cos ¥
0 2w,
In order to assess the stability of the trivial solutions, assuming (a = 0), we examine
the response as follows:

a=0+a,(r)

5.89
Y=%+n(1) o)

Where q, (t) represents a value that is not equal to zero. Indeed, we generate a state
of perturbation surrounding the origin. The value of «, represents the stable state
response of v, which may or may not be zero. Additionally, we generate a perturba-
tion (71 (t)) in the vicinity of «y,. By incorporating the Equation (5.89) into the Equa-
tion (5.88), a new relationship is derived based on a, (¢) and v, (¢), which is equivalent
to the procedure used to solve the preceding ection. Further information can be found
in the Nayfeh and Mook [1].

5.5.4 NONLINEAR EFrecTS ON PARAMETRIC EXCITATION

In the previous section, we established that parametrically stimulated damper-free
linear systems exhibit infinite growth in their responses over time. In practical sys-
tems, various degrees of damping can significantly influence the system’s stability
behavior. If the system is linear, its magnitude will increase until the system ceases
to exist. However, in most systems, there are varying degrees of nonlinearity. When
the range of motion reaches a significant extent, this nonlinearity comes into play
and alters the system’s response. Under certain circumstances, when the amplitude
increases, the nonlinear impact constrains the expansion by forming a limit cycle.

In order to analyze the nonlinear effects in systems that are subjected to para-
metric excitation, we investigate a system that exhibits nonlinearity. Now, we will
examine Equation (5.71) in conjunction with a nonlinear and damping statement as
stated [13]:

i+ 2epi+wou+ecou’ +ebcos Rtu=0 (5.90)

Within the context of Equation (5.90), x4 represents the damping coefficient and «
represents the nonlinear coefficient. Given that the primary resonance is approxi-
mately equivalent to {2~ 2w, , we will address the issue by employing the method
of multiple time scales. To address this, we can express the solution in the following
manner:

u(Ty, T,)=uy (T, T,) +eu, (T, T,) +... (5.91)
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Similarly, by substituting the value of Equation (5.91) into the Equation (5.90), we
may separate the phrases based on the coefficients £” and £':

€’ :Diuy +wiuy =0 — uy = A(T))e"" +CC

(5.92)
' :Dyu, +wiu, = —2D,D,u, —2uuDyu, — oty — Su, cos 2T,

By substituting the solution of the first Equation (5.92) into the second equation, we
obtain the following:

2 2 . 1w, . i T 3 3w T = T
Dyu, +wyu, = —2iw, A’ —2ipw,Ae"" —aA’e™ " —3aA"Ae™" +CC

*%é(e'm“ + e 1 )(Aeiw-ﬂrﬂ + Ao il ) (5.93)

1, ., .
The expression cos2T; = > (e’m“ e ) is true in Equation (5.93). Since Q ~ 2w,

we can express the resonance conditions in a more thorough manner:
222w, — 2="2w,+o0¢€ (5.94)

The o parameter is referred to as the detuning parameter in Equation (5.94). By
including the Equation (5.94) into the Equation (5.93) and attempting to exclude sec-
ular terms in Equation (5.93), we can express it as follows:

[~ 2iw, A’ = 2w, A — 304’ Al — % §Ae T =0 (5.95)

Based on the earlier equations 2 = 2w, +o0¢ and T, = €T}, and considering the sub-

stituting in the Equation (5.95), we may express this as follows:

2wy A’ + 2ipw, A +3aA’ A+ %Mew“ =0 (5.96)

Equation (5.96) is equivalent to the equation for the frequency response. Now we
must determine a solution for A expressed in polar form. To achieve this objective,

. .. 1 .
we establish the definition A = —ae'™®, where a and B are functions dependent on 7.

The reason for utilizing the polar form of answer A is that this response format is
appropriate for obtaining non-trivial system solutions (a = O). By considering the
value A in the context of the Equation (5.96), and decomposing it into its real and
imaginary components, we obtain the following:

a'=—pa —|—iasin(oT, — 26)
4w,
5.97)
3o

1)
aB'=—da* ———acos(cT =2
P 8w, 4w, (T ~26)
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By introducing the variables v = (07, —2/3) and ' = (0 — 28'), Equation (5.97) can
be expressed in a simplified form as follows:

' o .
a = —ua+4—asm o
0 (5.98)

, 3ac 4 6
ay =oca———a +——acosy
Wo Wy

In order to assess the stability of the trivial steady-state responses described by
Equation (5.90) under parametric excitation, we will now employ the Cartesian form

1 .
response [A = 5 ( pt iq) e ] instead of the polar form response. The Cartesian-type

response is employed solely for the sake of simplifying the problem-solving process.
As demonstrated later, this form of response aids in the examination of the stability
condition of the system’s trivial response. It is worth mentioning that both ( )4 +iq)
and ( p—iq) can be utilized interchangeably without impacting the solving proce-
dure. By substituting the solution of the Cartesian form into the frequency Equation
(5.96) and resolving it, we obtain the following:

1 W, (p’—lq’)—wo)\(P—W)"‘W% (p—zq)+?a<p2 _qz _zlpq)(p-i-lq)
(5.99)

+§(p + iq)e"(gfmr' =0

For the given values (5.99), p and g are dependent on the variable 7. To eliminate the
time dependence of the Equation (5.99), it is imperative to set A = g, By substituting

the value of X with % in the Equation (5.99), we obtain the following:

i w, (p’—zq'>fw0%(pflq)+zuw0 (pflq)Jr?O%p2 -q 721p)(p+zq)
(5.100)
] .
+ Z(p—&-lq) =0

The frequency response equations are derived by segregating the real and imaginary
components in Equation (5.100).

, o 3a s 6
p :*—Q*#PWL—Q(P +q )*—CI
2 8w, 4w,
(5.101)

q'= gp—uq—3—ap(pz +qz)—ip
2 8w, 4w,
5.5.4.1 Evaluating the Stability of the Trivial Solution
to the Equation (p =¢=0)
An analysis is conducted to assess the stability and instability of the system by study-
ing its steady-state responses, regardless of whether they are trivial or non-trivial.
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In order to achieve this objective, we shall get the Jacobian matrix by linearizing
Equation (5.101) around the point p = q = 0. The resulting matrix is as follows [14]:

A= 0 (5.102)

2 Aw,

Upon performing the computation of the determinant and the trace matrix of Equa-
tion (5.102), the following result will be obtained:
2 62
A=p*+ g _9
P Tew? (5.103)

0

T==2u

Given that ;© >0 and defining k = i, when:

Wo
A<O A<0
<
2+&<6z.ﬁL2+2<H (5.104)
— g
T S 16w a

The system is expected to exhibit instability. Furthermore:

A>0 A0
>
2+02> o _){4 Ptot >k G109
— g
SRR a

The system will maintain a state of stability. By plotting the equation (4u2 +o’ =k )
onagraphusing k and o as variables, we obtain the following graphical representation.

Now, one can examine the system’s stability mode for trivial solutions. Based
on the graph shown in Figure 5.16, it is evident that answers above the curve can be
characterized as unstable, namely, when 4.> + o> = k*. Conversely, responses below
the curve can be considered stable. At o = 0, the value of the parametric excitation
domain (k) is precisely 2u.

5.5.4.2 The Stability of Non-trivial Steady-State Responses

In order to retrieve the non-trivial solutions of the system, we utilize the polar form
solution that we already derived (Equation (5.98)). Once we write the frequency
equations of the steady state explicitly, the solving process is completed [13, 14].

/ o
a' =0— pua=——asinvy
Wo
(5.106)
3a

/ 1 3, 0
v =0——-0ca———a +——acosvy
2 8w, 4w,
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Unstable

k=24

Stable

0
a

FIGURE 5.16 Behavior of the detuning parameter g by parametric excitation domain f .

Given that a = 0 (yielding non-trivial solutions), we proceed by dividing two Equation

(5.106) by a and then by utilizing the trigonometric relationship (sin2 vy +cos’y = 1),
we arrive at the following relation:

2 2
u2+[%a3_aa2] _ 0 . (5.107)

The domain (a) is obtained as the response of the real part of the complex form from
the Equation (5.107). Therefore, we will have the following:
2 2

6 >
ot |[——4
4w§ H

4w,
3«

_ |4« (J + I — 4 )F (5.108)

| 3a

The notable aspect of this topic is that, considering the circumstances and limita-
tions outlined in Equation (5.108) (including the presence of negative values within
the square root), it can be asserted that non-trivial solutions are not always present.



Forced Vibrations of Nonlinear Systems 173

However, the trivial solution is always present. Thus, in order to verify the presence
or absence of non-trivial solutions, we proceed as follows:

Given that o > 0 and the domain of a is a real value, it follows that the term under
radical in question is always positive, as this condition necessitates. The value of
k > 2o is greater than or equal to 2 (k> 2u).

1. If o0 <0, then:

o] < JK =4y’ (a)

In this scenario, we are situated on the negative side of the curve depicted in Figure 5.17
(a < O), where we can expect an unstable outcome. The unstable response is located
at the apex of the curve (4u2 +o’ = k2) and on the negative side of the graph (¢ <0),
shown by the label II in Figure 5.23.

2. If o > 0, then:

(1) — o>k -4y’

(2) — 0o <Ak =4y’
There are two solutions in this scenario. Specifically, in this instance, we are posi-
tioned below the curve (44> +0° = k*) and above the line k = 2 on the right side

of the picture shown in Figure 5.23. This region is designated with the III. Further-
more, it should be noted that in region I, namely, below the line where k =2 and

to the left and below the curve (4u2 +o*= k2), there is no solution available as
depicted in Figure 5.23.

11 11
I 111

Ty

k=2 p

FIGURE 5.17 Different areas of stability and instability of the system.
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To assess the stability of non-trivial steady responses, it is recommended to
employ Equation (5.98). The following equations have been restated later for the
purpose of refreshing one’s memory:

/ o .
a =—pa+-——asiny
0 (5.109)

, 3ac 4 19
ay =oca———a +——acosvy
Wo Wy

Given that non-trivial responses have a non-zero amplitude, it would be beneficial to
employ the following variable transformation in the process of issue solving:

a=a,+a, (5.110)
V=% (.11

The roots of Equation (5.98) for the condition @’ =0 and 7' = 0 are denoted as a,
and +,, respectively. Equations (5.110) and (5.111) are now inserted into Equation
(5.98).

) o .
a, = —pua, — pa, —I——(ao—l—al)szn('yo+'y,) (5.112)
4w,
. 3 0
oA =@ a, +a,) +——cos(y, +7, (5.113)
4w, 2w,

Now, by extending the capabilities of two variables’ functions, the process of linear-
izing Equations (5.112) and (5.113) can be carried out in the following manner:

, 6 . )
a =[—p+ 4_Sln v+ )](u, —0,=0)% + [4_ (ao +a, )

Wo Wo (5.114)
o . 6
cos (Yo + V), o, —0) N = [=p 4 ———sin (7, la, +[-——a, cos (7,)],
o 4w, 4w,
) 3a o .
=g (0 @ oo @+ I 100+ 1 0

(5.115)

3 o .

= [__ao]al + [_ _SZn(,YO )]’71

2w, 2w,
In order to proceed with the solution, it would be more convenient to transform the
trigonometric values of the Equations (5.114) and (5.115) into algebraic values. In
order to achieve this, it is necessary for the derivatives in Equation (5.109) to be equal
to zero. Once this condition is met, the resulting equations will have roots g, and v, .
By substituting these roots into Equations (5.114) and (5.115), trigonometric values
can be determined as follows:

/ 4w,

a' =—pa +4iasin(’y)ﬂ>u = %sin(%) — sin(y,) =
“ 0 (5.116)

a’y' = craf?’—aa3 +iacos(’y)i°—>2icos(’yo) = *U‘F—aan
w

0 wO 0 0
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—2wyo 3a

+—a, 5.117
6 26" o417
The final linearization is obtained by substituting Equations (5.116) and (5.117) into

Equations (5.114) and (5.115), respectively.

cos(7,) =

, 3
a' =|-Lga +2%% |, (5.118)
8w,
5 :l__ao a, +[-2pu]y, (5.119)
0

Based on Equations (5.118) and (5.119), the Jacobian matrix is obtained in the fol-
lowing manner:

3
0 —laao + ;‘ao
A=l “o (5.120)
,_O‘ao —2u
2w,

The determinant and trace can be determined using the matrix of Equation (5.120)

as follows:
T=-2u (5.121)

2 2 4
3aca,”  9a’a,

A=— >
4w, 16w,

(5.122)

We are commencing the examination of stability.
Initially, the values with a 0 < 0 are taken into account. Indeed, inside this band,

only values of ++/k* —4u* are deemed acceptable. Now we substitute Equation
(5.108) into Equation (5.122). It is important to mention that the trace 7 < 0, so:

4 16
A= 20 E o iy 2 O g e
. /7,(2_ 4 (5.123)

The solution is considered unstable when A < 0. Therefore:

272
A<0— ok —4p® +k° —4p° <0H0<%H02 <k*—4u* (5.124)
k™ —4pu

Consequently, if ¢ <0, the upper region of the curve depicted in Figure 5.23 will
exhibit instability.
The answer is stable when A >0.

A>0—o\Jk* —4p® +k* —4p> >0— 0> > k* —4u® — Unacceptable  (5.125)
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Equation (5.125) is unacceptable. The equation contradicts the requirement

Jk* —4p* > o] that was derived for o <0.
Now, we will consider the o > 0, for which there will exist a steady state on the

aforementioned subjects. If o < \/k> — 4>, then there is only one solution. Specifi-

cally, only the values of ++/k* —4u> are considered acceptable in regard to Equation
(5.108). Next, we insert the Equation (5.108) into Equation (5.121) while acknowledg-

ing that 7 < 0.
A=o\k -4’ +k -4’ (5.126)

The solution is considered unstable when A < 0.

A<0—oJk> —4p* +k> —4p> <0— o> <k —4u° (5.127)

Thus, when o > 0, the peak of the curve depicted in Figure 5.23 will exhibit instability.
The solution is stable when A > (:

A>0— ok =4’ +k* =4’ >0— o0° > k> —4u* — Unacceptable  (5.128)

The equation denoted as Equation (5.128) is deemed unacceptable. The equation is in
direct conflict with the relation o < \/k* —4u> .

Next, we will examine the second scenario in which o > 0 and also o > \/k* —4p° .
There are two acceptable solutions in this scenario, and the allowable values for

Equation (5.108) are +/k> —4u”. Hence, we will derive two equations for the

determinants. The expression ++/k* —4y” is initially examined in the context of
the Equation (5.108). By substituting the value of Equation (5.108) into the Equation
(5.122), we obtain the following:

A=k —4p> +k —4° (5.129)

The solution is deemed unstable when A < (.

A<0— ok =4’ +k* -4y’ <0 — o <k* —4u* — Unacceptable  (5.130)

The obtained answer is unacceptable. The requirement o > k> —4u* is contra-
dicted by this response. Next, we will examine the case where A > 0:

A>0—= ok —4p> +,2 —4p> >0 —0° >k —4u° (5.131)

One of the solutions for o > 0, located beneath the curve depicted in Figure 5.23.

For values of o >0 and o > ./ k? 74u2 , there exist two states. The initial state
was analyzed using Equations (5.129) to (5.131). Next, we will examine the second
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condition in which the Equation (5.108) incorporates the term —/k* —4u” . We sub-
stituted the Equation (5.108) into Equation (5.121):

2
A:73aa 4w /—))+ 9« 16w (2720 ,—k274u2+k274u2))

4w,

The solution is considered unstable when ” < 0.

A<O— —aJk* —4p” + K —4p” <0 — —oJk* —4p® <4p’ =k
— K =4 > K —4pt — ot >k -4’

Equation (5.133) reveals that when o > 0, an unstable response occurs below the
curve depicted in Figure 5.23.
The solution is stable when the value of A > Q.

(5.133)

A>0— —o\k> —4p’ +k —4p> >0 —0” <k’ —4u’ — Unacceptable (5.134)

The equation denoted as Equation (5.134) is deemed unacceptable. The equation is in
direct conflict with the constraint o > \Jk> — 4’ .

In the scenario where o > 0 and o > \/kz — 4M2 , there exist two solutions, one of
which is stable and the other is unstable. This section is indicated in the lower part of
the curve depicted in Figure 5.24, specifically in region III. It is important to mention
that the aforementioned subjects are depicted with greater elaboration in Figure 5.18
compared to Figure 4.21.

To summarize, the quantity of responses in each region (I, I, IIT) of graph Figure 5.18,
along with their stability and instability status, can be expressed as follows:

1. Within region I, there exists a trivial and stable response.

2. Within area II, there exist two solutions: one is readily trivial but lacks
stability, while the other is non-trivial and possesses stability.

3. Within district 11, there exist three distinct answers. The first option is both
trivial and stable, while the second option is also non-trivial and stable.
However, the third option is non-trivial and unstable.

By altering the amplitude of parametric excitation (k) and the detuning parameter
(o) in the diagram shown in Figure 5.19, we can observe the different binding states
inside the system.

Equation (5.108) allows us to depict the non-trivial response amplitude (a) by uti-
lizing the frequency response (o) as defined in Figure 5.19. The relationship between
various values of the frequency response () and the amplitude of the excitation (k)
is illustrated in Figure 5.17. By examining the frequency response variations for a
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FIGURE 5.18 Examination of the stability of the parametric excitation graph in terms of
frequency for the non-trivial response of the steady state.

II

FIGURE 5.19 Behavior of the detuning parameter o in terms of amplitude a.
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constant k as depicted in Figure 5.17, we observe a progression from left to right,
transitioning from area I to area II and finally entering area III. The graphic in Fig-
ure 5.19 displays the same variations for two specific values, o, and o, , when the con-
stant k is held constant. This is also seen in Figure 5.17. The diagram in Figure 5.19
shows two bifurcations, supercritical fork bifurcation at the o, point and a subcritical
bifurcation at the o, position. It is important to observe that the dash line represents
an unstable condition, whereas the extended line represents a stable condition inside
the system.

Figure 5.20 demonstrates the relationship between fluctuations in the excitation
amplitude (k) and the amplitude (a) in exchange for a constant frequency response
(o). The diagram in Figure 5.20 represents a specific frequency response value (01)
which is negative. By altering the value of k for o,, we transition from area I to
area II. Consequently, we will observe a bifurcation known as a supercritical fork
bifurcation.

Figure 5.20 and Figure 5.21 show modifications of the excitation amplitude (k)
versus the amplitude (a) while maintaining a consistent frequency response (o). In
Figure 5.21, the graph illustrates the relationship between the excitation amplitude
(k) and the amplitude (a) for the frequency response value (02). The value of (02)
is positive. When the value of k is increased from a small value to a large value at
point (02 ), the transition occurs from area I to area III and finally to area II. From area I,
characterized by a stable trivial solution, to area III, where the solution remains stable

k

FIGURE 5.20 Parametric excitation amplitude k according to amplitude a for point o, .
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I I —1

k

FIGURE 5.21 Parametric excitation amplitude k according to amplitude a for point o, .

and trivial, an unstable and non-trivial solution is introduced, along with a non-trivial
and stable solution. At the point where the stable and unstable states overlap, namely,
where the line and the expanded line (k = 2,u) collide, we will observe the formation
of a saddle node bifurcation. This point also marks the end of the I-zone. Further-
more, when transitioning from area III to area II, the previously trivial and stable
response transforms into a trivial although unstable response. However, there exists a
stable and non-trivial solution (see to Figure 5.21). At the transition between area I11
and area II, there is a subcritical fork bifurcation with a value of (a = 0). If you want
to study an instance of parametric excitation of Euler-Bernoulli nanobeams, you can
see the references [13].
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6 Nonlocal Systems
and Kinematics of the
Continuous Structures

6.1 INTRODUCTION

Later, we are examining the application of the principles and information from earlier
chapters to study the nonlinear characteristics of the continuous system in a precise
and comprehensive manner. In this chapter, initially, an overview of the fundamental
principles of the continuum mechanics is presented, followed by the utilization of the
principles of continuum mechanics, we extract nonlinear strains based on the gov-
erning assumptions, and nonlinear strains are introduced based on the von Karman’s
theory. Next, we will introduce the nonlocal elastic theory, the modified coupled
stress theory, and nonlocal strain gradient elasticity theory, which take into account
the size effect and allow us to use them to study the dynamic behavior of micro and
nanostructures. Finally, Hamilton’s principle is introduced, which is used as a pow-
erful tool for deriving the governing equations of nonlinear behavior of continuous
structures in subsequent chapters.

6.2 EXPLANATION THE DYNAMICS OF A
CONTINUOUS ENVIRONMENT

The trajectory of a particle in particle kinematics is determined by the time vector
function ¢ as follows [1]:

r=r(t) 6.1

The position vector r(¢)is defined as r (1) = x, (t) e, + x, (t) e, + x, () e,, where x, (1),
x, (1), and x, (¢) are the components of the vector as follows:

x=x(1), x,=x,(1), x, =x,(1) 6.2)

If there are N particles, there are likewise N trajectories, each of which can be rep-
resented by an equation as follows:

r,=r(t), n=123...N 6.3)

Specifically, the path for particle number 1 is represented by the notation r, (t), while
the path for particle number 2 is designated as r, (t) and so forth. In the context of
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a continuum environment, there exists a substantial quantity of particles. Hence, it
is unfeasible to distinguish particles by assigning a numerical label to each one and
following a comparable trajectory as the kinematic particles. It is possible to identify
them based on their position at time ,,.

For instance, if a particle exists within a continuum environment and is located at
location (1, 2, 3) at time ¢ = 0, then the coordinate system (1, 2,3) can be employed to
uniquely identify this particle. Therefore, if a particle of a continuum environment is
located at position (X, X,,X,) at a specific reference time 7,, the coordinate system
(X Xy, X3) can be employed to uniquely identify this particle. Therefore, the trajec-
tories of motion for each particle in a continuum environment can be expressed using
a vector equation as follows:

x=x(X,1), X=x(X, 1) (6.4)

The position vector at time # for particle p (Figure 6.1) is given by x = x,e, + x,e, + x;e,.
At time 7, particle p was at location X = X e, + X, e, + X.e, .

6.3 DISPLACEMENT FIELD

The displacement vector, denoted as u(X ,t), is the vector from the reference point
p(t,) to the moving location p (t) in the continuum environment with material abbre-
viation X according to Figure 6.2 [1, 2].

u(X,)=x(X,1)-X (6.5)

0

FIGURE 6.1 Position of a particle relative to the origin at time ¢.

FIGURE 6.2 Vector of displacement of a particle in a continuum environment.
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Equation (6.5) demonstrates that when the path lines of a continuum environ-
ment are unobstructed, the displacement field will also be unobstructed. There-
fore, the movement of a continuum environment can be characterized either by the
trajectories defined in Equation (6.4) or by the displacement vector field stated in
Equation (6.5).

6.4 SMALL DEFORMATION

There are numerous engineering challenges that include mechanical organs or com-
ponents that undergo minuscule deformations, which are analyzed in terms of math-
ematical foundations known as infinitesimal. In this episode, we get a tensor that
characterizes the distortion of these objects [1, 2].

Let’s examine an object that has a distinct shape at time ¢, and a different shape
at time ¢ (as seen in Figure 6.3). The material point p undergoes a displacement u,
resulting in its relocation to a new position as follows:

x=X+u(X.1) (6.6)

The Q point in the neighborhood, located at X + dX, reaches the x + dx point, which
is connected as x + dx.

x+dx=X+dX+u(X+dX,t) 6.7)

By subtracting the value of Equation (6.6) from the value of Equation (6.7), we obtain
the following:

dx =dX +u(X +dX.t)—u(X.1) (6.8)

Applying the gradient definition of a vector function, the Equation (6.8) can be
expressed as follows:

dx = dX +(Vu)dx 6.9)

0

FIGURE 6.3 Very small deformations at the material point p under displacement u at time ?.
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The symbol Vu represents a second-order tensor which is referred to as a displacement
gradient. The Vu matrix will be expressed with respect to the Cartesian coordinates
(u =ue,X = X,.e,.).

Ou 0w Oy
0X, 0X, O0X,
[Vu}: Ou, Ou, Ou, 6.10)
0X, 0X, O0X,
Ou,  Ouy  Ou,
0X, 0X, O0X,

The Equation (6.9) can be expressed as follows:
dx = FdX 6.11)
Where:
F=I+Vu 6.12)

The deformation gradient, denoted as F, is the gradient of the function )%(X ,t) that
describes the motion, where x = )%(X ,t). In order to get the correlation between ds
(a length of dx) and dS (a length of dX), we perform a dot product of the Equation
(6.11) within itself:

dx.dx = FdX.FdX = dX.(F"F)dX (6.13)
It means:
ds* = dX.CdX (6.14)
Where:
C=F'F 6.15)

The tensor C is referred to as the Caushy-Green deformation tensor. It should be
noted that if C = I, then ds® = dS*. Hence, the equation C = [ represents the motion
of a physical entity, which might involve both translation and rotation. We have a
form Equation (6.12):

C=F"F=(1+Vu) (I+Vu)=1+Vu+(Vu) +(Vu) (Vu) (©6.16)

Let’s:

E = %{w +(Vu) + (V) (V) ©.17)
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Next, the Equation (6.16) will be expressed as follows:
C=1+2E (6.18)

Equation (6.18) states that the Tensor E~ represents alterations in length within a con-
tinuum environment due to the movement of material points, as C = I pertains to the
motion of a solid object. A Lagrange strain tensor, denoted as Tensor E, is classified
as a tensor that represents finite deformations.

Typically, when examining elastic problems, we encounter three categories of strain:

1. Finite strain
2. Small strain
3. Infinitesimal strain

When discussing the divisions mentioned earlier, it is important to note that if all the
sentences in the Equation (6.17) are thoroughly examined, it results in finite strain,
which is essentially the same as large strains. If we simply consider the linear phrases

1
of the given relation, specifically E{Vu + (VM)T } we are dealing with infinitesimally

strains. Given the current circumstances surrounding the problem, if we exclude
some nonlinear sentences (sentences connected to finite strain), we are dealing with
small strains. These small strains are known as von Karman strains, which will be
discussed later.

6.5 RECTANGULAR PLATES SUBJECTED TO SMALL
DEFORMATIONS: VON KARMAN’S THEORY

This section focuses on von Karman’s theory, which assumes minimal deformation
strains. To fulfill this objective, examine the rectangular plate as depicted in Figure 6.4.

The point’s displacements in the central plane of the plate are denoted as u, v, and w, cor-
responding to the x, y, and z directions, respectively. The displacements of a point
on the plate, located at a distance z from the central plane, are denoted as u,, u,, and u,
(as shown in Figure 6.4a) [3].

When the displacement of the w plate is almost equal to the thickness of the A
plate, the conclusions obtained from linear theories will be highly erroneous. In this
context, a theory is proposed to explain significant deformations in which the magni-
tude of w is not negligible compared to &, resulting in noticeable differences between
the original and deformed images. The theory is formulated using Cartesian coordi-
nates, which are appropriate for rectangular plates with dimensions b and a (as seen
in Figure 6.4 (b)). This theory takes into account the following assumptions [1, 3]:

H1): The plate is thin, & < a,h < b.

H 2): The magnitude of the deformation is about equal to the thickness h of the
plate. Therefore, it is relatively minor compared to the dimensions » and a
of the plate for (H1): |w|=0(h).

(H3): The slope at any point is significantly small: |Ow / 0x| < 1,|0w / 9y| < 1.
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u
X Middle surface
a)
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¥
i

b)

FIGURE 6.4 Rectangular plate (a) symbols used for central plane displacements of the gen-
eral point and (b) symbols used dimensions and stresses of Kirchhoff.

(H 4): The magnitudes of all strain components are negligible, allowing for the use
of linear elasticity.

(H 5): Kirchhoff’s assumptions are confirmed, meaning that stresses are undeni-
able in the direction perpendicular to the central surface of the plate, and
stresses vary linearly in the direction of the plate thickness. These assump-
tions are accurate estimations for slender plates. Despite the planned appli-
cation of external loads that are perpendicular to the sheet plate, stresses are
generated in the vertical direction, albeit with a magnitude smaller than the
other stresses.
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FIGURE 6.5 Transverse section of the rectangular plate: (a) the initial form, o , is the nor-
(

mal Kirchhoff tension, and (b) the deformed form, & E), is the normal Eulerian tension.

(H 6): According to von Karman’s hypothesis, the displacements u and v within
the plane are extremely minor. In the strain-displacement relationships,
only the nonlinear phrases that depend on w need to be retained. Disregard
any other sentences that are not linear.

The hypothesis (H 6) on the omission of nonlinear plate theories to attain improved
accuracy might be disregarded.

Figure 6.5 illustrates that the distorted image of the plate deviates from its initial
shape. The Lagrangian approach is employed to describe the plate, ensuring that
the upper and lower surfaces of the plate are consistently positioned at z =+h/2.
A right-hand Cartesian coordinate system (0; X,, z) is employed, where the x and
y planes align with the central surface of the primary plate (unmodulated picture),
and the z axis is perpendicular to them. The Green’s strain tensor is defined in the
Lagrangian description.

3

Ou
2 th

k=1 OX;

1

_1
2

Ou, Ou; 3 0u, Ou

+

— (6.19)
Ox,  Ox, T Ox; Ox,

i

3, u,
M ys,

k=1 i

It is important to highlight that when considering the first two expressions in the
definition of strain, we will encounter infinitesimally small strains. If we include
the expressions denoted as ) in the strain analysis, along with the first two expres-
sions, we are dealing with a small strain. Ultimately, if all of the aforementioned
relationship expressions are taken into account during stress analysis, the resulting
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stress will be constrained. For instance, if we replace x,, x,, and x; with x, y, and 2
correspondingly, we obtain the following:

Ou 1|(0u, ’ Ou, ’ Ou, ’
[ ey R e 6.20
T 2 [(“)x] Ox Ox (620)
vy = 1|0, Oty |0 O, | Ouy Oy | Outy Oty ©621)
2|0y  Ox Ox dy Ox Oy Ox Oy
Applying hypothesis (H5), we obtain the following:
ow
= , V) — 72— 6.22
u =ulx, y)=z - (6.22)
ow
=v(x,y)—z— 6.23
, =v(x, y)~z B (6.23)
U, = w(x, y) (6.24)

The Equations (6.22), (6.23), and (6.24) are characterized by linearity. These equa-
tions are derived based on hypothesis (H 5), which assumes that the strains in the
plate change linearly with thickness. Additionally, the equations assume that the
Kirchhoff stresses are absent in the direction perpendicular to the middle plane of
the plate (O—x =7,=7,= 0), where o, represents the vertical stress acting per-

pendicular to level i and in line with j. Furthermore, the symbol 7, represents the
tangent stress depicted in Figure 6.4 (b). Thus, by employing linear elasticity:

o, =aq (x, y)+bl (x, y)z (6.25)

o, =a,(x, y)+b,(x, y)z (6.26)
Ou v

Cu 50 —2(oata,) 6.27)

The letter E represents the Young modulus, whereas the letter v represents the Pois-
son coefficient. The Equation (6.27), which approximates the linearized expression
€, is derived from the linear Equations (6.22) to (6.24). By integrating the given
Equation (6.63), we obtain the following:

2

u; = wx, y)—%[al (x, y)+a,(x y)}z—%[bl (x, ¥)+b, (x, y)]% (6.28)

The expression “w” represents the integral constant. Due to the insignificance of
vo.. . . . .
the value of 7 it is possible to disregard the last two phrases on the right side of the
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Equation (6.28) for thin plates. The Equation (6.24) has been altered, resulting in
€,, = 0. Furthermore, the expressions produced for hypothesis (H 5) are as follows:

1(0Ou, = Ou, T v
~ 2 3|l = 2 0 6.29
T= 75 8z+8x] g )= (629
1(0u,  Ou,
L= —+—|=0 6.30
Vo [az 8y] (6.30)

By substituting the expression u, = w(x, y) derived from Equation (6.24) into Equa-
tions (6.29) and (6.30), and then integrating over those equations, we obtain the Equa-
tions (6.22) and (6.23). Now, by incorporating the correlations between Equations
(6.22) and (6.24) into the Green’s strain tensor, we obtain the following:

(6.31)

k=1

Ou, Ou; 3 0u, Ou
. 4+ —L 4+ Tk 77k
i [ax o T 2on axj]

The purpose of this study is to derive the strain-displacement correlations of a plate
in Cartesian coordinates. The strain components €, €, and vy, at any given posi-
tion on the plate are connected to the middle surface strains €00 Eypo @nd 7y, g,
well as to the changes in curvature &, k , and k, of the middle surface, through the
following relationships:

xx?

€y = &, T2k, (6.32)
€, =&tk (6.33)
Yoy = Vo T 2K,y (6.34)

Where Z represents the distance between the desired location on the plate and its
central surface. By employing von Karman’s hypothesis (H6), one can get the sub-
sequent equations for the intermediate surface stresses, as well as the variations in
curvature and torsion of said surface:

Ou ow
=— 6.35
Ex0 Ox 3 [Bx] (63)
v 1(ow)
v W
A 6.36
€0 o + 2|9y ] (6.36)
Oou Ov 8w 8w
T 6.37
T oy Ox x 8y (037
2
PR (6.38)

* ox*
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o*w
ko=— 6.39
Yy ayZ ( )
2
k, =2 Ow (6.40)
i 0x0y

Generally, these correlations are sufficiently precise for plate with significant varia-
tions. If a higher level of specificity is necessary for relationships, the hypothesis (H 6)
cannot be used, and Equations (6.35) to (6.40) can be computed by incorporating all

2 2
. - . ow ow
nonlinear statements. It is important to mention that the terms |—| , |—| , and
X Oy
ow Ow . . . . . . o
oy which appear in the equations earlier, are referred to as strain nonlinearity in
X 0y

the von Karman model.

6.6 FUNDAMENTAL PRINCIPLES UNDERLYING
NON-CLASSICAL CONTINUUM MECHANICS THEORIES

6.6.1 FuNDAMENTALS OF NONLOCAL THEORY

Eringen initially introduced the nonlocal elastic theory to account for the influence of the
tiny size parameter in the continuum model. In nonlocal theory, as opposed to classical
elasticity theory, the stress at a specific place in a continuous physical model is influ-
enced by the strain of all points in that model. Put simply, the strain at a specific place
is determined by the stress and its partial derivatives at that same position. The nonlocal
theory examines the interaction between atoms within a molecule on a macroscopic level
and links the outcomes to the dimensions of the physical model. The fundamental equa-
tion for a linear homogeneous body in the nonlocal elastic domain, disregarding volume
forces, can be expressed as follows according to this theory [4-0]:

0, =0
Uﬁ(x):fffgb(|x/—x| ,a)tlj (x’)dV(x’), VxevVv (6.41)

I, = Cijklskl’ Eu = (uk,l Uy, ) 12
In the earlier connection, the nonlocal stress tensor is represented by the symbol o,
while the local stress tensor is represented by the symbol 7. Additionally, C;;, refers to
the fourth-order elastic tensor, and €,, represents the classical strain tensor. The integral
is computed across the volume inhabited by the object, and the stress equation resulting

from classical elasticity is applied. Nonlocal elasticity causes stress to bind.

The kernel function ¢><|x’—x| ,a) is a nonlinear modulus. This module func-
tions as a mechanism for reducing the strength of a structural equation that con-
nects the nonlocal strain impact at the source point x’ to the nonlocal impact at the
reference point x.
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The variable |x’ —x| denotes the distance in the Euclidean form of the material,
while « is a constant that relies on the internal properties of the material, such as
the regular network parameter, grain size, and bond distance between carbon-carbon
bonds. Additionally, o also depends on external longitudinal characteristics, such as
crack size or wave size. The o constant is assigned the value of ¢, a /¢, while the
material determines the proportionality of ¢,. This allows for the adjustment and
calibration of the model to align it with reliable experimental data from other mod-
els. This parameter should be capable of accurately aligning the current connections
in the nonlocal field with a good approximation to the outcomes derived from the
atomic diffusion curves when longitudinal waves are present in the atomic lattice
dynamics laboratory. The values of the ¢ and a parameters are influenced by both
the internal and external characteristics of the nanostructure. These characteristics
include the regular network parameter of grain size, carbon ribbon bond distance,
crack size, and wave size, which were previously discussed.

The equation is expressed as a partial integral, and its analytical solution is typ-
ically challenging, so a differential form of the elasticity equation is commonly
employed. Eringen states that the equation for nonlocal elasticity can be expressed in
the following manner.

6(]x] .a)=(2r2a?) 'K, (JE /o) (6.42)

In the given relation, the K, function has been altered to Bessel. The rationale for
motion in the context of nonlocal theoretical statements can be expressed as follows.

o, + 1, = pii (6.43)

The variables “p” and “f;” represent the mass density and volume force or applied
force, respectively. The variable “u,” represents the displacement vector. Similarly,
various relations for different coordinate lines can be expressed using the same
approach.

Eringen formulated the structural equation as a differential equation in nonlocal
theory, assuming that the kernel function ¢ is a Green’s function.

ot /J(fi — piil.) =0 (6.44)
The linear differential operator £ is defined by the given relation.
L=1—(e,a) V2 =1-puV* (6.45)

In the given relationship, x4 represents the nonlinear parameter and is measured in
square nanometers (nm’). By considering Equations (6.44) and (6.45), the differen-
tial equation associated with the opinion in Eringen’s nonlocal theory can be stated
as follows [7-9]:

1= (e,a) V2 ]or, = o, (1) 6.46)
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6.6.2 THE HYPOTHESIS OF MODIFIED STRESS COUPLING

In 1909, Cozart presented the inaugural mathematical model for analyzing materials
that exhibit a stress pair. Subsequently, additional researchers have further improved
the stress pair theory for materials exhibiting elastic properties throughout the years.
These theories introduce the gradient of the rotation vector as a curvature tensor,
leading to their classification as infinite stress couple theories [10—12].

Experiments conducted on metals and polymers have observed the influence of
micron-scale factors on the movement behavior of materials. The explanation for this
behavior is outside the scope of classical mechanics theories. The stress pair theory
has been employed to demonstrate the correlation between displacement behavior
and size. Later, we will analyze the distinctions between stress couple theory and
other mechanical theories.

The stress couple theory for linear elastic materials states that it encompasses not just
a force that induces particle movement but also a couple that induces particle rotation.

The equilibrium relations posited in this theory are derived from the principle
of momentum conservation. The modified stress couple theory introduces a set of
additional equilibrium relationships for a system of material particles. This theory
extends the original stress couple theory by incorporating the determination of parti-
cle rotation. According to this theory, the stress couple vector is a vector that exhibits
symmetry. The primary objective of the modified stress couple theory is to demon-
strate the length scale effect using only one parameter, whereas the stress couple
theory requires two parameters for the same purpose [13].

6.7 THE EQUATIONS THAT GOVERN THE STRESS
COUPLE THEORY FOR A CHANGEABLE BODY

We are examining a random volume v/ of a variable object and a constituent of its surface
dv.t,and u, are defined as the force and torque per unit area, respectively. The subscript
“n” denotes the orientation of the normal vector in the out-of-plane direction. The sym-
bols f and [ represent the quantities of force and torque per unit volume, respectively. The
following are the suggested relations for a continuous volume [14, 15]:

[ pav+ [ 1,ds=0
[ s +nav+ [ (xxt, +a,)ds =0 (6.47)

Let x denote the location vector of a particle of matter.
However, as:

t=tn;p,=pn (6.48)

The stress tensor is denoted by ¢, while the stress couple tensor is represented by u.
The expression for the surface integral using the divergence theorem can be formulated.

[ (ev+p)av=0
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[ (63t +f)=er+uV+1)dv=0 (6.49)

Given that volume v’ is discretionary, the corresponding dependent volume can be

excluded.
tV+f=0

(6.50)
tV+il—-€1t=0

€ is a tensor that alternates, while V is Hamilton’s differential operator. They collab-
orate to sustain a consistent equilibrium. In order to omit the temporary torque, we
have the following:

xx(l—et))dv+ | xxu,ds=0 6.51)
Jloxt=en)avs [ o

[— €:t represents the coupling between the object and the rest of the system. The
relationships earlier can be expressed using the divergence theorem.

[ (xx(i- e+ uV)e u)dv=0 (6.52)
Which results as follows:
eu=0 (6.53)

The stress tensor can be divided into two parts: the symmetric part and the antisym-
metric part.

0:1/2(t+r’), T:1/2(t7t7) (6.54)
Where ¢ is the transposition of .

The s.tress coupling tensor x is separated into a spherical component y, and a
deviatoric component m.

U=ug+m,
ug = %tr (ﬂ) , (6.55)
tr(m):O

By utilizing relationships .V 4-/— &€: 7 = 0 and employing .V + f = 0, and substitution
of relationships, we achieve equilibrium within it.

(04+7).V+f=0

uV+mV4Il-cr7=0 (6.56)
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By eliminating the asymmetric stress tensor from the equation mentioned earlier, the
resulting equilibrium equation is as follows:

av+%eWV®VH®VH¢:0 (6.57)

6.7.1 A NoveL AND COMPREHENSIVE ITERATION OF THE THEORY

RoOTED IN THE CONCEPT OF STRAIN GENERALIZATION
In this part, displacements and €, X, o, and m are determined by applying the virtual
work principle, and we present the obtained results here, where  is the symmetric

curvature tensor. The initial values of the displacement slope and rotation slope are
provided for the symmetrical section.

Ezé(u®V+V®u)

1 (6.58)
X=EW®V+V®®
Ultimately, we are employing the concept of virtual work.
_Ow _Ow 8w_0 6.59)

o=—, m=—, —=

Oe ox 00
Here, w represents the angular density of deformation. The equations earlier demon-
strate that the deformation energy density is independent of rotation 6.

The w for the second-degree function of generalized strains in linear isotropic
materials follows the linear elastic law.

1
W:E)\(trs)Q—f—u(E:valzx:x) (6.60)
The substitution of the Equation (6.60) in the Equation (6.59) results [13]:

o=Agtr(e)+2ue
I"'m =2y

Gzlcurlu (6.61)
2
U:%f(aze—km:x)dv

1 2
w= E)\(tra) +u(5:5+lzx : X)
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6.8 MODIFIED COUPLE STRESS THEORY FOR
NON-ISOTROPIC MATERIALS

In the field of classical elasticity, shear strains are quantified by taking the
derivatives of displacements. The coefficients associated with these strains are
determined by examining the relationship between stress and shear actions.
Furthermore, these coefficients can be readily extended to encompass non-isotropic
elasticity. The coupled stress theory’s spherical inhomogeneous elasticity is
determined by rotation components rather than rotational derivatives. Addition-
ally, the modified coupled stress theory restricts the curvature to spherically iso-
morphic materials. Hence, the adapted couple stress theory is inapplicable to
this particular material, necessitating the revision of both stress and moment
components.

0; = Ciuty (6.62)

i
m; = (lizp“[X[j +lfMiji)

As previously mentioned, y represents the curvature tensor of asymmetric couple
stress, m represents the moment tensor of symmetric couple stress, and /, represents
the length scale parameter. The direction i represents the direction of impurity and
defects in the material. Consequently, the length scale parameter in each direction
can indicate a scale of measurement. The dimensions and scale of impurities and
flaws inside the underlying structure of the material. Consequently, this theory will
incorporate five constants corresponding to the five directions of the material crystal.
Hence, the strain energy for the modified couple theory can also be expressed in the
subsequent manner [16—18].

6.9 FUNDAMENTALS OF MODIFIED STRAIN GRADIENT THEORY

According to the strain gradient theory, stress is not only dependent on strain, as
stated in classical mechanics, but also on the strain gradient. The notion of lowest
total potential energy has been employed to derive new relationships in the strain
gradient theory. The strain gradient theory incorporates a statistical component
known as the length effect parameter, which reveals that the material’s behavior at
a small scale is influenced by its dimensions. The subject in the theory of classical
elasticity could not be articulated due to the omission of this parameter in the equa-
tions. The strain gradient theory introduces a new stress element known as the total
stress tensor. This tensor differs from the Cauchy stress tensor and can be utilized as
the total stress tensor in the momentum equation.

The theory of strain gradient elasticity incorporates a new parameter, known as
the characteristic length of the material, into the structural equations. This allows for
the consideration of the material’s structure when analyzing its behavior. This theory
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considers both the potential energy of the material and the strain. Additionally, the
strain gradient influences this function, resulting in the inclusion of various novel
variables in the structural equations. Put simply, the strain energy density in the
strain gradient theory is determined by the normal strains ¢;, which are the sym-
metric component of the first-order deformation gradient of the displacements, as
well as the second-order deformation gradient 7,,. The answer varies depending on
the circumstances. The theory was initially proposed in 1963 by Medlin [14, 15, 19].

U=U ()
& = %(ui.,- tu;,) (6.64)
Mhije = Wi

The strain tensor €, in the given relationships consists of six separate components,
while the second-order deformation gradient tensor consists of 18 independent com-
ponents. It is important to note that both of these tensors are symmetric tensors. The
stresses associated with this strain can be described using the second-order gradient
tensor present in this theory.

_ou
! (6.65)
S ou
" 877ijk
Hence, the overall strain energy can be represented in the following manner.
M=W=o0,e; + 7y
u=06[wav = [(o,e, +7,m,;)dv (6.66)

Mindlin formulated the strain energy density using the strain gradient theory for
classical linear elastic isotropic materials in the following manner.

U= %)\giig_/j + pEE; T ANy T Ny T A+ A M + asn My (6.67)
The normal Lamé constants are directly related to the normal strain invariant
a, (1,. . .,5), whereas the additional second-order elastic constant is directly related to
the second-order deformation gradient invariants.

Fleck and Hutchinson categorize the transformation of the second-order gradient
tensor into symmetric 7, and asymmetric 7, components as follows [20, 21]:

o
M = 5(%% 5+ nkij)

. 2
Nk = g(eiklxlj + ejklxli) (6.68)
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The terms “permutation tensor ¢;,” and “curvature tensor x,;” are referred to in the
aforementioned equations.
By partitioning the symmetrical component of the second-order strain 7, into

(0)

1 . .o . .
two components 7’ and nfik), we derive novel, distinct second-order strain metrics.

K 0 1
N = 7751'13 + 771(12

<= S 8,0 8
771]1( ij nmmk jknmlnt kl mmj

1 s 0
771(,/3 =My — nz(]k>

(6.69)

. 1
njnmk = 5 (nmmk + 2,r’kmm )

The x; -curvature tensor was decomposed into two components: a symmetric part
and an asymmetric one.

X; = Xi; X

=304 +v) (©70)
1

X,‘; :E(XU +in>

The initial component of the second-order symmetric deformation gradient is deter-
mined by the expansion gradient, whereas the nonsymmetric component is represented
by the curvature tensor. Therefore, the expression can be formulated as follows:

2 2
Mip = €+ 3 ComXom = € & 5 CumXom ©671)

In the given relationships, ¢, = ¢is the dilation strain, €, corresponds to the rate of
change of dilation strain, Tlf,-lk)

rate of change of rotation.

is the rate of change of deviatoric tension, and x;is the

If 7'(0) and Tm are the trace and traceless sections of the components of the

symmetric part of the couple stress tensor 771(,,(), 771(1,{ , and 7, and the related strains as

Tfj(,)(), fjk), and 77, the virtual work resulting from the second-order gradient tensors

can be calculated by considering the following:

ow = szk 6771/1( + szk 677 + szk 6771]k 6.72)

ijk

M

The variables 7' ) and 7, are defined according to the following specifications:

+0,T),

mmi ki * mmj )

() (6 T+ 5,,(7' 673)
(0)

= Ti lek
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(1)

ijk >

By employing €;,
can be inferred:

and y; as the second-order strain requirements, the following

6w = Pbe, + T(1>5T]5j? + m,;.éx,.j

ijk

3
Pi = gT:nmi (674)
s 4, s
m; = 5 Tipg€jpg — g i T

Thus, based on the aforementioned relationships in the strain gradient theory, it can
be concluded that the strain energy density is dependent on both the first-order gra-
dient e; and the second-order gradient e, of the displacements. Therefore, it may be
expressed as follows:

W=W(e,.c,,) (6.75)

Consequently, the amount of stored energy per unit volume in Mindlin’s theory of
elasticity, which takes into account the variation of strain, may be mathematically
represented as follows:

1
W=—=Xee. + HEGE; + My M T My iy j T ANy 47

5 i +amy Ny ANy My (6.76)

ik
The strain energy density relation for strain gradient theory can be expressed as
follows:

1
W= 5 A€+ 1E;E5 + @My My & AT g + @3N M+ @M N + sy g (6.77)

The couple stress theory can be considered as a specific instance of a higher-or-
der stress theory, where the influence of the dilatation gradient -, or ¢; or the
deviatoric tension gradient 775/'2 can be disregarded. Hence, the expression for
the whole internal virtual work density may be formulated in this particular

scenario.

ow = 0,6, +m;0x; (6.78)

Without the size scale component, the equations derived from the strain gradient
theory are identical to the equations found in classical mechanics. The stored strain
energy U in the surroundings of linear elastic materials is expressed in Hamilton’s
relation, based on the modified strain gradient theory [22].

1
U= Ef(aijsij + DY T T myX; )dV (6.79)
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Regarding the aforementioned relationship:

1
€., = E<ui’j + ujyl.)

ij
61']' (smm,k + 2€mk,m )
1 1
nijk<1) = g(ejk,i + Ekij + Eijk ) - E +5jk <5mm,i + 25mi,m )
+0 (Emm,j 26, ) (6.80)

1

Xy =7 (eipng/,p +€.C0p )
4

’Yi = Emm,i

In the given equation, the variable u, denotes the displacement vector along the x,
¥, and z axes. 7, symbolizes the dilatation gradient tensor, 7, the deviatoric stretch
gradient tensor, X; the symmetric rotation gradient tensor, 5,.]. the Kronecker delta,
and ¢, the permutation tensor symbol.

The Cauchy stress tensor and high-order stress tensors, denoted as Tie> Dis and
m,; are defined as follows. It is important to mention that the relations that follow
involve three independent length scale parameters [, /,,and [,. These parameters are
the gradient vector of the deviatoric tension gradient tensor and the symmetric rota-
tion gradient tensor, respectively, and are interdependent

o, =ke 6,v+2,u[6,.j—l€ 5]

mm~ ij 3 mm = ij
P =24y, 6.81)
Ty = 20 1y
mlj = 2!““122Xij

6.10 NONLOCAL STRAIN GRADIENT ELASTICITY THEORY

Two basic presumptions of classical mechanics prohibit the use of classical ideas at
micro- and nanoscales. At the nanoscale, the continuity of the material’s mechani-
cal field is one of these presumptions that is fully questioned because, at lower sizes,
the existence of voids between atoms has been demonstrated and is unavoidable.
The assumption that the stress at a location depends only on the strain at that same
position in classical mechanics presents another barrier to applying the theory on
smaller scales. Eringen’s research indicates that, at the nanoscale, the strain of the
material as a whole as well as the stress at a particular place affect the stress at
that location. Consequently, non-classical theories are needed for analysis at the
nanoscale. Numerous studies have been conducted recently with the goal of taking
into account the longitudinal scale of materials in the micro and nano size. Some
of these studies have used the strain gradient theory, which is based on the theory
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of Eringen, while others have used the nonlocal theory. The strain gradient theory’s
modified pair stress is regarded as its most crucial component. After much debate
among academics over this disparate length scales, Lim and her associates finally
articulated the theory of nonlocal strain gradient elasticity based on the nonlocal
effects of strain field and strain gradient field. This theory takes into account both
the nonlocality of strain gradients and higher-order stress gradients to offer an elas-
tic system. This theory is entirely distinct from the other two theories because, while
the widely used strain gradient theory only looks at the local effects of higher-order
stresses, the nonlocal theory ignores the nonlocal effects of higher-order stresses.
This theory states that the nonlocal stress at reference point x depends on the strain
at that place as well as the strain at every other point in volume V. This theory takes
the following into consideration for the internal potential energy density U, of an
isotropic elastic body [23, 24].

U, <EU,€ 3o Ep Y ) 26 Co ao(|x—x’|,uo)s,fldv’
6.82)

!/
l_[m [//{/f |x x| /’Ll)gk/mdv

The volume integral encompasses the entire object. £, and &;, denote the strain ten-
sor at the reference point x and the strain tensor at the adjacent points x’, respectively.
o, and « are kernel functions associated with nonlocal effects in relation to strain
fields and strain gradients. Furthermore, 4 ,and x4, are nonlocal parameters, while /
is the length scale parameter of the strain gradient.

Utilizing Equation (6.83), the classical stress tensor o, the higher-order stress ten-
sor o', and the total stress tensor associated with the nonlocal strain gradient theory
t can be expressed as follows:

a:fvao (x’,x’,/,to)C:E'dV’

6.83
o' = lzfvoz1 (x',x,,u,)C :Veldv' (683
t=o—-v"

In this context, the notation “:”” denotes the multiplication of two tensors. Given that
resolving an integral equation is significantly more challenging than addressing a
differential problem, Lim et al. [24] introduced the differential formulation of struc-
tural equations grounded in the high-order nonlocal strain gradient theory as follows:

1=V l= iV ]ty = Cp 1= 1 V2 |, = Cul* 1= 13 V2 | Ve, (6.84)
U =ea, u,=ea, V’ _882 86; (6.85)

Where V* denotes the Laplacian operator, e, and e, are nonlocal material constants,
and a represents the internal characteristic length. By setting 4, = u, = u in equation
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(6.84) and neglecting terms of order 0(V2 ), a more simplified representation of the
structural equations for nonlocal strain gradient will be derived [25].

(1= V2 |t, = Cy 1=V, (6.86)

The nonlocal strain gradient theory simplifies to classical continuous medium
theory when e,a =1=0 and to strain gradient theory when e,a =0. Under the
assumption of isotropic Euler-Bernoulli beam theory, Equation (6.84) is expressed
as follows [26]:

1=V 1=V o, = E[l =iV |e, —EP [I- gV | Ve, (6.87)

XX

. 0

Where o, represents normal stress, € - denotes normal strain, and V = —. Under
X

the premise of retaining just terms of order 0<V2) and setting e = ¢, = ¢,, the struc-

tural Equation (6.87) is thus simplified as follows:

[1-ea’V?]o, = E1-I'V’]e,, (6.88)

6.11 VARIATIONAL METHOD

This section describes the extraction of differential equations that regulate the static
and dynamic behavior of an elastic object, utilizing energy-compliant methods based
on the principles of variation [27, 28].

Various techniques can be employed to derive differential equations that describe
the behavior of the elastic item. The principles of minimum potential energy, min-
imum complementary energy, and principle of Reissner energy can be utilized to
address static problems. The Hamilton principle refers to the fundamental concept of
variation, specifically in relation to the dynamic behavior shown by systems consist-
ing of particles, solid objects, or deformable objects. This section briefly discusses
the concepts of variation, with a particular emphasis on the Hamilton principle.

Specifically, this section focuses on the equilibrium equations and equations of
motion for continuous systems. Since we have knowledge of the principles of contin-
uum environment mechanics discussed earlier, we aim to apply these principles to
determine the principles governing the changes in a continuous environment. Specif-
ically, we want to find the following:

a) Principles that are equivalent to the equilibrium relations or movement
of a continuous environment. (These equations are referred to as exact
equations.)

b) The extraction of engineering or technical equations and boundary condi-
tions, which are often known as approximation equations, is relevant. Alter-
native approaches to solving 3D elasticity problems include employing
equations of beams, plates, and shells, which are approximate theories.
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¢) To obtain approximate solutions, one can utilize both exact equations and
approximation equations. There are three methods for deriving the equations
that describe the mechanical behavior of an object, which are as follows:

1. The equilibrium approach: Newton’s second law of motion
2. The integral equation method
3. Variation method

This section will outline the Hamilton principle as a highly effective technique for
deriving differential equations that govern the static and dynamic behavior of a
continuous system.

6.12 HAMILTON PRINCIPLE

The Hamilton principle is the fundamental concept that can be employed to address
dynamic problems involving variation. Based on this approach, functional change is
measured in relation to time. The Hamilton principle employs a function known as
Lagrangian, which is defined as follows [27, 28]:

L =T —U = Kinetic Energy — Potential Energy (6.89)

By formulating the equation of motion, we establish a continuous environment in the
following manner:

0, +pb, = pii,, i=1,2,3 (6.90)

The equation in question is known as the Navier-Cauchy equation. By doing the
multiplication of 6u, in Equation (6.90) and thereafter integrating the volume, we obtain

the following:
[[[ oy, +ob)ow av = [[[ pii; 6u, av 6.91)

By conducting same processes to those described in the preceding section, which
resulted in the establishment of the principle of minimum potential energy, Equation
(6.91) can be expressed as follows:

[ i as—[[[ o, oe, av+[[[ pb, 6u, av—[[[ pii, su av=0 " ©92)
So v v v

Considering the existence of time function variables and their derivatives in Equation
(6.92), we can derive the aforementioned equation with respect to time integration (f)
in relation to the presence of time function variables and their derivatives as follows:

TLS cisuds— [[[ o 00, av+ [[[ ob,wav— ([ oii 0 av =0 693
1 s, v v v
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We possess a connection with the periodic integral of the last Equation (6.93).
[ [[[ pi; 6u, avar =[pis, u, av]® — [ [[[ pi; si av e ©94)

Given that the u, function is specified at the time boundary, the first sentence on the
right side of the Equation (6.94) is equal to zero. Therefore:

%ffffp 8 (iit,) dV dtj‘(s %ff i dV

Means:

di = — f 5T di (6.95)

T= % [ f [ o i, av (6.96)

The Equation (6.96) denotes the total kinetic energy of a continuous environment.
Based on Equations (6.94), (6.95), and (6.96), the Equation (6.93) can be restated in
the following manner:

j&T dt—j [[[ 0,85, av ar +j1 a,6u, dS dt—s—] [[[ oo av ar=0 ©97)

Equation (6.97) is the general shape which refers to the mathematical representation
of the equations of motion for any object and is occasionally referred to as the general
form of the Hamilton principle, irrespective of material.

However, in the case of an elastic object, the following is well-established [1]:

_ Ou

L= 6.98
%= g (6.98)

It is important to acknowledge that the Equation (6.98) is contingent upon both elastic
and plastic behavior. In the context of Equation (6.98), “u” represents the density of
strain energy, which can be expressed in terms of linear elastic behavior.

1
u= ECW%% (6.99)
The C,;, represents the fourth-order tensor of elasticity. Given that u = ”(5117' ), the

expression can be simplified as follows:
0,00, =2 s, = bu (6.100)
T Og,

And

M= [[[uav — o= [[[suav=[[[c:e, av (6.101)
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The symbol ]I represents the potential energy associated with the strain. Given the
Equation (6.101) with respect to Equation (6.97), we have the following:

)

[lor =611+ [[ o6u as + [[[ phsu av|a=0 (6.102)
A S v
—év

Let us now establish the definition of potential energy for the specified external
forces, encompassing both the forces applied to the object’s boundary and the physi-
cal force. This can be expressed as follows:

V=W, =W, =—[[osuds—[[[pbsu av (6.103)
s, v

The surface integral S reflects the external forces exerted on the object’s surface,
whereas the volume integral V represents the physical forces. Therefore, when the
Equation (6.96) is supplied, the Equation (6.102) can be derived as follows [27, 28]:

6[*Ldi=6["(T-T1+W,,) di=0 (6.104)

The Lagrangian function is denoted as L in the context of Equation (6.104). The
Equation (6.104) is referred to as the Hamilton principle. The Hamilton principle can
be defined as follows: the integral of the Lagrangian function over the time interval
from ¢, to ¢, is minimized or maximized for all possible real displacements, while
keeping the virtual displacements zero. This condition holds at all points of the object
at times f, and ¢,, as well as on the surface S, where the displacements are specified.

The Hamilton principle, which considers the displacements (ui ( X%y, xs,t)
i=12,3 ) that generate a dynamic trajectory in space, might be subject to alternative
interpretations. The Hamilton principle states that among all possible dynamic paths
that meet the geometric boundary conditions on S, at all times and the conditions
specified at two arbitrary moments ¢, and ¢, at any point in the object, the actual
dynamic path (response) minimizes the Lagrangian function.

6.12.1 UTiLizATIONS OF THE HAMILTON PRINCIPLE

The Hamiltonian principle can be applied to derive equations that govern intricate
structures and engineering problems, encompassing the following [28]:

. Transverse vibration of the springs
. Longitudinal vibration of bars

. Torsion vibration of shafts

. Transverse vibration of the beams
. Vibration of the membranes

. Transverse vibration of plates

. Vibration of the shells

NN N R W~
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In the upcoming chapters, we will explore how the Hamilton principle can be
employed to derive static and dynamic equations that control geometric problems.
An advantage of employing the Hamilton principle is that, along with the governing
equations, it yields all feasible boundary conditions for the problem. These boundary
conditions are selected based on the physics of the problem and the relevant condi-
tions for the boundaries.
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An Introduction to
Smart Materials

7.1 INTRODUCTION

In modern times, different equipment requires materials with diverse qualities that
are suitable for their specific operating conditions. Hence, selecting the appropriate
material for the fabrication of these devices based on their operational circum-
stances is a crucial engineering concern. Currently, over 50,000 different materials
have been identified for the purpose of designing and producing goods in various
industries. These materials span a wide spectrum, ranging from commonly used
substances like copper, zinc, and brass, which have been in use for a long time, to
more advanced materials such as superalloys. Engineering ceramics and composite
materials are classified into separate categories. In order to ensure the appropriate
design of components used in various equipment, it is important to identify the
available materials and select those that possess the ideal qualities for manufac-
turing distinct parts. Over the past few decades, there has been a considerable
rise in the use of industrial materials, including composite materials and function-
ally graded materials (FGM). This increase can be attributed to their exceptional
performance and qualities, as well as their extensive use across many industries.
Hence, this chapter focuses on comprehensively examining the fundamental princi-
ples and core ideas pertaining to composite materials, functionally graded materi-
als (FGM), viscoelastic materials, magnetostrictive materials, dielectric materials,
and metamaterials.

7.2  WHAT ARE SMART MATERIALS?

Smart materials are a class of materials that have the ability to respond to external
stimuli by changing their properties. These materials are designed to exhibit unique
and often complex behaviors, making them highly versatile and adaptable for various
applications. One particular type of smart material that has gained significant atten-
tion is functionally graded materials (FGMs).

Functionally graded materials are a special category of smart materials that pos-
sess a gradual variation in composition, structure, or properties across their volume.
Unlike traditional materials, which have uniform properties throughout, FGMs
exhibit a continuous transition from one material phase to another. This gradient in
properties allows FGMs to possess tailored characteristics that can be optimized for
specific applications.

The concept of functionally graded materials originated from nature itself. Many
biological structures, such as bones and teeth, exhibit a gradual change in compo-
sition and properties, enabling them to withstand different mechanical loads and
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perform specific functions. Inspired by these natural examples, researchers have
developed synthetic FGMs that mimic these gradient structures.

The unique feature of FGMs lies in their ability to combine the desirable proper-
ties of different materials into a single structure. By carefully controlling the com-
position and microstructure, FGMs can exhibit a wide range of properties, including
mechanical, thermal, electrical, magnetic, and optical characteristics. This versa-
tility makes FGMs suitable for a diverse range of applications, from aerospace and
automotive industries to biomedical and energy sectors.

The composition gradient in FGMs can be achieved by various techniques, includ-
ing powder metallurgy, additive manufacturing, casting, and solidification. These
manufacturing methods allow for precise control over the distribution of different
materials within the FGM, resulting in a tailored gradient profile. The choice of
manufacturing technique depends on the specific requirements of the FGM and the
desired properties.

The properties and performance of FGMs are influenced by several factors,
including the composition gradient, microstructure, and processing conditions. The
gradual change in properties across the FGM can lead to enhanced mechanical
strength, improved thermal stability, and increased resistance to wear and corrosion.
Additionally, FGMs can exhibit unique functionalities, such as shape memory effect,
self-healing, and piezoelectricity, which further expand their potential applications.

The applications of FGMs are vast and diverse. In the aerospace industry, FGMs
can be used to design lightweight and high-strength components, such as turbine
blades and structural panels. The gradual change in properties allows for better load
distribution and improved performance under extreme conditions. In the automo-
tive sector, FGMs can be utilized to develop fuel-efficient engines, lightweight body
structures, and advanced braking systems.

The energy and power sector can benefit from FGMs by utilizing their ther-
mal and electrical properties. FGMs can be employed in the design of efficient
heat exchangers, thermoelectric devices, and energy storage systems. In the bio-
medical field, FGMs have the potential to revolutionize tissue engineering and
regenerative medicine. By mimicking the natural gradient structures found in bio-
logical tissues, FGMs can enhance the integration and functionality of implants
and prosthetics.

Despite the numerous advantages offered by FGMs, there are also challenges asso-
ciated with their development and implementation. The design and analysis of FGMs
require advanced modeling and simulation techniques to predict their behavior under
different conditions. Additionally, the characterization of FGMs is a complex task
due to their gradient nature, requiring specialized techniques for microstructural
analysis, mechanical testing, and thermal analysis.

In conclusion, smart materials, particularly functionally graded materials, are a
fascinating class of materials that possess unique properties and behaviors. The grad-
ual variation in composition and properties across the volume of FGMs allows for
tailored characteristics that can be optimized for specific applications. With their
wide range of properties and potential applications, FGMs have the potential to revo-
lutionize various industries and pave the way for innovative technologies.
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7.3 APPLICATIONS OF SMART MATERIALS

7.3.1 BIOMEDICAL APPLICATIONS

Smart materials have revolutionized the field of biomedical engineering, offering
new possibilities for medical devices, implants, and tissue engineering. One of the
key applications is in the development of smart drug delivery systems. These systems
use stimuli-responsive materials to release drugs at specific locations or in response
to specific conditions in the body. This allows for targeted and controlled drug deliv-
ery, minimizing side effects and improving treatment outcomes.

Shape memory polymers (SMPs) have also found applications in biomedi-
cal engineering. They are used in the design of smart implants that can change
their shape and properties in response to body temperature or other stimuli. This
enables minimally invasive surgeries and improves the performance and longevity
of implants.

7.3.2 ENERGY AND POWER APPLICATIONS

Smart materials have the potential to revolutionize the energy and power sector by
improving efficiency, reliability, and sustainability. One of the key applications is in
the development of smart energy storage systems. Smart materials, such as shape
memory alloys and phase change materials, are used to create energy storage devices
that can store and release energy efficiently. These devices have the potential to
enhance the performance of renewable energy systems and enable the widespread
adoption of clean energy sources.

Another important application is in the field of energy harvesting. Smart materials,
such as piezoelectric materials and thermoelectric materials, can convert mechanical
or thermal energy into electrical energy. This opens up new possibilities for power-
ing electronic devices and sensors in remote or inaccessible locations.

7.3.3 OTHER APPLICATIONS

Smart materials have found applications in various other fields as well. In the field
of civil engineering, smart materials are used in the design of smart structures that
can adapt to changing environmental conditions, such as temperature, humidity, and
wind loads. These structures can self-monitor, self-diagnose, and self-repair, leading
to improved safety and durability.

In the field of consumer electronics, smart materials are used in the development
of flexible displays, touch screen, and wearable devices. These materials offer unique
properties, such as flexibility, transparency, and stretchability, enabling the creation
of innovative and user-friendly electronic products.

In conclusion, smart materials have a wide range of applications across different
industries. From aerospace to automotive, biomedical to energy, these materials have
transformed the way we design and develop products. With their unique properties
and capabilities, smart materials continue to drive innovation and open up new pos-
sibilities for the future.
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7.4 ADVANTAGES AND CHALLENGES OF SMART MATERIALS

Smart materials have gained significant attention in various fields due to their unique
properties and capabilities. These materials have the ability to respond to external
stimuli, such as temperature, light, pressure, or electric fields, by changing their
physical or chemical properties. This responsiveness makes them highly versatile
and opens up a wide range of applications in engineering, medicine, and other indus-
tries. However, along with their advantages, smart materials also present certain
challenges that need to be addressed for their successful implementation. In this sec-
tion, we will explore the advantages and challenges associated with smart materials,
with a particular focus on functionally graded materials.

7.4.1 ADVANTAGES OF SMART MATERIALS

7.4.1.1 Enhanced Functionality

One of the key advantages of smart materials is their ability to enhance the function-
ality of a system or device. By incorporating smart materials, engineers can design
systems that can adapt, respond, or self-regulate based on changing conditions.
For example, shape memory alloys (SMAs) can recover their original shape after
deformation, making them ideal for applications such as actuators and sensors. This
enhanced functionality allows for the development of more efficient and intelligent
systems.

7.4.1.2 Improved Performance

Smart materials offer improved performance compared to traditional materials.
For instance, piezoelectric materials can convert mechanical energy into electrical
energy and vice versa, enabling the development of sensors, transducers, and ener-
gy-harvesting devices. The unique properties of smart materials, such as high sen-
sitivity, fast response time, and low power consumption, contribute to the improved
performance of systems and devices.

7.4.1.3 Energy Efficiency

Smart materials can contribute to energy efficiency in various ways. For example,
shape memory alloys can be used in smart building systems to regulate temperature
and reduce energy consumption. Similarly, piezoelectric materials can be employed
in energy harvesting devices to convert mechanical vibrations into electrical energy.
By utilizing the energy conversion capabilities of smart materials, energy-efficient
systems can be developed, leading to reduced energy consumption and environmen-
tal impact.

7.4.1.4 Self-healing and Self-repair

Certain smart materials possess self-healing and self-repair capabilities, which can
significantly extend the lifespan of structures and devices. For instance, self-healing
polymers can autonomously repair minor damages, preventing the need for costly
repairs or replacements. This property is particularly beneficial in applications where
maintenance is challenging or expensive, such as aerospace or offshore structures.
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7.4.1.5 Miniaturization and Integration

Smart materials enable the miniaturization and integration of components, leading to
compact and lightweight systems. This advantage is crucial in industries such as elec-
tronics and aerospace, where size and weight reduction are critical factors. By utilizing
smart materials, engineers can design smaller and more efficient devices, leading to
advancements in portable electronics, wearable technology, and miniaturized sensors.

7.4.2 CHALLENGES OF SMART MATERIALS

7.4.2.1 Cost

One of the primary challenges associated with smart materials is their cost. Many
smart materials, such as shape memory alloys and piezoelectric materials, are rela-
tively expensive compared to traditional materials. The high cost of production and
limited availability of certain smart materials can hinder their widespread adoption
in various industries. However, as research and development continue, the cost of
smart materials is expected to decrease, making them more accessible for commer-
cial applications.

7.4.2.2 Reliability and Durability

Reliability and durability are crucial factors in the successful implementation of
smart materials. Some smart materials may exhibit degradation or fatigue over time,
affecting their performance and lifespan. For example, shape memory alloys can
experience fatigue failure after a certain number of shape memory cycles. It is essen-
tial to understand the long-term behavior and reliability of smart materials to ensure
their safe and efficient operation.

7.4.2.3 Integration and Compatibility

Integrating smart materials into existing systems or structures can be challenging
due to compatibility issues. Smart materials may have different mechanical, thermal,
or electrical properties compared to traditional materials, requiring careful consid-
eration during the design and manufacturing processes. Ensuring proper integra-
tion and compatibility between smart materials and other components is crucial to
achieve the desired functionality and performance.

7.4.2.4 Manufacturing Complexity

Manufacturing smart materials can be complex and require specialized techniques.
Some smart materials, such as functionally graded materials, involve the combina-
tion of different materials with varying properties. Achieving a seamless transition
between different material compositions and maintaining the desired gradient can
be challenging. Developing efficient and cost-effective manufacturing techniques for
smart materials is essential to enable their widespread adoption.

7.4.2.5 Environmental Impact

The environmental impact of smart materials is another important consideration.
Some smart materials may contain hazardous substances or require energy-intensive
manufacturing processes. It is crucial to assess the environmental implications of
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smart materials throughout their lifecycle, from raw material extraction to disposal.
Developing sustainable and environmentally friendly approaches for the production
and use of smart materials is necessary to minimize their impact on the environment.

In conclusion, smart materials offer numerous advantages, including enhanced
functionality, improved performance, energy efficiency, self-healing capabilities,
and miniaturization. However, challenges such as cost, reliability, integration, man-
ufacturing complexity, and environmental impact need to be addressed for their
successful implementation. Overcoming these challenges will pave the way for the
widespread adoption of smart materials in various industries, leading to advance-
ments in technology, sustainability, and quality of life.

7.5 COMPOSITE MATERIALS

Composite materials have been used for a significant period of time. Flower straw
is considered one of the earliest examples of man-made composites. However,
the utilization of sophisticated composites dates back to the 1940s. During that
period, both the American and former Soviet military achieved the production of
epoxy-boron polymer composites for utilization in the aerospace industry, engag-
ing in a fierce competition. After a period of 20 to 30 years, composites became
extensively utilized in various industries including building, transportation, elec-
tronics, oil, and gas, among others. Furthermore, composites have been extensively
utilized in maritime sectors, encompassing the fabrication of boats, ships, and off-
shore installations. Composite materials are formed by combining two or more
materials on a large scale to enhance their technical features in comparison to the
individual components. On a macroscopic scale, the constituents of a composite
material retain their molecular structure and do not create chemical connections
with each other. Contrary to composite materials, certain materials like metal
alloys are formed at a microscopic level. This results in the creation of a uniform
material, which means that metal alloys are not classified as composite materials
when seen on a larger scale.

During the period from 1847 to 1909 AD, advancements in chemistry led to the
development of resins that were well-suited for the production of composite mate-
rials. The fundamental principles of composite materials were established in 1930,
followed by the development of glass fiber-reinforced polyester in 1942 and epoxy
resin—based composite materials in 1946. Over time, several varieties of fields and
reinforcements were employed to manufacture composite materials. In modern
times, composite materials are manufactured with the incorporation of robust and
elongated fibers, resulting in exceptional strength and resistance to deformation
despite their low bulk. Composite materials are very ideal for constructing aircraft
bodies and space equipment due to their ability to reduce the overall mass of the
equipment. This reduction in mass leads to a large increase in the efficiency of
these equipment. Thus far, numerous endeavors have been undertaken to substitute
metals like steel and aluminum with composite materials, aiming to enhance the
performance of metal components while also reducing weight. Composite materi-
als are specifically engineered for various uses by combining two or more distinct
materials and establishing a bond between them. This is done in order to ensure
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that the new material possesses the desired qualities. Composite materials have
been employed in constructing structures that require both high strength and resis-
tance to external loads while also needing to be lightweight. In the design of these
structures, it is crucial to ensure dimensional stability and corrosion resistance,
taking into account the specific operating circumstances. The objective of develop-
ing composite materials is often to attain specific physical qualities that are absent
in pure materials [1].

7.5.1 CHARACTERISTICS OF COMPOSITE MATERIALS

Composite materials have garnered significant attention in various industries due to
their ability to possess desirable properties that are absent in metals, polymers, and
ceramics. Consequently, there is a continuous effort to enhance the performance of
various equipment by optimizing the utilization of composite materials. Composite
materials can enhance various properties through effective design. Some of these
properties include the following:

1. Strong resistance to deformation

2. Superior strength-to-mass ratio

3. Exceptional durability against fatigue and corrosion

4. Versatility in material composition

5. Proficiency in developing composite materials based on specific produc-
tion and assembly requirements

6. Capacity to assimilate energy and dampen vibration

7. Affordable production tools

8. Developing intelligent materials

Some drawbacks of composite materials include the exorbitant cost of raw materials
and the expensive nature of some production and assembly procedures. Composite
materials exhibit reduced strength in the direction orthogonal to the fibers, and under
compressive loading, the composite sheets may experience buckling in the direc-
tion perpendicular to the plane. Polymer composite materials exhibit sensitivity to
temperature, ambient humidity, and flaws resulting from impact loading and layer
separation. Composite material parts present greater challenges in terms of repair
compared to metal parts.

7.5.2  AppLICATION OF COMPOSITE MATERIALS

Composite materials are extensively utilized in numerous industries due to their
diversified qualities and the capacity to achieve desired engineering characteristics.
Considerable study has been conducted in the domain of composite materials, with
the aim of enhancing our understanding of these materials and their potential as via-
ble alternatives to other materials in many applications. The utilization of composite
materials may be observed in several sectors, such as military and aerospace indus-
tries, automobile industries, sports industries, marine industries, civil and building
structures, industrial parts, and medicine.
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The aerospace industry has a longer history of utilizing composite materials com-
pared to other industries. This is mostly due to the significant advantage of reduc-
ing the weight of aircraft and enabling them to achieve greater heights and speeds.
Composite materials incorporating glass, carbon, and Kevlar fibers are frequently
employed in the design and production of diverse aircraft components (Figure 7.1 (a)).
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The utilization of composite materials in mass production of car parts has been
driven by several key factors. These include the ability to produce parts with desired
surface finishes, achieve the necessary strength while reducing weight, and enhance
corrosion resistance. Additionally, the use of composite materials in marine indus-
tries has been motivated by their lightweight nature, improved efficiency, and fuel
reduction. The utilization of composite materials in the construction industry has
garnered significant interest due to its ability to withstand earthquakes and environ-
mental variables. Previously, bridges have utilized plastics that are strengthened with
glass or carbon fibers for constructing some components. These materials are exten-
sively utilized in the production of industrial parts due to their ability to be tailored
to specific working circumstances.

7.5.3 THE CLASSIFICATION OF COMPOSITE MATERIALS

Composite materials are often classified into four main groups, as outlined by
Jones [2]:

Fiber composite materials are a type of material
Materials composed of many layers

Materials composed of particles

Composite materials featuring a unified structure

Rl S e

7.5.4 FiBeR COMPOSITE MATERIALS

Fiber composite materials are composed of a substrate material that is strengthened
by strands of fibers. Fiber composite materials can be composed of polymer, metal,
or ceramic components, referred to as polymer composite materials, metal composite
materials, and ceramic composite materials, respectively. Typically, these materi-
als exhibit reduced density, tensile strength, and durability in comparison to fiber
strands. The primary roles of the fibers are as follows:

* Resilience to external influences
* Inducing the ability to withstand changes in shape
* Generating robustness and establishing structural integrity

7.5.5 ENHANCEMENTS OF FIBER COMPOSITE MATERIALS

Typically, polymer composite materials incorporate glass, carbon, and polymer fibers
to enhance their technical characteristics. The subsequent text provides a description
of the characteristics of the aforementioned materials.

7.5.5.1 Glass Fibers

These fibers are formed by the flow of molten glass material, driven by gravity,
through the perforations of the mold. The fibers are then rapidly cooled to solid-
ify. The diameter of the fibers is calculated based on the dimensions of the mold
hole. Once the fibers are produced, a coating is applied to their surfaces to establish
favorable circumstances for bonding the fibers to the substrate material, so creating
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composite materials. Glass fibers are extensively utilized in various composite struc-
tures due to their exceptional properties such as high flexibility, tensile strength,
corrosion resistance, and fatigue resistance.

7.5.5.2 Carbon Fibers

These fibers are commonly employed in a variety of structures, particularly in aero-
space applications, because of their high tensile modulus and strength. This results
in suitable dimensional stability and their lightweight nature, which is advantageous
compared to glass fibers. Carbon fibers are manufactured by subjecting carbon oxide
polymer strands to high temperatures, followed by carbonization. Carbon fibers are
utilized when glass fibers are unsuitable for reinforcing polymer materials due to
their higher cost. Carbon fibers offer superior strength and lower volumetric mass,
making them the preferred choice in such cases.

7.5.5.3 Polymer Fibers

In order to generate these fibers, the initial substance is liquefied and then forced
into a mold to form the intended diameter of the fiber. Subsequently, once it exits
the mold, the material is cooled down. Polymers consist of molecular chains, and
their orientation occurs when they travel through a mold. This process greatly
enhances the qualities of the polymer fibers in a specific direction. Kevlar is the
most significant polymer fiber due to its superior tensile strength to volume ratio
in comparison to other fibers. Other notable qualities of this product include
exceptional resistance to impact and a negative coefficient of thermal expan-
sion. The user’s text is a single period. Some drawbacks of Kevlar polymer fibers
include a relatively low working temperature (about 100 degrees Celsius), diffi-
culty in cutting and machining, and weaker compressive mechanical qualities
compared to its tensile strength. These fibers are less expensive than carbon
fibers and more costly than glass fibers. Polymer materials can be classified into
two distinct categories: thermoset materials and thermoplastic materials, each
possessing unique features.

7.5.6  ComproOSITE MATERIALS CONSISTING OF MANY LAYERS

This composite material is composed of a minimum of two layers of distinct mate-
rials that are joined together in a way that imparts desirable qualities to the final
material, in comparison to the individual layers (Figure 7.2). The objective of devel-
oping layered composite materials is to enhance several material properties, includ-
ing strength, deformation resistance, weight reduction, corrosion resistance, wear
resistance, thermal properties, and surface polish. Layered composite materials can
incorporate fiber materials, which introduces more design variables and allows for
the creation of many properties.

7.5.7  PArTICULATE COMPOSITE MATERIALS

Occasionally, in order to enhance the characteristics of the material, one may intro-
duce one or more varieties of particles from different materials into the domain.
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FIGURE 7.2 Schematic of the composite material reinforced with continuous fibers in a
layered structure.

The particles and backdrop can have either metallic or non-metallic properties.
The addition of sand particles to cement to create concrete for building construction
is an instance of reinforcing a non-metallic substance with non-metallic particles,
hence, enhancing the compressive strength of the composite material.

7.5.8 ComprosITE MATERIALS BY COMBINING DIFFERENT ELEMENTS

Occasionally, a composite material is created by combining two or three previously
discussed forms of composite materials. In such cases, there are numerous factors
to consider when designing the composite material for a particular purpose. When
constructing multilayer composite materials, it is possible to use fibrous composite
materials for each layer. In this case, the type of constituent materials, the orientation
of the fibers, and the volume percentage of the fibers can be altered in relation to the
adjacent layer. This allows for the creation of different desired properties in different
directions.

7.5.9 THe COMPOSITION OF THE MATERIAL

Composite materials, comprising many materials, have superior engineering quali-
ties compared to conventional materials, such as metals. Composite materials have
the potential to enhance several features such as stiffness, strength, weight reduction,
corrosion resistance, thermal properties, and fatigue life. Composite materials typi-
cally comprise two components: fibers, which serve as the reinforcing material, and
a matrix material, which forms the base (see Figure 7.3). The matrix material serves
the purpose of binding the fibers together, as well as facilitating the transfer of loads
and safeguarding the fibers against elongation caused by the environment [3].
Composite materials often exist in three distinct forms:

1. Fiber composites consisting of fibers made from one material embedded in
a matrix material made from another substance.

2. Particulate composites consist of a mixture of particles of large size embed-
ded in a matrix material.
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FIGURE 7.3 Schematic of the constituent elements of composite materials.

3. Multilayer composites consist of multiple layers of diverse materials,
encompassing the first two types of composites. There will be four poten-
tial combinations: metal within non-metal, non-metal within metal, non-
metal within non-metal, and metal within metal.

7.5.10 MurtipLE LAYERS

A fiber-reinforced layer comprises many fibers that are embedded in a matrix,
which may contain a metal like aluminum or a non-metal like a thermoplastic
polymer. Fibers can exhibit characteristics such as continuity, discontinuity, wav-
iness, parallelism, non-parallelism, or random distribution. The identification of
each layer in the multilayer structure can be determined based on its position,
material composition, and angle of orientation with respect to the reference axis
(in this case, the x-axis), as illustrated in Figure 7.4. The orientation of each layer
is indicated by its angle and is distinguished from other layers by a forward slash (/).
A multilayer refers to a collection of layers that are specifically designed to possess
the necessary level of stiffness and strength. For instance, the layer that is strength-
ened with fibers of the same orientation can be arranged in a manner where the
fibers in each layer are either aligned in the same direction or in varying directions
(as shown in Figure 7.5). The layers are typically fused together within a homoge-
neous matrix material. A multilayer with fibers oriented at 30 or 45 degrees in the
lamination direction can generate shear loads [2].

7.5.11 StuDpY OF THE MECHANICAL PROPERTIES AND BEHAVIOR OF
CoMPOSITE MATERIALS

Composite materials exhibit distinct mechanical properties in comparison to
their individual constituent materials, necessitating the use of analytical and lab-
oratory techniques for their evaluation. The majority of engineering materials
are characterized by their homogeneity and isotropy, which can be defined as
follows:

1. Homogeneous material has consistent properties across its entirety so that the
properties are defined at every place and are not influenced by its position.
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7

FIGURE 7.5 The composite laminate consisting of layers that include fibers oriented in dif-
ferent directions.

2. An isotropic material exhibits uniform qualities in all directions at every
place within the material, meaning that the properties at each point are not
influenced by the direction.

The majority of composite materials exhibit heterogeneous properties, resulting in
non-uniform qualities that vary based on the material’s position. Conversely, com-
posite materials exhibit anisotropic behavior, meaning that their properties vary
depending on the direction at each point within the material. Materials can exhibit
four different types of anisotropic behavior.

7.5.11.1 Material Exhibiting Perfect Anisotropy

Matter exhibits varying qualities at different points and in different directions, lack-
ing any plane of symmetry for these properties.

7.5.11.2 Material with a Monoclinic
Non-anisotropic materials exhibit symmetry with respect to a plane.
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7.5.11.3 Orthotropic Materials

An orthotropic substance refers to a material that has different mechanical properties
in different directions.

7.5.11.4 Transverse Isotropic Material
At a specific location within the material, its properties vary along three perpendic-
ular directions. However, the material’s qualities exhibit symmetry when observed
from three perpendicular planes.

A transversely isotropic material is a type of material that exhibits the same
mechanical properties in all directions perpendicular to a certain axis.

A material is considered transversely isotropic if its properties remain consistent
in all directions within a plane, when defined at the anisotropic point.

Composite materials can be investigated from two perspectives based on their
heterogeneous and anisotropic qualities.

1. The composite material’s behavior is analyzed from a microscopic per-
spective, taking into account the qualities of its components and their
interaction.

2. The macroscopic perspective is employed to analyze composite
materials by seeing them as a continuous environment. This allows
us to describe the behavior of the composite material as if it were a
homogeneous material, exhibiting identical behavior to the composite
material [2].

7.5.12 ATTRIBUTES OF A LAYER THAT IS ALIGNED IN A SINGLE DIRECTION

An orthotropic material is formed by a reinforced layer with fibers that are positioned
in a way that the symmetry planes of the material are parallel and perpendicular to
the direction of the fibers. The material x_1 is aligned with the fibers, x_2 is per-
pendicular to the fibers, and x_3 is perpendicular to the composite layer. The char-
acteristics of the orthotropic material in a composite layer are determined through
appropriate laboratory experiments or theoretical approaches. The micromechanical
approach, also known as the theoretical approach, is employed to calculate the engi-
neering constants of fiber-reinforced composite materials. This method relies on the
following assumptions:

—

The matrix and fibers exhibit perfect adherence.

2. The fibers exhibit parallel alignment and are evenly dispersed.

3. The matrix is devoid of micro-cracks and does not possess any initial
tension.

4. Both fibers and matrix exhibit isotropy and behave in accordance with
Hooke’s law.

5. The applied loads are either parallel or perpendicular to the direction of

the fibers.
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Based on these postulates, the modulus and Poisson’s ratio of a material rein-
forced with fibers can be expressed in relation to the modulus of elasticity,
Poisson’s ratio, and volume fraction of the structural materials in the following
manner:

ID = pfvf +pm‘/m (71)
Ell = Efvf +Em‘/m (72)
v, =E\V, +E,V, (7.3)

EE,
E,=—/" (7.4)
EV,+E,V,
G,G,
G,=—tm (7.5)
GV, +G,V,

E,, represents the longitudinal modulus, E,, represents the transverse modulus,
v, and v,, represent Poisson’s ratio, and G,,, G,;, and G,, represent the shear
modulus for the x, x,, x, x;, and x, x, planes, respectively. In Equations (7.1) to
(7.5), the subscripts f and m denote the distinct characteristics of the orthotropic
layer, specifically the fiber (reinforcing phase) and matrix (ground phase) fea-
tures, respectively. Furthermore, the symbol p denotes the mass density of the
layer. Additionally, v, and v, are used to determine the volume fraction of each
material. These volume fractions are related by the equation v, +v, =1 and can
be expressed as follows:

G ——tr G o (1.6)
T3y, O T A -

The engineering parameters E, , E,,, E.;, G,,, G5, V,,, V3, and v,, for an orthotropic
material can be found by experimental methods.

7.5.13 StupY OF STRUCTURAL EQUATIONS IN LINEAR ELASTICITY

When formulating the fundamental connections of a composite layer, the assumption
is made that plastic deformations are not taken into account.

1. The composite layer is uninterrupted, meaning there are no gaps.
2. The composite layer exhibits the characteristics of a linear elastic material.

Composite materials are intrinsically heterogeneous, and the properties of the com-
posite material are derived from the mean weight of the structural constituents (fibers
and matrix). Structural equations establish the relationship between stresses and
strains in the theory of elasticity. Linear elasticity is the most basic type of structural
equations, encompassing Hooke’s law as a broader concept. If we assume that the
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stresses are directly proportional to the strains, the linear elastic structural equations
can be expressed in the following generic form:

Ull Cllll CIIZZ CII33 C1112 C1113 C1123 Ell
0—22 C221 1 C2222 C2233 C221 2 C221 3 C2223 622
033 C3311 C3322 C3333 C3312 C3313 C3323 83’5 (7 7)
0—12 C1211 C1222 C1233 C1212 C1213 C1223 612
0-13 C131 1 Cl 322 CI 333 C13 12 C1313 Cl 323 813
023 C231 1 C2322 C2333 C23 12 C23 13 C2323 623
Alternatively, it might be stated in a suggestive manner as follows:
0; = Cyty (7.8)

The variables v,, represent the stress components, while €,, represent the strain com-
ponents. C,, represents the material coefficients that are determined in orthogonal
Cartesian coordinates, as stated by Reddy [3]. The set of 36 C,, coefficients are
referred to as elastic constants and are required to be determined for every material.
Various theories have been proposed to decrease the quantity of elastic constants
in structural equations. Typically, in linear elastic analysis, it is assumed that the
constituent matrix C is symmetric. By making this assumption, the total number of
constants is decreased to 21. The number can be further decreased if the material
qualities exhibit symmetry in specific planes. For instance, if the properties of the
materials in plane 1-2 exhibit symmetry, it can be demonstrated that the matrix C
takes on a certain form consisting of 13 independent coefficients.

Y Cii Cim Gz Gy O 0 |le,
Op Con Cup Gy Gy 0 0 |lex
033 Con Cin Gy Gy 0 0 |]&s (79)
O Con Co Cuy Gy, 0 0 |le,
O3 0 0 0 0 Cs; Caylles
Oy 0 0 0 0 Cuiy Couyllen

An orthotropic material is characterized by symmetrical material properties in all
three coordinate planes, resulting in a total of nine constants. Wood typically exhib-
its orthotropic behavior. The fundamental equations for an orthotropic material are
often formulated in the following manner:

011 Cllll C1122 Cll33 0 O 0 Ell
022 C221 1 C2222 C2233 0 0 0 622
033 C3311 C3322 C3333 0 O 0 533 (710)
o, 0 0 0o ¢,, O 0 |ley
o 0 0 0 0 Cus 0 ||es
0, 0 0 0 0 0 Conllen
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In conclusion, if the characteristics of the material are the same in all direc-
tions, it is referred to as isotropic. In this case, just two separate constants are
needed to describe the structural equations. The constants are referred to as E,
which represents the modulus of elasticity, and v, which represents Poisson’s ratio.
Structural equations establish a correlation between stress and strain at a cer-
tain location. If the structural equations remain constant throughout the mate-
rial, it is referred to as homogeneous. Otherwise, if the structural equations vary
between different points in the material, it is considered heterogeneous. Typically,
in the context of linear elasticity problems, it is commonly believed that materials
exhibit homogeneity and isotropy. Consequently, the characteristics of materials
are typically explained based on the constant values of E and v, which apply uni-
formly throughout the solid.

7.6 FUNCTIONALLY GRADED MATERIALS (FGM)

FGMs, or functionally graded materials, are a type of advanced composites. The
concept of functionally graded materials (FGM) was initially proposed in 1984 by
a cohort of Japanese scientists with the aim of developing heat protective materials.
Subsequently, FGM has garnered significant attention and interest as a material for
heat shielding purposes. The materials are acquired by the process of powder metal-
lurgy, which involves the combination of two or more materials [4].

Local stress concentration can occur due to a sudden alteration in the composition
and structure of materials and mechanical systems. This concentration of stress can
be generated by either internal or external loading. By eliminating abrupt alterations
in the structure and modifying the intensity of these variations, it is evident that the
level of stress concentration is significantly diminished. Targeted materials have a
remarkable capacity to enhance the thermomechanical properties of materials. Here
are some techniques for enhancing the thermomechanical characteristics of materi-
als using functionally graded materials (FGMs):

—

. It minimizes thermal stresses and regulates their occurrence.

2. The plasticization point and failure point can be postponed for a given ther-
momechanical force.

3. Reducing the intensity of stress, particularly at the outside margins of the
body, and completely removing it at the frontiers.

4. Enhancing the strength of connections between different materials, such as
metal and ceramic, by establishing gradients.

5. To achieve the highest force necessary for crack propagation at the joint bor-

der, it is possible to enhance this by establishing a gradient in the mechani-

cal characteristics of the material.

7.6.1 FGM DEFINITIONS

1. An FGM, or functionally graded material, is a material that exhibits a
varying composition, structure, and engineering properties in a specific
direction. This gradient is intentionally designed to enhance the material’s
engineering properties, making it superior to a homogenous material [5].
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2. A substance that exhibits continuous or progressive variations in its quali-
ties or performance in one or more directions.

3. FGMs, or functionally graded materials, are highly sophisticated compos-
ites engineered at a microscopic level to exhibit spatial and progressive vari-
ations in their material properties.

FGMs, or functionally graded materials, consist of a combination of ceramic and
metal components. The specific benefits of using each of these elements, as well
as the rationale for incorporating them into the structure of a desired material, are
detailed in Table 7.1 [6].

Ceramics possess a high heat transfer coefficient and excellent heat resistance,
allowing them to endure extremely high temperatures. Additionally, the presence
of a metal framework in these materials contributes to their required flexibility.
The utilization of both ceramic and metal enables seamless transitions between
different levels of the construction. These materials were initially developed to
create thermal shields in different structures and industries. Their key character-
istic is their ability to endure extremely high temperatures, reaching up to approx-
imately 2,500 degrees Celsius. Additionally, they exhibit resistance to significant
temperature variations, corrosion, and abrasion. Furthermore, their metal composi-
tion grants them exceptional durability. There is no text provided. These materials
have a significant impact on the construction of important structures, defense, and
sophisticated industries.

FGM materials have microscopic heterogeneity, and their alterations occur gradu-
ally through the manipulation of the volume ratio between two constituent materials.
Consequently, the mechanical properties of the structure undergo a continuous and
gradual change from one side to the other. This eliminates the issues of incompati-
bility between metal and ceramic at their shared surface, such as warping in layered
composites. Warping occurs when there is a sudden change in tension at the interface
between the materials. The manufacture of FGM materials can utilize a variety of
materials, including stainless steel, zirconia, nickel, silicon, nitride, titanium, tung-
sten, and copper.

TABLE 7.1
Materials that Are Specifically Composed of Metal and Ceramic

Property

High-temperature surface Pure ceramic High thermal resistance
Good anti-oxidation properties
Low heat capacity
Low-temperature surface Pure metal High toughness and mechanical strength
High thermal conductivity
High fracture toughness
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7.6.2 DEFINITION AND CHARACTERISTICS OF FUNCTIONALLY GRADED MATERIALS

Functionally graded materials (FGMs) are a class of smart materials that exhibit
unique properties and characteristics, making them highly versatile and suitable for
a wide range of applications. Unlike traditional materials, which have uniform prop-
erties throughout, FGMs are designed to have a gradual variation in composition,
structure, or properties across their volume. This gradual variation allows FGMs to
possess tailored properties that can be optimized for specific applications.

7.6.2.1 Composition and Structure

The composition and structure of functionally graded materials play a crucial role in
determining their properties and performance. FGMs are typically composed of two or
more different materials, such as metals, ceramics, polymers, or composites, which are
combined in a controlled manner. The composition of the materials varies gradually from
one end of the material to the other, resulting in a continuous transition of properties.

The structure of FGMs can be classified into two main types: continuous and
graded. In continuous FGMs, the composition changes smoothly and continuously
from one end to the other, without any distinct interfaces between the different mate-
rials. Graded FGMs, on the other hand, have distinct layers or regions with different
compositions, resulting in a stepwise change in properties.

7.6.2.2 Tailored Properties

One of the key advantages of functionally graded materials is their ability to exhibit
tailored properties. By carefully designing the composition and structure, FGMs can
possess a wide range of properties, including mechanical, thermal, electrical, mag-
netic, and optical properties. This tailoring of properties allows FGMs to meet spe-
cific requirements and perform optimally in various applications.

For example, in structural applications, FGMs can be designed to have a gradi-
ent in mechanical properties, such as stiffness or strength, to optimize load-bearing
capabilities. In thermal management applications, FGMs can be engineered to have
a gradient in thermal conductivity, enabling efficient heat transfer across different
regions. Similarly, in electrical or magnetic applications, FGMs can be tailored to
exhibit varying electrical or magnetic properties, respectively.

7.6.2.3 Gradient Control

The control of the gradient in functionally graded materials is a critical aspect of
their design and manufacturing. The gradient can be controlled by adjusting the com-
position, structure, or processing parameters during fabrication. Various techniques,
such as powder metallurgy, additive manufacturing, casting, and solidification, can
be employed to achieve the desired gradient.

The control of the gradient allows for precise tuning of the properties along the
material’s length or across its volume. This control can be achieved by adjusting
the composition ratio, the thickness of the layers, or the processing conditions. The
ability to control the gradient enables the customization of FGMs for specific appli-
cations, ensuring optimal performance and functionality.
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7.6.3 ADVANTAGES OF FUNCTIONALLY GRADED MATERIALS

Functionally graded materials offer several advantages over conventional materials,
making them highly desirable for a wide range of applications. Some of the key
advantages include the following:

1. Tailored properties: FGMs can be designed to possess specific properties,
allowing for optimal performance in various applications.

2. Improved functionality: The tailored properties of FGMs enable them to
perform multiple functions simultaneously, reducing the need for multiple
materials or components.

3. Enhanced performance: The gradual variation in properties across FGMs
can improve their overall performance, such as increased strength, improved
thermal stability, or enhanced wear resistance.

4. Reduced stress concentration: The gradual transition in properties helps to min-
imize stress concentration at interfaces, reducing the risk of failure or damage.

5. Design flexibility: FGMs offer greater design flexibility compared to con-
ventional materials, as their properties can be customized to meet specific
requirements.

6. Cost-effectiveness: FGMs can potentially reduce material and manufactur-
ing costs by eliminating the need for multiple materials or complex assem-
bly processes.

7.6.3.1 Challenges of Functionally Graded Materials

While functionally graded materials offer numerous advantages, they also present
certain challenges that need to be addressed during their design, manufacturing, and
application. Some of the key challenges include the following:

1. Material compatibility: The selection and compatibility of different materi-
als used in FGMs can be challenging, as they need to have similar thermal
expansion coefficients and chemical compatibility to avoid delamination or
degradation.

2. Manufacturing complexity: The fabrication of FGMs can be complex and
require specialized manufacturing techniques, such as additive manufactur-
ing or powder metallurgy, which may increase production costs.

3. Quality control: Ensuring consistent and uniform properties throughout the
FGMs can be challenging, as any variations in composition or structure can
affect their performance.

4. Limited understanding: Despite extensive research, there are still gaps in
our understanding of the behavior and performance of FGMs, making their
design and analysis a challenging task.

5. Scale-up and commercialization: Scaling up the production of FGMs and
integrating them into commercial applications can be a significant chal-
lenge, requiring further research and development.

Despite these challenges, the unique properties and advantages offered by function-
ally graded materials make them a promising class of smart materials with immense



228 Nonlinear Vibration of Smart Continuous Structures

potential for various engineering applications. Continued research and development
in this field will further enhance our understanding and utilization of FGMs, opening
up new possibilities for advanced materials design and innovation.

7.6.4 MANUFACTURING TECHNIQUES FOR FUNCTIONALLY GRADED MATERIALS

Functionally graded materials (FGMs) are a class of smart materials that exhibit vary-
ing properties and composition across their structure. These materials are designed
to have a gradual transition in their composition, allowing for a seamless integration
of different materials with distinct properties. The manufacturing techniques used to
create functionally graded materials are crucial in achieving the desired properties
and performance.

7.6.4.1 Powder Metallurgy

Powder metallurgy is a widely used manufacturing technique for functionally graded
materials. It involves the mixing of powders with different compositions and prop-
erties, followed by compaction and sintering processes. The powders are carefully
selected to achieve the desired composition gradient, and the compaction process
ensures uniform distribution of the powders. Sintering then facilitates the bonding
of the particles, resulting in a solid structure with a gradual change in composition.

Powder metallurgy offers several advantages for manufacturing functionally
graded materials. It allows for precise control over the composition gradient, enabling
the design of materials with tailored properties. Additionally, it enables the incorpo-
ration of different materials, such as metals, ceramics, and polymers, into a single
structure. The flexibility of powder metallurgy makes it suitable for a wide range of
applications, including aerospace, automotive, and biomedical fields.

7.6.4.2 Additive Manufacturing

Additive manufacturing, also known as 3D printing, has emerged as a promising
technique for manufacturing functionally graded materials. This technique involves
the layer-by-layer deposition of materials to create complex structures with varying
composition and properties. Additive manufacturing offers the advantage of high
precision and the ability to create intricate designs that are difficult to achieve using
traditional manufacturing methods.

In the context of functionally graded materials, additive manufacturing allows for
the precise control of the composition gradient. Different materials can be deposited
in specific regions, resulting in a seamless transition between them. This technique
also enables the incorporation of functional features, such as embedded sensors or
actuators, within the structure of the material. Additive manufacturing has found
applications in various industries, including aerospace, automotive, and electronics.

7.6.4.3 Casting and Solidification

Casting and solidification techniques are commonly used for manufacturing func-
tionally graded materials, particularly in the production of metal-ceramic compos-
ites. These techniques involve the controlled solidification of a molten mixture of
different materials to create a graded structure. The composition gradient is achieved
by controlling the cooling rate and the distribution of the materials within the mold.
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Casting and solidification techniques offer several advantages for manufacturing
functionally graded materials. They allow for the production of large and complex
structures with a continuous composition gradient. The process can be easily scaled
up for mass production, making it suitable for industrial applications. However, the
control over the composition gradient may be limited compared to other manufac-
turing techniques.

7.6.4.4 Joining and Bonding Techniques

Joining and bonding techniques are essential for creating functionally graded materi-
als by combining different materials with distinct properties. Various methods, such
as welding, brazing, and adhesive bonding, can be employed to achieve a seamless
integration of materials. The choice of joining technique depends on the materials
involved and the desired properties of the final product.

Welding is commonly used for joining metals in functionally graded materials. It
involves the fusion of the materials at high temperatures, resulting in a strong bond.
Brazing, on the other hand, uses a filler material with a lower melting point to join the
materials. Adhesive bonding utilizes adhesives to create a bond between the materi-
als. These joining techniques allow for the creation of functionally graded materials
with tailored properties and performance.

7.6.4.5 Hybrid Manufacturing Techniques

Hybrid manufacturing techniques combine multiple manufacturing processes to
create functionally graded materials. These techniques leverage the advantages
of different methods to achieve the desired composition gradient and properties.
For example, a combination of additive manufacturing and powder metallurgy
can be used to create complex structures with precise control over the composi-
tion gradient.

Hybrid manufacturing techniques offer enhanced flexibility and control over the
manufacturing process. They allow for the integration of different materials and the
creation of intricate designs. However, these techniques may require more complex
equipment and processes, making them suitable for specialized applications.

In conclusion, the manufacturing techniques for functionally graded materials
play a crucial role in achieving the desired properties and performance. Powder
metallurgy, additive manufacturing, casting and solidification, joining and bonding
techniques, and hybrid manufacturing techniques offer different advantages and
capabilities. The choice of manufacturing technique depends on the specific require-
ments of the application and the desired composition gradient.

7.6.5 PROPERTIES AND PERFORMANCE OF FUNCTIONALLY GRADED MATERIALS

Functionally graded materials (FGMs) are a class of smart materials that exhibit
unique properties and performance characteristics. These materials are designed to
have a gradual variation in composition, microstructure, or properties across their
volume, resulting in a seamless transition from one material to another. This gradual
variation allows FGMs to possess tailored properties that can be optimized for spe-
cific applications.
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7.6.5.1 Composition and Microstructure

The composition and microstructure of functionally graded materials play a crucial
role in determining their properties and performance. FGMs are typically composed
of two or more different materials, such as metals, ceramics, polymers, or compos-
ites, which are carefully selected based on their desired properties. The composition
gradient can be achieved by varying the ratio or concentration of these materials
along a specific direction.

The microstructure of FGMs can also vary gradually, leading to changes in grain
size, phase distribution, or porosity. These microstructural variations can signifi-
cantly influence the mechanical, thermal, and electrical properties of the material.
By controlling the composition and microstructure, FGMs can be tailored to exhibit
specific characteristics, such as enhanced strength, improved thermal stability, or
superior electrical conductivity.

7.6.5.2 Mechanical Properties

One of the key advantages of functionally graded materials is their ability to exhibit
a wide range of mechanical properties. By carefully designing the composition gra-
dient, FGMs can achieve a seamless transition from one material with high strength
and stiffness to another with high toughness and ductility. This unique property gra-
dient allows FGMs to withstand varying mechanical loads and provide improved
resistance to fatigue, fracture, and wear.

The mechanical properties of FGMs can be further enhanced by optimizing the
microstructure. For example, controlling the grain size distribution can improve the
material’s strength and hardness, while introducing specific phases or reinforcements
can enhance its toughness and impact resistance. These tailored mechanical proper-
ties make FGMs suitable for a wide range of applications, including structural com-
ponents, load-bearing parts, and protective coatings.

7.6.5.3 Thermal and Electrical Properties

Functionally graded materials also exhibit exceptional thermal and electrical prop-
erties due to their composition and microstructure gradients. The gradual variation
in material composition allows FGMs to have a controlled thermal expansion coeffi-
cient, which can reduce thermal stresses and improve thermal stability. This property
is particularly advantageous in high-temperature applications where thermal mis-
match can lead to premature failure.

Moreover, FGMs can possess unique electrical conductivity characteristics.
By incorporating conductive materials in the composition gradient, FGMs can
exhibit varying electrical conductivity along their length. This property can be
utilized in applications such as electrical contacts, sensors, or electromagnetic
shielding.

7.6.5.4 Durability and Reliability

The properties and performance of functionally graded materials contribute to their
overall durability and reliability. The tailored mechanical, thermal, and electrical
properties of FGMs allow them to withstand harsh operating conditions, such as high
temperatures, corrosive environments, or dynamic loading. The gradual variation in
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material composition and microstructure also reduces the likelihood of stress con-
centration and material degradation, enhancing the material’s overall reliability.

However, it is important to note that the performance of FGMs can be influenced
by factors such as manufacturing defects, material degradation over time, and environ-
mental exposure. Therefore, proper design, characterization, and testing are essential
to ensure the long-term durability and reliability of functionally graded materials.

7.6.5.5 Performance Optimization and Design Considerations

To fully exploit the properties and performance of functionally graded materials,
careful consideration must be given to their design and optimization. The selection of
appropriate materials, composition gradients, and microstructural variations should
be based on the specific requirements of the intended application. Computational
modeling and simulation techniques can aid in predicting the material’s behavior and
optimizing its performance.

Furthermore, the manufacturing process plays a crucial role in achieving the
desired properties and performance of FGMs. The choice of manufacturing tech-
nique, such as additive manufacturing, powder metallurgy, or casting, can influence
the material’s microstructure and properties. Therefore, a comprehensive under-
standing of the manufacturing techniques and their impact on the material’s perfor-
mance is essential for successful FGM fabrication.

In conclusion, functionally graded materials possess unique properties and perfor-
mance characteristics due to their composition and microstructure gradients. These
materials offer tailored mechanical, thermal, and electrical properties, making them
suitable for a wide range of applications. However, careful design, optimization, and
manufacturing considerations are necessary to fully exploit the potential of function-
ally graded materials and ensure their durability and reliability.

When utilizing FGM materials, it is imperative to express the relationships that
govern this specific type of materials in mathematical equations and incorporate
them into the computations. Hence, it is imperative to initially elucidate the clas-
sifications of these materials from a mathematical perspective. The majority of
researchers employ power functions, exponential functions, or hyperbolic functions,
all of which will be analyzed in the next sections. To fulfill this objective, let us
examine a rectangular piece as depicted in Figure 7.6. The image illustrates that the

E=£E(z), v=1viz)

E

o

FIGURE 7.6 Displaying the physical properties of a functionally graded material (FGM) sheet.
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x and y coordinates determine the plane of the sheet, while the z coordinate indicates
the central plane of the sheet in the direction of its thickness. The upper and bottom
sides of the sheet have distinct material properties, including differing elastic moduli
and Poisson’s ratios. These qualities only vary in the direction perpendicular to the
surface, specifically in the z-coordinate direction (wWhere z=h/2 and z=—h/2). A sheet
with a specific focus is referred to as a targeted sheet, also known as FGM (focused
growth matrix).

Delale and Erdogan [7] have demonstrated that the influence of Poisson’s ratio
on the deformation of the sheet is significantly smaller compared to the effect of
elastic modulus. However, it is possible to consider Poisson’s ratio as a constant,
while other parameters such as density, Young’s modulus, and the coefficient of
thermal expansion are taken into account. The direction of sheet thickness was
presumed to be changeable. These alterations can manifest as one of the following
functions.

7.6.6  MATERIAL ATTRIBUTES MODELED As A POwer FuncTtioN (P-FGM)

The volume percent of the target plane is defined as follows [8, 9]:

1 z)
7)=|=-+— 7.11
g(z) [2 h] (7.11)
Regarding this matter, p represents one of the material’s properties, while h denotes
the material’s thickness. Thus, the material properties can be represented by a combi-
nation of volume fraction and process properties. Thus, the elastic modulus is deter-
mined by applying the law of combination of characteristics in the following manner:

E(z)=¢(2)E, +[1-¢(2)|E, (7.12)

In the earlier connection, E represents the elastic modulus of the metal at the low-
est level of the FGM sheet (z=—//2), whereas E_ represents the elastic modulus of
the ceramic at the highest level of the FGM sheet (z = —h/2). The variations in the
elastic modulus across the thickness of the target plate, as influenced by the power
distribution, are illustrated in Figure 7.7. It is imperative to clarify that in the afore-
mentioned relationship, the temperature is assumed to be constant, which is a fun-
damental assumption underlying the obtained results. This diagram illustrates that
the elastic modulus for p > I in the vicinity of the upper surface of the sheet under-
goes rapid changes. In other words, the characteristics of a significant portion of the
sheet’s core thickness tend to align with those of the upper surface. Conversely, for
p < I near the lower surface of the sheet, this tendency tends to be reversed.

7.6.7 S-sHAPED FUNCTIONALLY GRADED MATERIAL

At the scenario when a sheet is made up of multiple composite layers and the power
distribution function is defined by Equation (7.12), there is a presence of stress
concentration at one of the joint surfaces. This occurs specifically in areas where
the material is continuous yet undergoes quick changes. Chung and Chi [10] have
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FIGURE 7.7 Diagram of the variations in the elastic modulus of a P-FGM plate.
established a volume fraction by employing two power functions to guarantee the

evenness of stress distribution across all joint surfaces. The definitions of these two
power functions are as follows:

P

gl(z)zl—%[l—%], for 0<z<h/2 (7.13)
1, 2z)

gz(z)ZE 1==5|s for=h/2<2<0 (7.14)

The elastic modulus of the sheet (FGM-S) is determined by utilizing these two com-
binations in the following manner:

E(z)=g,()E, +[1- ¢ ()|E. for 0<z<h/2 (7.15)
E(z)=g(2)E, +[1-& (2)|E., for—h/2<z<0 (7.16)

The S-shaped distribution function described in Equations (7.15) and (7.16) is used to
illustrate the variations in the elastic modulus of the sheet, as illustrated in Figure 7.8.



234 Nonlinear Vibration of Smart Continuous Structures

2.8
2.6
24 L

22 |

Young's modulus (pa)

-0.5 -04 -0.3 -0.2 -0:1 0 0.1 0.2 0.3 0.4 0.5

FIGURE 7.8 Diagram of the variations in elastic modulus within an S-FGM plate.

7.6.8 MATERIAL QUALITIES IN THE CONTEXT OF AN
ExpoNENTIAL FuNcTION (E-FGM)

Many researches utilize the exponential function, specifically Equation (7.17), to
accurately depict the characteristics of FGM materials.

E(Z) _ AeB(z+h/2) (717)

Where:

A=E, and B= lln E. (7.18)
h \|E

m

Figure 7.9 displays the variations in the elastic modulus across the thickness of the
specific plate.

7.6.9 Mori-TANAKA HOMOGENIZATION METHOD

The homogenization method developed by Mori Tanaka is used to calculate the
effective properties of a material that consists of a continuous background phase and
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FIGURE 7.9 Diagram of the variations in Young’s modulus within an E-FGM plate.

a discontinuous reinforcement phase [11]. In the case of a material consisting of two
phases, Mori Tanaka’s method involves labeling the background phase as “1” and
the spherical particles of the reinforcing phase as “2”. The concepts of volumetric
modulus and local effective shear modulus are defined as follows:

Where:

KK _ v, (7.19)
K,—K 3(1-V,)(K, — K
2 1 1+ ( 2)( 2 l)+4G1
3K,
G-G, |4
= (7.20)
G2—61 1+3(1_V2)(G2_G1)
G+
9k, +8G.
f, =G, (%% +86,) (7.21)
6(k, +2G,)

The volume modulus, shear modulus, and volume fraction of the background phase
are denoted as K,, G,, and V,, respectively. Similarly, the volume modulus, shear
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modulus, and volume fraction of the reinforcing phase are denoted as K,, G,, and V,,
respectively. The relationship between the volume fraction of the amplifying phase
and the background phase is given by the equation V, +V, = 1. The volume fraction
of the reinforcing phase is determined by the following formula:

22+hn
V,= 7.22
2 [ o J (722)

The relationship between the elastic modulus and Poisson’s ratio of a functionally
graded material (FGM) can be expressed in terms of its bulk modulus and shear
modulus as follows:

_ _OKG (7.23)
3K+G

y=K-G (7.24)
6K +2G

The values for the heat transfer coefficient k and the thermal expansion coefficient o
are determined using the following method:

(7.25)
K=k _ v, (7.25)
k, —k, 1+U*%K@*%
3K,
a—oy K K, (7.26)

The values of density (p), specific heat capacity (C,), and other properties are deter-
mined using the law of mixtures method in the following manner:

p=pVi+pV (7.27)

Cp = C[)lpl‘/l +Cp2pl‘/l (728)

7.7 VISCOELASTIC MATERIALS

When designing structures and machines, it is frequently essential to compute the
impact of intricate conditions of stress, strain, and environment on the mechanical
properties of various types of materials. To determine the mechanical response of a
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structure to various stress or strain conditions and environmental factors, it is neces-
sary to derive the following fundamental relationships [12]:

1. Equilibrium equations represent the various stress relationships at each spe-
cific point to ensure equilibrium.

2. The kinematic equations relate the strain components to displacement, pro-
viding a description of the body’s deformation.

3. Consistency equations involve multiple strain components and ensure con-
tinuity at a continuous level without any discontinuities.

4. The fundamental equations express the connections between stress, strain,
and time using material constants specific to the given material.

5. Boundary conditions specify the stresses experienced by the displacements
at the boundaries.

Hooke’s law describes fundamental relationships when the behavior of materials
under stress is linear and not influenced by time. Every book on the theory of elastic-
ity contains a comprehensive explanation of the equations pertaining to assumptions
1,2, 3, 4, and 5. This section provides a concise overview of the fundamental equa-
tions governing nonlinear and time-dependent materials.

7.7.1 ELAsTiC BEHAVIOR

The majority of materials exhibit elastic behavior or a behavior that closely resem-
bles it when subjected to small stresses. Figure 7.10 depicts the curves representing
the elastic strain response of an object. Constant strains persist consistently when
subjected to a continuous stress and vanish promptly upon the removal of the load.
Reversibility is the primary attribute of elastic strain. The majority of elastic materi-
als exhibit linear elasticity, meaning that a decrease in stress results in a correspond-
ing decrease in strain.
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FIGURE 7.10 Comparing the various reaction to a constant load along the time.
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7.7.2  Prastic BEHAVIOR

If the level of stress exceeds a certain threshold, the behavior will not exhibit elastic-
ity. The point at which the material’s behavior transitions from elastic to nonelastic,
due to the stress exceeding a certain threshold, is referred to as the elastic limit.
Inelastic strain refers to the strain that persists even after the removal of stress. Cer-
tain materials exhibit a temporary, continuous deformation under a brief load, while
the strain remains constant when the load is fully applied and maintained. However,
once the stress is alleviated, a strain will persist indefinitely. The permanent defor-
mation is referred to as plastic strain (Figure 7.10). Plastic strain is considered to be
time-independent, although it is common to observe some time-dependent strains
along with plastic strain [13].

7.7.3 VISCOELASTIC BEHAVIOR

Certain materials initially demonstrate elastic behavior when subjected to rapid
loading. However, the rate at which strain increases gradually slows down, result-
ing in a steady increase in strain with a decreasing growth rate. Upon the removal
of stress, the strain undergoes a continuous decrease and exhibits an initial elas-
tic rebound (Figure 7.10). Viscoelastic materials are those that are notably influ-
enced by the rate of stress or strain. For instance, when the rate of stress is higher
than the corresponding strain, it takes a longer time for these materials to reach
their final stress value at a constant rate of stress. Refer to Figure 7.10. Plastics,
wood, natural and synthetic fibers, concrete, and metals are examples of mate-
rials that exhibit viscoelastic behavior, particularly at elevated temperatures.
Viscoelastic materials are commonly referred to as time-dependent materials
due to the significant influence of time on their behavior. Viscoelasticity can be
defined as the amalgamation of elasticity and viscosity, as described by Findley
in 1976. Figure 7.11 displays the stress-strain curves for a viscous material and
an ideal material. A material exhibiting linear viscoelastic behavior causes the
stress-strain curve to shift towards contraction, as shown in the left diagram of
Figure 7.11 [14].

Several phenomena that manifest in a viscoelastic material include the following:

1. When the stress remains constant, the strain exhibits a progressive increase
over time.

2. When the strain is maintained at a constant level, the stress gradually
diminishes over time.

3. The level of stiffness that is actually achieved depends on the rate at which
the load is applied.

4. The utilization of a loading cycle results in hysteresis, causing the dissipa-
tion of mechanical energy.

5. Sound waves undergo attenuation and degradation.

6. The magnitude of the jump and the elasticity of the movement resulting
from the impact is less than 100%.

7. Frictional resistance arises during the process of rolling.
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FIGURE 7.11 The stress-strain diagrams in constant strain rate: a) linear viscoelastic and b)
elastic-plastic.

In general, all materials have some of these characteristics in response to a visco-
elastic material. Common metals, such as steel and aluminum, exhibit behavior
similar to quartz when subjected to small strain at room temperature. Their behav-
ior remains consistent with that of linear elastic materials. Composite polymers,
wood, and human tissues exhibit significant viscoelastic behavior similar to metals
at elevated temperatures. A minor viscoelastic response can hold significance in
certain applications. In order to achieve this objective, it is necessary to conduct
an examination of the viscoelastic behavior of any material during its analysis or
design process.

7.7.4 THE STRESS-STRAIN RELATIONSHIP IN A VISCOELASTIC MATERIAL

In order to examine the correlation between stress and strain in viscoelastic mate-
rials, three models can be taken into account: the Maxwell model, the Voigt model,
and the standard linear solid model [14]. Maxwell’s model consists of a spring and
a damper arranged in series with each other (Figure 7.12). This model assumes that
the deformation is quasi-static. The calculation of total deformation or strain in
Maxwell’s model is determined by the following equation:

d d
de _de, de, ldo o (7.29)
dt dt dt Edt 1

Regarding this matter, € represents the overall strain, € denotes the strain of the
spring, €, signifies the strain of the damper, n represents the damping coefficient of
the damper, and o refers to the stress. By substituting the equation 7 = 1 into Equa-
tion (7.29), we can express it in the following form: E

de _do o (7.30)
dt dt T

The Voigt model, also known as the Kelvin-Voigt model, consists of a spring and
damper that are arranged in parallel (see Figure 7.12). In this model, the total stress
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FIGURE 7.12 Schematic of different spring-damper models: a) Maxwell, b) Voigt, and
¢) standard linear solid.

is obtained from the sum of the stresses of each element separately. The tension rela-
tionship in this model will be as follows [15, 16]:

A (131)
T dt
Or
de
oc=Es+n—
Tt

(7.32)

Where 7 = % refers to the delay time. According to the two models explained earlier,

it can be said that the most realistic model can be formed from the combination of
both Maxwell and Kelvin models, which is known as the standard linear solid. This
model includes three components. On the left side of Figure 7.12 is the model, which
is the same as Maxwell’s model:

1£:ﬂ+ﬁ (7.33)
dt dt T

And similarly, 7 = 2 a. For the right side of the model, we have the following:
1

de _do,
dr o dt

In the earlier relations, E, and E| show the elastic modulus for each of the spring mod-
els and the sum of the total stress o = 0, 4 0,. In general, the stress sum is as follows:

(7.34)

E
(E, + E2)—‘j; +=2E = —‘j; +2 (7.35)
T T
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7.8 MAGNETOSTRICTIVE MATERIALS

It is not an exaggeration to say that the study of magnetostrictive materials is one
of the areas of interest related to the exploration of smart materials. In point of fact,
these materials are capable of transforming magnetic excitations into elastic reac-
tions, which may take the form of either stretching or contracting. It is important to
take note of the fact that the magneto-elastic interaction in question manifests itself
when the structure in question is subjected to a magnetic field. Structures that have
a magnetic effect are great candidates for use as ultrasonic generators, ultrasonic
receivers, and echo detectors due to the qualities listed earlier.

Active metallic compounds known as magnetostrictive materials change shape in
response to magnetic fields. Magnetoelastic coupling and the associated dependence
of magnetic moment orientation on interatomic distance are responsible for these
distortions. The linear or Joule magnetostriction is the most prevalent kind of magne-
toelastic coupling, and it refers to the situation in which strains are recorded parallel
to the direction of the magnetic field. It should be observed that irrespective of the
direction of rotation of magnetic moments, the material will elongate if the mag-
netostriction is positive. Moreover, the transverse dimension will decrease, which
will result in the volume remaining the same. When the magnetostriction occurs in
the negative direction, the sample diameter grows while the sample length becomes
shorter. After this, a magnetostriction curve that is symmetric is formed as a result of
cycling the magnetic field. Although though Joule magnetostriction is present in the
majority of magnetic materials, only a select few compounds containing rare earth
elements may produce stresses that are more than 1,000 x 10°. Magnetostrictive
materials alter their magnetic state in response to stresses because of the symmetric
magnetoelastic coupling. The Villari effect allows for the measurement methods of
force and displacement.

Magnetostriction is a property that is shared by all ferromagnetic materials;
nevertheless, its value is often rather low for the majority of these materials. When
combined with alloys that raise their Curie temperature above the surrounding tem-
perature, certain transition metals and rare elements exhibit a greater degree of mag-
netostriction than others do. This is especially true when the Curie temperature of the
alloys is raised above the surrounding temperature. The Terfenal-D alloy, which is a
mixture of Terbion, iron, and Dispersium, is the magnetostrictive material that has the
best circumstances in terms of the amount of strain and the Curie temperature. This
material is the winner among the magnetostrictive materials. As the field strength
is increased, the positive value of the magnetostrictive coefficient in iron flips to a
negative value. Magnetostriction is a phenomenon that only happens in materials
when temperatures drop below the Curie point; nevertheless, the temperature of the
surrounding environment is almost always lower than the temperature of the furnace.
This allows magnetostriction to have a practical use. Currently, magnetostrictive
materials that have the best possible characteristics are continuing to increase and
improve [17, 18].

Table 7.1 is a compilation of the nominal longitudinal strain for a variety of
materials. It is interesting to note that some materials, like nickel, have a negative
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TABLE 7.2
Nominal Saturation Strain and Curie Temperature of
Magnetostrictive Materials

Material Saturation Strain (ppm) Curie Temperature (K)
SmFe, —-1560 —
CoFe,0, -110 793
Cobalt —62 1388
Nickel —-40 630
Iron -14 1040
Co,, Fe, B, A ; (Amorphous) 0 —
82%Ni-18 %Fe, Permalloy 0 —
Fe-3.2%Si +9 1015
45%Ni-55%Fe, Permalloy45 +27 —
87 %Fe-13%Al +30 673
Fe  Co,, B, Si +35 —
Fe, O,, Magnetite +40 860
49% Co0-49 %Fe-2% YV, permendur +70 1253
Fe,,, Ga, 15 < x <28 (Amorphous) +250 -
Nickel-Cobalt +186 —
TbFe, +1753 —
Tb,; D, , Fe, ,, Terfenol-D +2000 650
Tb,; Dy, Zn +5000 200
Tbo.s Zno.s +5500 180

magnetostrictive coefficient, meaning that their length shortens when exposed to a
magnetic field. In contrast, other materials, like Terfenol D, have a positive magneto-
strictive coefficient, and their length lengthens when exposed to a magnetic field [19].

7.8.1 THE ORIGIN OF MAGNETISM IN MATERIALS

Magnetic materials are made up of various different domains that are together referred
to as magnetic domains (see Figure 7.13). Magnetic dipoles in a region of matter are
said to be parallel and aligned in the same direction to form a domain. The total of all
vectors from each domain is considered to be zero when the material is non-magnetic;
however, when the material is magnetic, this value is considered to be something
other than zero. When an external magnetic field is applied to magnetic materials,
they get magnetized in a manner that is specific to their structure. Likewise, when the
exposure to the magnetic field is removed, the magnetic materials demagnetize in a
manner that is specific to their structure. The magnetic and non-magnetic properties
of this process allow for the classification of materials into the following four groups:
paramagnetic, ferromagnetic, antiferromagnetic, and ferrimagnetic, each of which
will be discussed in further detail in the following paragraphs. When it comes to para-
magnetic materials, the magnetic vectors are dispersed randomly throughout the item
and are aligned in the direction of the external field; however, once they exit the field,
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FIGURE 7.13 Vectors in materials: (a) paramagnetic, (b) ferromagnetic, (c) antiferromag-
netic, and (d) ferrimagnetic.
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they revert back to their initial configuration. If there is a magnetic field available, the
magnetic vectors in ferromagnetic materials have a tendency to line up in a parallel
fashion with one another. On the other hand, in contrast to materials that are para-
magnetic, they do not change position when an external field is removed. Because the
magnetic vectors in antiferromagnetic materials are parallel to each other but point
in opposite directions, their magnitudes are typically the same, and the magnetic
intensity is, therefore, zero throughout the entire object when an external field is not
present. Antiferromagnetic materials have a magnetic intensity of zero. The third and
final classification is known as ferromagnetic materials. Once the vectors in these
materials are aligned parallel to one another, as indicated in the figure, the amplitude
and strength of these vectors are not equal, which results in the production of a mag-
netic field that permeates the whole item. In most cases, the presence of more than
one ion in the chemical is responsible for causing this quality [17, 19].

7.8.2 Basic EQUATIONS OF THE MATERIAL

The basic equations for magnetostrictive materials are outlined as follows. Consid-
ering a Cartesian coordinate system, O-x, x, X, the equilibrium equations are given
by the following [20-22]:

e, ; =0; (7.36)

Where T H,, and B, are respectively the components of the stress tensor, the
intensity vector of the magnetic field, and the magnetic induction vector, whereas
€, 1s the Levi-Civita symbol. A comma followed by an index denotes partial
differentiation with respect to the spatial coordinate x;, and the Einstein’s sum-
mation convention for repeated tensor indices is applied. The constitutive laws
are given as follows:

i = IjkIUkl +deH

=dyo0, + /‘ika

ikl

(7.37)

Where ¢, are the components of the strain tensor and s, d,,, and u ; are respectively
the magnetlc field elastic compliance, the magnetoelastic constants, and the magnetic
permittivity. Valid symmetry conditions are the following:
H H H H
S = Sjiw = Sije = Suij

=d,

Kji

d

» (7.38)
My =Hg
The relation between the strain tensor and the displacement vector y; is the following:

& = %(Mj,i + ”i,,-) (7.39)
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The magnetic field intensity, named ¢ the potential, is written as follows:
H =y,

For Terfenol-D, the constitutive relations can be written as follows:

€ sgoshosp 00 0 0]foy, 0 0 d,
€9 spoosiosph 00 0 0|oy, 0 0 4, H
S | _ sy S sy 0 0 0|]oy 4 0 0 d Hl
2¢,, 0 0 st 0 0floy] |0 d5 O H2
2¢e,, 0 0 0 s ollo,| [ds 0O o] "7
2] |0 0 0 0 0 silo,] [0 0O O

Ull

022 T
B, 0 0 0 0 dy O w0 0 |[H,
B,t=|0 0 0 d, 0 0 U” +10 .  01H,
B)| |d, d, d; 0 0 0 * 0 0 uLl|H,

03

012

Where:

Oy3 = 03y 031 =043, Oy = 0y,
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ds =2d,;, =2d,,, d,, =dy,, =dy,, dy; =d;,

7.9 FLEXOELECTRIC MATERIALS

245

(7.40)

(7.41)

(7.42)

The flexoelectric effect in dielectric materials can cause a substantial and
non-uniform deformation, leading to the disruption or substantial alteration of the
material’s inversion symmetry and the generation of a net polarization. This phe-
nomenon, known as electrostriction, differs from other types of electromechanical
coupling, such as piezoelectricity and electrification, in that it is an inherent and
widespread effect that becomes stronger as the sample size decreases. Research
conducted over the past decade indicates that the emergence of flexoelectricity has
not only introduced a novel method for achieving electromechanical coupling but
has also had a significant impact on other domains, such as smart materials, elec-
tronics, and even physics. The diagram illustrates the direct flexoelectric effect
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in a dielectric beam, which results in the generation of electrical output when the
beam is bent (see Figure 7.14) [23].

Flexoelectricity is a phenomenon in which the polarization and strain gradients
are interconnected in an electromechanical process that is influenced by the size of
the system. This feature is present in a diverse array of materials and becomes more
prominent in objects at the nanoscale, where the strain gradient is greater. Simu-
lations play a crucial role in comprehending flexoelectricity due to the challenges
of conducting experiments at extremely small sizes and the limited availability of
analytical solutions [24].

Furthermore, it has the ability to violate the principles of central symmetry and
can be observed in a wide range of substances, such as insulators, liquid crystals, bio-
logical materials, and semiconductors. Recent research indicates that certain biologi-
cal substances, including bones, hair, and biomembranes, have a notable flexoelectric
reaction. The initial investigations on flexoelectricity in biological materials were
conducted in 1975 by Williams and Berger. This preliminary investigation examined
certain electromechanical characteristics of bones that may be attributed to “gradient
polarization”; however, the precise mechanism remains incompletely comprehended.

7.9.1 APPLICATIONS OF FLEXOELECTRIC MATERIALS

Some of the recent applications of flexoelectricity include flexoelectric energy har-
vesters, flexoelectric sensors and actuators, domain engineering, liquid crystal dis-
play, and the adjustment of the photovoltaic effect using flexoelectricity [25].

7.9.1.1 Flexoelectric Energy Harvester

Energy harvesters are machines capable of extracting energy from external sources,
including wind energy, solar energy, thermal energy, and more. Specifically, the

FIGURE 7.14 Schematic of the electric energy generation during bending of the flexoelec-
tric beam.
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electromechanical energy harvester is capable of gathering energy from mechan-
ical vibrations. The flexoelectric energy harvester is well-suited for integration
in small sizes due to its size-dependent unique effect, which allows for the cre-
ation of a substantial strain gradient. The flexoelectric energy harvesting device
has achieved an energy conversion efficiency of 6.6% with appropriate design, as
reported in Refs. [26-28].

7.9.1.2 Actuators

Piezoelectric materials have been extensively utilized for both sensing and actuating
purposes. Furthermore, flexoelectricity can be utilized in sensor and actuator appli-
cations, particularly for devices of nanoscale dimensions. Flexoelectric sensors have
an advantage over piezoelectric sensors and actuators because they are not restricted
by the crystal symmetry of materials or operating temperature. The image later illus-
trates the design of a curved flexoelectric actuator made from non-polarized PVDF
(Figure 7.15). This actuator has demonstrated excellent actuation characteristics,
achieving a displacement resolution of up to 1.0 nm and a maximum displacement of
63.6 nm (Figure 7.16) [29].

+U

Vo
<

Electric fleld gradient

Un-polarized PVDF
bulk specimen

Rigid plate Contact-less

sensing

FIGURE 7.15 Curved flexoelectric actuator using PVDF material.
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FIGURE 7.16 Proper operation characteristic with acceptable displacement.

Bhaskar has successfully included a flexoelectric actuator composed of barium
titanate particles that are on a micron scale according to Figure 7.17. This actuator is
totally compatible with semiconductor silicon technology. According to Figure 7.18,
the performance analysis demonstrates that this flexoelectric actuator exhibits simi-
lar performance to actuators that utilize piezoelectric materials containing lead [30].

7.9.1.3 Flexoelectric Sensors

Flexoelectric sensors are gaining popularity because of their compact size, absence
of discharge and deterioration issues, and use of lead-free materials. The sophisti-
cated flexoelectric sensor has proven to be effective in various applications, including
structural health monitoring, crack detection, and curvature measurement. Yan et al.
[31] developed a flexoelectric bending sensor using barium strontium titanate (BST)
that can directly convert bending deflections into output charge. The operational
mechanism of this sensor is illustrated in Figure 7.19. In order to precisely measure
the bending deflection, two BST micro-curvature sensors were affixed to the center
lateral surfaces of an aluminum beam. These sensors were positioned symmetrically
in relation to the beam’s neutral axis.

7.9.1.4 Amplitude Adjustment and Polarity Switching

Another noteworthy application of flexoelectricity that warrants consideration is
the ability to regulate amplitude and switch polarity. Ferroelectric materials are
defined by their inherent polarization, which may be altered by the application
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FIGURE 7.17 Schematic of the flexoelectric actuator.
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FIGURE 7.18 Proper performance of the flexoelectric actuator in comparison with piezoe-
lectric actuators containing lead.
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FIGURE 7.19 Working principles of BST curvature sensor attached to beam.

of an external electric field. Within a material that is extremely small, such as an
ultrathin ferroelectric film, the inherent polarization can be altered by a gradient
in mechanical strain. The impressive performance of this material has generated
growing interest, making the inhomogeneous thin film an ideal candidate for flex-
oelectric applications [25].

The phenomenon of coupling between polarization and strain gradient is
referred to as flexoelectricity. This phenomenon is observed in all dielectric mate-
rials exhibiting any form of symmetry. This study investigates the Timoshenko
beam energy harvesting system, specifically focusing on the effects of flexoelec-
tricity and strain gradient. The governing equations and boundary conditions have
been obtained using Hamilton’s principle. The flexoelectric effect is characterized
by the variation in both normal and shear strain, resulting in a more comprehen-
sive model. This article presents a model that examines and explores the impact
of flexoelectricity on the dielectric beam and the energy harvesting system derived
from the beam’s fundamental harmonic. An extensive analysis was conducted to
assess the flexoelectric coefficients, gravity gradient constants, base acceleration,
and the impact of an additional concentrated mass on Timoshenko’s energy har-
vesting system. The findings indicate that flexoelectricity significantly influences
the efficiency of the energy harvesting system, particularly at the nanoscale. Typ-
ically, this impact results in a smoother beam behavior and alters the harvester’s
first resonance frequency [32].

Compact wireless devices are fully autonomous, using ambient energy to power
themselves, and have extensive practical uses. This study presents the development
of an analytical model that incorporates the strain gradient effect for nanoscale flex-
oelectric energy harvesters. The proposal suggests finding the closed form of the out-
put voltage, which will allow for a rapid evaluation of the efficiency of flexoelectric
energy harvesting at the nanoscale. The study reveals that the ideal load resistance
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is not significantly influenced by the impacts of transverse shear and strain gradient.
The impact of transverse cutting on the output power is significantly greater in the
nanoscale flexoelectric energy harvesting system with a smaller length-to-thickness
ratio and a bigger patched mass. The modelling employing the Euler-Bernoulli beam
has yielded much more output power in comparison to the Timoshenko beam. Fur-
thermore, the strain gradient effect amplifies the frequency and diminishes the out-
put power of the beam. This paper provides guidance for mechanical engineers and
material scientists in designing a nanoscale flexoelectric energy harvesting device
with excellent performance [33]. Figures 7.20, 7.21, and 7.22 depict the relationship
between output power and frequency for piezoelectric and flexoelectric energy har-
vesting systems. The analysis considers both the deformation and non-deformation
of the transverse section, with a length-to-thickness ratios (I/h) of 5, 10, and 20. It is
evident that the output power of the flexoelectric energy harvesting system surpasses
that of the flexoelectric energy harvesting system. The flexoelectric energy harvest-
ing system has a maximum output power that is tenfold greater than the maximum
output power of the piezoelectric energy harvesting system. Furthermore, it has been
noted that the primary frequency estimated by the Euler-Bernoulli beam is higher
than the frequency of the Timoshenko beam. The estimated output power according
to the Euler-Bernoulli beam model exceeds that of the Timoshenko beam model.
When the length-to-thickness ratio of a structure reaches 20, both the Timoshenko
and Euler-Bernoulli beam models yield identical predictions for output power.
Flexoelectricity, which is characterized by its significant size-dependent feature, is
a highly advantageous use of piezoelectricity in the field of micro/nanoscale energy
harvesting. Nevertheless, there has been limited investigation into energy harvesters
made from functionally graded flexoelectric materials. This work presents a theoretical
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FIGURE 7.20 Output power in terms of frequency for different beam models with I/h = 5.
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analysis of the nonlinear vibration of a flexoelectric energy harvesting nanobeam with a
concentrated mass at the free end. The analysis takes into account the electromechanical
coupling generated by the strain gradient in the beam. The Galerkin approach is used to
derive the equations for the coupled system and to provide approximate closed solutions
for the output power. The study discovered that the voltage output and power density of
the functionally graded flexoelectric energy harvester are significantly influenced by the
material components, gradient index, size scale, and loading resistance [34].

7.9.2 FuNDAMENTAL EQUATIONS OF
FLEXOELECTRIC MATERIALS

To consider the flexoelectric effect, the concept of Gibbs disturbance energy is
used [35].

1 1
G, ==k EE, bu,dE Eey 5 Couifu — i = (Eceyy—c,E,, ) (743)
In the context of Equation (7.43), the variables E; and E ; represent the electric field,
g, represents a component of strain, ¢, represents the strain gradient, E, , represents
the electric field gradient, k; represents the dielectric constant tensor, b,,, represents
the nonlocal electric coupling coefficient tensor, C;;, represents the elastic stiffness
tensor, e, represents the piezoelectric parameter, and u , represents the flexoelectric
parameter.
Furthermore, the expressions for electrostatic potential, electric field, and electric
field gradient are as follows:
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In the given context, ¢ represents the electric potential, E, represents the electric

field, and E__ represents the gradient of the electric field. Subsequently, fundamental
equations are derived using the nonlocal strain gradient theory [36, 37].

(7.46)

(1-(ea® ) V)0, = (1-IPV2)(Cpue )+ 7 (~eu B + 1y, ) (7.47)

In the context of Equation (7.47), the symbol V, which represents the gradient, is
defined as the differential operator 0/ 0dx. Furthermore, C,,, represents the elastic
coefficient, ea denotes the nonlocal parameter, and 1 51gn1ﬁes the length scale param-
eter. If the size scale is taken into account for piezoelectric and flexoelectric charac-
teristics, the value of vy is given by v =1—[°V". Otherwise, if the size scale is not
considered, v =1.
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7.10 METAMATERIALS

The extraordinary capabilities shown by metamaterials are attributed to their
innovative structure, which is achieved by combining different materials with a
repetitive micro-unit structure. The Poisson’s ratio of most materials is inherently
positive; nevertheless, a specific approach was used on the structure of metama-
terials to render their Poisson’s ratio negative. Auxetics, derived from the Greek
term “auxetikos”, meaning “to grow”, refer to a class of metamaterials charac-
terized by a negative or zero Poisson’s ratio. Certain mechanical materials pos-
sess negative Poisson’s ratio (NPR), which results in enhanced properties, such as
improved compression and shear resistance, increased energy absorption, better
sound insulation (acoustic energy), synclastic behavior (elastic recoil), anisotropy,
high elasticity (in auxetic materials that adhere to Hooke’s law), and high damping
resistance. Due to this distinctive characteristic, researchers conducted an experi-
ment on auxetic materials.

7.10.1  AUXETIC MATERIALS

The auxetic core layer is composed of cells that are organized in a honeycomb
pattern. The mechanical properties of the honeycomb auxetic core layer, such as
Young’s modulus, shear modulus, negative Poisson’s ratio, and thermal expansion
coefficients, are believed to be influenced by the geometrical parameters of the indi-
vidual unit cell (Figure 7.23) [38, 39].

FIGURE 7.23 Schematic of the geometry of the cell of a honeycomb core layer.
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7.10.1.1 Auxetic Core

The potential consequences pertaining to the effective mechanical features of the
auxetic core are as follows [40, 41]:
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[l + sin 9] sin 0
) [;’ + sin 0]
E. =E, |- 7.49
2 4 [l] cos*0 ( )
AN [; + sin 0]
G,=E, [-] > (7.50)
! [e] l+26]cos 0
[ [
2
v = __cosf (7.51)
[j + sin Q]Sin 0
it
pu= by (7.52)
2cos 6 [l + sin 9]

The equations presented in Equations (7.48) to (7.38) provide a means to determine
the mechanical characteristics of the used auxetic core. The thickness of the auxetic
cell’s ribs is represented by the variable ¢, while the length of its horizontal ribs is
signified by e, and the length of its vertical inclined ribs is represented by 1. There
are two efficacious auxetic core moduli, namely, the Young’s modulus denoted as E}|
and E,, as well as the shear modulus referred to as G, and Gj,. Furthermore, both
v}, and vy, exhibit high efficiency as auxetic variations of Poisson’s ratio.
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Dynamics of Nonlinear
Smart Continuous
Structures—Beams

8.1 INTRODUCTION

This part investigates the analysis of the beam’s transverse nonlinear vibration,
both in free and forced conditions. The equations that describe the nonlinear vibra-
tion of the beam are derived based on the principle of Euler-Bernoulli theories.
The governing equations of the transverse vibration of the beams can be expressed
as fourth-order partial differential equations. These equations are subject to four
boundary conditions at both ends. The beam’s boundary conditions can encompass
partial derivatives of up to the third order. This chapter focuses on analyzing the free
and forcede nonlinear vibration response of beams. In order to explain the principles
that control the displacement field of the beam, it is important to establish a proper
coordinate system. This system consists of the x coordinate, which represents the
length of the beam, the z coordinate, which represents the thickness or height of the
beam, and the y coordinate, which represents the width of the beam. When dealing
with beam problems, the applied loads and geometry are arranged in a way that the
displacement (u, v,w) along the coordinates (x,y,z) is solely dependent on the x
and z coordinates. In the theory of beam, it is postulated that the displacement of v
is precisely zero [1].

8.2 NONLINEAR EQUATION OF TRANSVERSE
VIBRATION OF BEAMS

8.2.1 BACKGROUND

Currently, there is a growing need for engineering structures, with spaceships,
bridges, and autos serving as prime examples of such structures. When developing
these structures, it is necessary to investigate many variables in order to enhance
their performance and prolong their lifespan. One component of the design process
involves analyzing the dynamic reaction of these structures to various and differ-
ent stimuli. Real engineering problems, conversely, entail challenges and intricacies
during the problem-solving phase. Therefore, it is imperative to tackle the process
of simplifying these matters. This is achieved by constructing a mathematical rep-
resentation of the engineering structure. However, in several instances, this will not
be a straightforward task. However, this may be achieved mostly by streamlining the
framework. For instance, the study of the behavior of basic structures like beams,
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plates, and shells, which are considered as continuous systems, is highly significant
in this process of simplification.

8.2.2 NONLINEAR GOVERNING EQUATION OF THE
EuLer-BerNouLLI BEAM (THIN BEAM)

The equation regulating nonlinear motion and the boundary conditions of a thin
beam (Figure 8.1) are derived in this section using the Hamilton principle. The
beam is positioned on a viscoelastic substrate including a combination of a spring
and a damper. In the theory of the thin or Euler-Bernoulli beam, the rotational
movement of the cross-sectional surface perpendicular to the beam is neglected in
comparison to its translational motion. Furthermore, unlike the bending deforma-
tion, the incision does not result in angular distortion. It is worth noting that the
thin beam theory is only valid for beams that have a length-to-thickness ratio above
10 [1].

Generally speaking, the Euler-Bernoulli beam theory can be described as the
most basic beam theory, where the displacement field is specified as follows:

ow(x,1)

u, (x,z,t):u(x,t)—z o

s u, (x, z,t) =0, u, (x, z,t) = w(x,t) 8.1

The displacement components in the x, y, and z directions are given by u, and u,,
respectively, with respect to the Equation (8.1).

The displacement field described in Equation (8.1) states that straight lines par-
allel and perpendicular to the neutral axis stay unchanged before and after defor-
mation, as depicted in Figure 8.2. Put simply, both normal transverse stresses and
transverse stresses are not included.

Now, considering the Green'’s strain-displacement connections in the Lagrangian per-
spective and taking into account the assumptions that govern von Karman’s theory [2]:

! . A,
g = E(Ml.’j +uj,l. +uk,iuk,j) ; u . =

=L 8.2
= o, 8.2)

(i

FIGURE 8.1 Schematic of the Euler-Bernoulli equation (thin beam) on a viscoelastic
substrate.
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Regarding the Equation (8.2), the variablesi and j canrepresent x, y,orz (i, j = X, y,2).
Specifically, i, j = 1,2,3. Hence, the Equation (8.2) can be expressed alternatively as
follows:

2

1 2 Ou  1(O0u,
S T 5("’1.1 +uy, +”3,1”3,1) =Uy, +§(”3,1) = a"'z "
5 (8.3)
ou 0w 1(ow
Etx =——Z —_ —
’ Ox ox*> 2\ 0x
1
Ey =En = E(”zz tiu,, + ”3,2”3,2) =0 (8.4)
1
€p =83 = E(uﬂ tis;+ "‘3,3“&3) =0 (8.5)
1
€y TEn = E(”l,z tuy, + u3,1”3,2) =0 (8.6)
1
€ = &3 = 5(”1,3 +uy, + u3,1u3,3> =0 8.7)
1
& =E&p = E<”2,3 s, + u3,2”3,3> =0 (8.8)

The equations governing movement are derived using the Hamilton principle, as
stated in the preceding chapter. Thus, the Hamilton principle can be expressed in the
following manner:

6 [*(T—m+W,)dr=0 (8.9)

Deformed

Original beam

FIGURE 8.2 Transverse displacement of the beam.
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In the context of Equation (8.9), T represents the kinetic energy, m represents the
strain energy, and W, represents the work done by the external force.

— 67T:fv auési,jdV

= f (0, 6e,+0,6e, +0 bc_+0 0, +0 0,

+o,be,)dV (8.10)
ou Ow  1{ow) 9 éu
e[ aﬂéeudV—fvaxﬁ(a—ZWW[a—])‘Wfu”v(E
9* 6w Owd 6w bu 8 ébw  Ow 0O bw
- ——+—— dAd.
¢ ox? Ox 5’x f f 3x2 Ox Ox JAdx

The definitions of N and M are as follows:

N, = [o.da
A @.11)
M :fAzoxdi

Regarding Equation (8.11), N_, normal force, and M represent the magnitudes
exerted on the A-cross-sectional area. By incorporating Equation (8.11) into the ulti-
mate Equation (8.10), we obtain the following:

! 0 bu 0 6w ow 0 éw
om=| (N, -M_ +N_ ——)dx 8.12)
f Ox ox* Ox Ox
By performing the process of integration on both sides of the equation, we establish
a mathematical connection between the Equation (8.12) and the variable of time,
denoted as ¢, inside the time span from ¢, to ,.

2 ol obu E)éw ow 9éw
t. 67r—j; fO(NME—M S TN o) (8.13)

We shall establish a correlation with the integral of each of the statements of Equa-
tion (8.13) as follows:

f [~ d ar= [ ’Z{Nméu]f)— 1N 6(];“ 6udx}dr (8.14)
‘["I {Mmaa(iwl _j;’ oM 0 bw odw ]dt—
2

0 ox Ox
a| o dsw] M,y 1O*M,
j; [MXX ox | —Téw]o —I—fo e 6wdx]dt

I
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f f anaéw =" {N g—wé | - f’gx[zvx g—w]éwdx}dt (8.16)

By utilizing the derived relationships from Equations (8.14), (8.15), and (8.16), the
Equation (8.13) can be reformulated as follows:

j; "= [ {Nﬂéu]i)— ) ’%wdx}dt

w| o dsw] M, a1 O*M,,
_ . [Mxx o 0—w(5W]O+L[0 pye (Sde}dt

(8.17)
19 (‘3w
We will utilize a T to compute the kinetic energy:
1 1
0T = j u, 6w, dv= fo fA p (i, 61k, + 11,81k, + 1,61ty ) dAdx = fo (Iu,6u,
(8.18)

i 2 2
+1u35u3)dx:f0 {I[u—zgx;]é[u—zgxgt

In the Euler-Bernoulli theory, the influence of the beam’s periodic inertia is disre-
garded. So in the Equation (8.18), we have the following:

+ IW&W}dx

2
Ow _ (8.19)
OxOt
Therefore, the Equation (8.19) can be expressed as follows:
o7 = [ {Hidic+ I o3} di (8.20)
0

By performing the process of integration on both sides of the equation, we obtain a
mathematical Equation (8.20) in regard to the variable of time, denoted as ¢, inside
the time span from ¢, to ¢,.

5T = [ " 5usi+ 1 60l drdx = tisu)” — [“Tibudt } dx+
[or=f [ fate= [ sl [ rieuar
] hiswl]* — tZIW(Swdt dx = s —Tubu—1Iwoéwtdxdt
-.[(‘) ]’1 1 u/; \l;)

(8.21)
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In order to determine the work done by the external force (W, ), we express it in the
following manner:

f W,,di= [ N (8.22)

By incorporating the obtained Equations (8.17), (8.20), and (8.22) into the overarch-
ing Equation (8.9), we will obtain the following:

5f (T—7+W,)=0

ON_, (92Mu 0 ow
_>f f{ —liibu— 1w+ =2 bu-+ === 6w +8x[N 37]6W+ (8.23)
n I 85W oM ! ow !
Fowdxdt + f L 0—8—x'6w]0—Nn§5w]O}dt:O

The result of the Equation (8.23) consists of the governing equations and their corre-
sponding boundary conditions, expressed as follows:

ON
u = i

ox
oO’M Q[N ow

(8.24)

= = I
ox’ Ox Ox ]+fl v

N_6 u]:) =

d 6wl

M\:X
© Ox

=0 (8.25)

0

oM ow I
=N _—)oéw| =
( ox h 3)6) W]O

Considering the initial Equation (8.24), where i = 0, and also taking into account

that the integral of zdA is equal to O ( f zdA =0), the tension ratio (N, ) can be
derived as follows:

ON
w0 = N_=C,
Ox

By substituting the calculated value for N _ into the initial Equation (8.11), we obtain
the following:

N, =[ o= Ee ar= [ { . 2W+ [Z;V]Z]dA:

ou ow
FEA{— =C,
{8x+ [8)5} ] !

(8.26)

(8.27)
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In the context of Equation (8.27), E represents the modulus of elasticity of the beam,
while A represents its transverse cross-sectional area. The u response is acquired in
the following manner:

ou_ 10wy
ox 2

_Cx 1 (owY
= u f—fo [—] dx+C,

3_w
Ox

G _ ou_G 1[8w]2

T EA ox  EA 2|ox

(8.28)

~ EA 2Jo (ox
We have a boundary given as follows:
u(0)=0=C,=0
EA pi(ow) | —
x pifowY 1 pe(ow)
) =—| |—| dx—= —
u(x1) 21fo[ax] * 2fo[ax
ou 1 ’[aw]zd 1 8w]2

ax 2Jolox) T 2lox

(8.29)
dx

Alternatively, considering that / = f Z°dA , we can get the following:
: A

2 2
oOw 1 }dA:
(8.30)

M'“:j; zomdA:L ZE%dA:fA ZE{%_ZW+E

62W 82w
2 _F - _ -
L Z dA{ E 2} EIU >

By substituting the resulting Equation (8.30) into the governing Equation (8.24), we
obtain the following:

ow
Ox

oM, n 0 [N ow

o o

4
2 o'w 0 [Nn ow
ox Ox

+f=M = —E —+4— —I|+fi= (831
] fr=1 oxt o Ox 8x] fr="1v @30

The specified requirements that define the limits or constraints of the system are as
follows:

=0 (8.32)
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The Equation (8.33) indicates that the first boundary condition is ¢ u]; =0 while
extracting equations. Put simply, u (0) =u (l ) = 0. The nonlinear equation describing
the motion of the Euler-Bernoulli beam, based on the earlier equation (8.34), can be
expressed as follows:

0*w

o

O'w EA

gy 9w EA Y F I 8.33
= ot 2l fi=1h (8.33)

2
I ow
f —| dx
ol Ox
For considering the influence of the viscoelastic substrate (consisting of a spring and

damper) along with the external force f, as shown in Figure 8.1, Equation (8.34) can
express as follows:

Fekwc, (8.34)
ot
By substituting the aforementioned Equation into the Equation (8.33), we obtain the
following:

84w__EA

— Iw+EI.
oxt 2L

(ow)  |6*w Oow
o nesios o

8.3 CASE STUDY 1

8.3.1 INTRODUCTION

Researchers have a complex task when attempting to solve the nonlinear governing
equations of a non-uniform micro- and nanobeam. This work investigates the non-
linear, size-dependent vibration of a non-uniform axially functionally graded (AFG)
microbeam for the first time. The microbeam is simulated using the Euler-Bernoulli
beam theory and the modified couple stress theory, including von Karman’s geomet-
ric nonlinearity.

8.3.2 FORMULATION

8.3.2.1 Functionally Graded Materials

A microbeam is defined by its length, L, height, 4, and width, b. The height is given
by the equation i = h, (14 3,x), where A, is the initial height and 3,x is a param-
eter that determines how the height changes with respect to x. Similarly, the width
is given by the equation b= b, (1+ 3,x), where b, is the initial width and 3,x is a
parameter that determines how the width changes with respect to x. The issue is

h b
regarded as the problem (Figure 8.3). The expressions (3, = l—h—2 and 8, = l—b—2

1 1
denote the longitudinal and transverse cross sections, respectively. The moment of

cross-sectional area (I) and cross-sectional area (A) are defined as follows [3]:
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ho b
I(x):j:z 722 Zdydz (8.36)
2 2
ho b
Alx)= |2 |2 dydz (8.37)
W=l

The Euler-Bernoulli axially functionally graded microbeam is a structure made of
metal and ceramic materials. It has different mechanical and geometrical properties
along the x-axis, which can be described by a function of the microbeam’s length
(F (x)). This relationship is presented next [4]:

F(x)=F+(F, - ﬁ)[{]p (8.38)

Here, p represents the non-negative variable parameter, which is the power-law expo-
nent. It determines the material volume percentage along the axis of the beam. On the
other hand, x represents the distance from the left end of the AFG beam. When the
value of p is zero, it indicates that the material of the AFG beam is completely made
of metal. In our current investigation, we used the assumption that p is equal to 1. The
subscripts 1 and 2 indicate the starting point (x = 0) and ending position (x = L) of
the microbeam, respectively. Equation (8.38) demonstrates that the material property
at the beginning cross section (x = 0), the middle cross section (x = L/2), and the
final cross section (x = L) may be defined as F(0)=F,, F(L/2)=F, /2+F, /2 and
F (L):Fz, respectively. Put simply, the microbeam starts out as pure ceramic, then
becomes a mixture of ceramic and metal in the intermediate segment and finally
ends as pure metal. This is seen in Figure 8.3. The function F(x) may be expressed
as Equation (8.39):

F(x)=F [15%] (8.39)

b,

Pure Ceramic

h,

ba

.|

Pure Metal

FIGURE 8.3 Schematic of a non-uniform AFG microbeam.



Dynamics of Nonlinear Smart Continuous Structures—Beams 267

Where:

i
F

1

3= (8.40)

The microbeam’s mechanical characteristics, including density (p), Young’s modu-
lus (E), shear modulus (), and Poisson’s ratio (v), may be defined as follows:

p(x)=p, 1—@%] ;ﬂpz[l—’;—?] (8-41a)
E(x)=E, l—ﬁﬁ-% ;B = 1—% (8—41b)
p(x)=pm, 1—@,% 8, = —’;—T (8—41c)
v(x)=v, 1—@% ;ﬂvz{ —z—?] (8-41d)

8.3.2.2 The Modified Couple Stress Theory

The strain energy U® of an isotropic linear elastic material may be mathematically
represented as follows [5]:

US:%fffA(a:eer:x)dv (8.42)

Where A represents the occupied zone and the other parameters are specified as
follows:
Cauchy stress:

o zAtr(e)I—i-Zuf (8.43)

The expression tr(e) ” refers to the trace tensor of the (€,,) strain. Classical strain
€is defined as follows:

1 T
¢ = E(Vu +(Va)'| (8.44)
Symmetric curvature m:
m =21 ux (8.45)
Deviation part of couple stress:
1
X= E(VO +(ve)') (8.46)

The material length scale parameter, denoted as “I”, controls the couple stress at a certain

site. The displacement field components are represented by “u,”, while the rotation vector
components are denoted as “0,”. The rotation vector is precisely specified as follows:
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0= %curlu (8.47)

Furthermore, in Equations (8.43) and (8.45), Aand p represent Lame’s constants,
which are determined using the following formulas:

_E(x)
u(x)=——-"— (1+V( )) (8.48)
A(x)= E() (8.49)

(1 v(a))(1-2v(x))

8.3.3 THE GOVERNING EQUATION AND BOUNDARY CONDITIONS

The governing equation and boundary conditions may be obtained by using the
Hamiltonian principle, which is represented as follows:

SH=0 (8.50)

ext

1 T
H:—f T—U+W._dt (8.51)
T 0

The symbol t represents the value of 27 divided by w.T,U, and W, _, represents
the vibration period, kinetic energy, strain energy, and external work induced by an
external force, respectively.

The displacement field is defined in the Euler-Bernoulli theory as the following:

ow (x,t)
u(x,zt)=u(xt)—z———
u, =0
u =w (x, t)
The variables u,,u , and u_represent the displacement components along the x, y, and

Z axes, respectlvely The term w / dx refers to the rotation angle around the y-axis,
while w( ) represents the transverse deflection of the beam. The kinetic energy of a
microbeam may be determined using the following equation:

:_ff [ ] [a” a”] dAdx
ot ot
2 5 2
mo[au(x’f)] +m2[3 W(x’f)] 8.53)
1 L ot OxOt
:Ej; dx

Yot OxOt ot

. Dulr) Pw () +m0[aw(x,t)]2
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Where:

(my,m,,m,) f f s p(x)(Lz.2% ) dydz (8.54)
The von Karman nonlinear straln—dlsplacement relation is defined as a straight Eul-

er-Bernoulli beam, assuming massive transverse displacements, moderate rotations,
and modest strains.

€

8u(x,t) 1 aw(x,t) ’ 82w(x,t)
= — — 8.55
=T ox +2[ ox Tor 855

X
The explicit formulations of the constituents of the rotation vector are obtained by
using Equation (8.47) as follows:

_ow
0 = 8.56
= o (8.56)
The non-zero components of the couple stress and Cauchy stress tensors may be
computed by using the following three equations.

o, =E(x)e, (8.57)
1 82w(x,t)
=—— 8.58
Xo =73 o0 (®39
, O*w
m, =—l uF sm,=m =m_=m =m_=0 (8.59)
X

The microbeam’s strain energy, arising from the beam’s strains and stresses, is pre-
cisely specified as follows:

8u(x,t) 1 pL 8w(x,t) ’ azw(x,t) ’
A Ox * Zf ol Ox ) | +C ox*
2 2
P X@u(x,t)ifL owlxn)| Lonp 10%w(x, )J 5 (8:60)
2J0 ox 2L Ox 2 ox?
2
B 8u(x t) azw(x t)_‘_i L 8w(x,t) xazw(x,t)
1 ox ox* 2LJ ol Ox ox?
Where:
hoo b
(4.8.C.)= [7 [} E(x)(122")dvaz
o2 (8.61)
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When analyzing free vibration, it is necessary to treat the external work done by
applied forces as zero.

w_.=0 (8.62)

ext

By inserting equations (8.53), (8.60), and (8.62) into equation (8.50) and using the
basic lemma of calculus, one may deduce the first variation of total energy. This
process allows us to obtain the governing equations and boundary conditions of the
microbeam, based on the Euler-Bernoulli model. The microbeam’s nonlinear vibra-
tion equations have solutions that may be separated into spatial (x) and temporal (t)

components. Therefore, we may infer the following:
w(x,t) aW(x) coswt, 8.63)

u(x,t)=U (x)coswt

By using the Ritz-Galerkin approach and integrating with respect to time, the gov-
erning equations for Euler-Bernoulli beams may be derived using Equation (8.63).

OU(x) _ (acos wr)’ f()L[8W<x)]2 dx

A _|cos wt
Ox 2L O0x

1 T L >
;fo J:) —B_acos wt 0 sz(x) dudxdt (8.64)

ow (x)

X

= w’|—m, cos wt U (x)+macos wt

. | B, |coswt — -
0 | X 2L o Ox

oU(x) _(acosir) fL[f)W(x)]z "

o OW (x)

—acoswt(C, —D I*)——
’ Ox

oo 9 , (8.65)
r 9| rH A (acosw)) (W)Y |, OW(x) Sudxdt
Tfofo +8x fﬂ 1 +[ 2 J [ Ox ] & Ox

B, 0 W(x)
—acoswt — 2
Ox

ouls)

—m, coswt W (x) —m,acoswt
x

W (x)
+m,acoswt >
Ox

Since the AFG materials have uniform properties throughout their thickness, the
values of B, and m, are assumed to be zero. Consequently, the governing equations
are formulated in terms of displacements.

ON

ou: —
Ox

+f(x)=m, 0 (8.66)
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H* 0 ow O*w *w
sw: L M)+ LN g0 =m, CY 2 (867
wigaMHY) ax[ 8x] a¥)=m G —mpas (6D

The boundary conditions are as follows:

U=0 or N=0 (8.68)
0 ow
W=0 —(M+Y)+N—=0 8.69
or 8x< ) ox ( )
a—sz or M+Y=0 (8.70)
Ox

The values of “g=0" and “f =0 represent the distributed transverse and axial load,
respectively. The stress resultants (N,M,Y) in the equations earlier are provided as
follows:

ox 2 Ox
0 N
M=[o_zdd=—C, W$> 871
0
_ __p w
Y = fA mydd =D, =3

8.3.4 SoLUTION METHODOLOGY

Differential quadrature method (DQM) is an accurate and effective numerical method
presented in early 1970s. The accuracy of this method depends on the precision of
weighting coefficients controlled by the number of grid points. In primary formula-
tions of DQM, an algebraic equation system was employed to calculate weighting
coefficients which determined the number of grid points. An explicit formulation
for the weighting coefficients was later presented and led to generalized differential
quadrature method (GDQM). Many regular domain problems are solved using this
procedure. The GDQ technique defines the rth order derivative of function f (x,.) as
follows [5]:

O f(x =N cVr(x,
() _ 3 () .
Ox x=x,
The value of C;;n may be determined using the following equation, where n is the

number of grid points along the x direction:

5 i,j:1,2,...,l’l and lI] (873)
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Where M (x) is defined as follows:

M(x)=T] (x. —xj) (8.74)

J=1j=i

The coefficient C (r) for weighting, in the x direction, may be determined as follows:

(r=1)
C.(.r—l)C‘(‘l) i Cij

ij ij
(X-—X-)

g

j= llz/ 4

s Lj=L2,...,n,i=j and 2<r<n-—1

(8.75)
i,j=12,...n and 1<r<n-1

The Chebyshev-Gauss-Lobatto approach is used to achieve a more uniform distribu-
tion of mesh points.

X, :£[1—COS[ (l_l) W]]; i= 1,2,3,...,” (876)
2| v

By combining the three mass matrices, we can get the linear and nonlinear stiffness
of the functionally graded microbeam, as described by Equations (8.66) and (8.67)
in terms of nonlinear motion [6].

{IK i K]t = M} =0 (8.77)

In order to solve the governing motion equation using the GDQM, we begin by dis-
regarding the nonlinear stiffness matrix. To achieve this objective, we may use the
weight coefficients (Equation (8.75)) and apply them to the linear motion equations,
resulting in the following:

S (A ey, )=, mu, (8.78)
S c“((c +D,)Y" Cf s)=w2L,-W(mOWS—%ZZZICE?WS) (8.79)

By applying the boundary conditions (Equations (8.66) to (8.70)) to Equations (8.78)
and (8.79), and combining the corresponding matrices for the boundary conditions
and governing equations, the linear fundamental frequency may be determined as

shown next:
SR R S I

The indices “b” and “d” represent the border and domain, respectively, whereas
“X” represents the mode shape. The linear mode forms are necessary for solving the

(K] [Kan]
Ko K]




Dynamics of Nonlinear Smart Continuous Structures—Beams 273

nonlinear vibration equations of the functionally graded microbeam. The U and W
mode forms may be obtained by using Equation (8.90). By inserting the obtained
mode shapes into the nonlinear stiffness matrix and using Equation (8.87), as well
as connecting the linear and nonlinear stiffness matrices with the mass matrix, it is
possible to compute the nonlinear frequency and mode shape. Next, by using the iter-
ation approach, the nonlinear frequency is recalculated in order to get a convergent
nonlinear frequency.

ZCU A C)s U +2A Zcrsvvx CE;)VVS :w2N0nfLinearm0Us
) ! ) (8.81)
S [(cx 0.3
s=1 s=1
+ZCU [A cu, + A ZC,SWZC,S ]icfj)u@ }
p (8.82)

2

=w moW, —m, 3| Crsz ‘/Vx)

Non—Linear (

8.3.5 NUMERICAL ResuLts

The generalized differential quadrature technique is used to solve the governing
equations of motion. The findings are computed for the first two linear and nonlinear
frequencies of the AFG microbeams made of pure ceramic and pure metal, with
microbeams that are clamped, simply supported, and clamped-simply supported.
Subsequently, the impacts of the nonlinearity and the rates of cross sections through-
out the thickness and breadth of the microbeam are showcased in various figures and
tables.

In order to provide a clear understanding of how various factors impact the nonlin-
ear frequencies, the outcomes are provided in relation to the normalized frequency.
The normalized frequency is a term that is used to describe the frequency of an event
or phenomenon that has been adjusted or standardized in some way.

Non —linear frequency of micro— beam

Normalized frequency = (8.83)

Linear frequency of ceramic uniformbeam

In addition, non-dimensional parameters are specified in the following manner,
which facilitates the analysis of the results:

I, =—

hl

h2
Amp = a,|——
P=NTa

The terms “/;,” and “Amp” represent a non-dimensional, small-scale parameter and
a nonlinear amplitude, respectively.

(8.84)
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Table 8.1 displays the mechanical characteristics of ceramic and metal. Figures 8.4
and 8.5 show the initial and subsequent normalized frequencies of a microbeam in
relation to the amplitude. The microbeam is subject to simply supported, clamped,
and clamped-simply supported boundary conditions. The normalized frequencies
are computed for microbeams made of pure ceramic, pure metal, and AFG. It is
evident that the normalized frequencies of the microbeam rise in conjunction with
the amplitude. Additionally, the normalized frequencies of the AFG microbeam are
lower than those of pure ceramic and higher than those of pure metal. Figures 8.4 and
8.5 demonstrate that the normalized frequencies of the clamped-simply supported
microbeam are lower than those of the simply supported microbeam and higher than
those of the clamped microbeam.

Tables 8.2 to 8.4 show the linear and nonlinear fundamental and second normal-
ized frequencies of ceramic, metal, and AFG microbeams. The tables correspond
to different boundary conditions: clamped-simply supported, simply supported, and
clamped, respectively. It is observed that the fundamental and second frequencies
of the microbeams exhibit a rise in relation to the amplitude. Moreover, the primary
frequencies of the microbeams drop as the value of 3, decreases. The frequencies
shown in Tables 8.2 to 8.4, printed in italic bold, are the frequencies that rise as the 3,
decreases. Table 8.2 shows that the second normalized frequency of the clamped-sim-
ply supported microbeams drops as (3, increases, when the Amp is less than or equal
to 3. However, when the amplitude is set to 4, the second frequencies of the pure
metal and ceramic uniform microbeams rise as the 3, decreases from zero to —0.1.
The increase in AFG microbeam occurs at 3, = —0.2 and falls from —0.1 to —0.2.

Table 8.2 demonstrates that reducing the 3, value leads to a rise in the linear
and nonlinear fundamental frequencies of AFG, pure ceramic, and pure metal
clamped-simply supported microbeams. When the amplitude of the microbeam is
modest (Amp = 0 and 1) and the cross section is almost uniform over the thickness
(8, = 0,—0.1), reducing the §, results in an increase in the second frequencies of the
microbeam. However, when the nonlinearity and the rate of cross section change rise
in the z direction, the influence of 3, on the second frequencies of the microbeam
changes. Specifically, the second frequencies of ceramic and metal microbeams

TABLE 8.1
The Coefficients of Young’s Modulus, Mass Density, and Poisson’s Ratio of
Ceramic (Al2 O3) and Metal (SUS304)

Material Properties Value
SUS304 E (Pa) 2.0104e + 11

p (keg/m?) 8166

N 0.3262
ALO, E (Pa) 3.4955¢ + 11

p (kg/m?) 3800

N 0.24
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TABLE 8.2

Normalized Fundamental and Second Frequencies of Clamped-Simply Supported Microbeams in Different Nonlinear
Amplitudes and Rates of Cross Section Change, I, = 0.1

pb=-0 Uniform
beam Pure ceramic
AFG
Pure metal
ph =-0.1 Pure ceramic
AFG
Pure metal
ph =-0.2 Pure ceramic
AFG
Pure metal
ph =-0.4 Pure ceramic
AFG
Pure metal
pb=-02p5h=0
Pure ceramic
AFG
Pure metal
fh =—0.1 Pure ceramic
AFG
Pure metal

Fundamental Normalize Frequency

Second Normalize Frequency

Amp =0
1

0.709033
0.546804
0.965141
0.682953
0.527743
0.929176
0.656103
0.508077
0.853261
0.599665
0.466566
1.014645

0.720048
0.554812
0.979388
0.693668
0.535533

Amp =1
1.042961

0.738624
0.570295
1.010685
0.714074
0.552646
0.977313
0.689091
0.534398
0.90799

0.637962
0.496493
1.057204

0.749389
0.578083
1.024469
0.72461

0.560184

Amp =2
1.161219

0.820251
0.634959
1.135145
0.799357
0.620702
1.107851
0.778773
0.605777
1.053515
0.739837
0.576066
1.174562

0.830468
0.642255
1.147909
0.80954

0.627681

Amp =3
1.33338

0.939406
0.729097
1.314716
0.922818
0.718892
1.294452
0.907358
0.707811
1.256935
0.882308
0.687297
1.345794

0.949084
0.735885
1.326437
0.932744
0.725301

Amp =4
1.540894

1.083356
0.842567
1.529567
1.070945
0.836373
1.516065
1.060433
0.82899

1.494446
1.048714
0.817169
1.552577

1.09265
0.848955
1.54046
1.08081
0.842329

Amp =0
1

0.717173
0.546804
0.955747
0.683818
0.522606
0.910547
0.649728
0.497891
0.816624
0.578917
0.446533
1.004254

0.720434
0.54913

0.960115
0.687142
0.524995

Amp =1
1.056035

0.75417
0.577444
1.017631
0.723896
0.556445
0.977371
0.693798
0.53443
0.887576
0.63486
0.48533
1.063432

0.759325
0.581489
1.022491
0.729374
0.559102

Amp =2
1.206947

0.854536
0.659964
1.182025
0.831388
0.646336
1.152593
0.810319
0.630242
1.070079
0.776876
0.585123
1.222072

0.864414
0.668234
1.188136
0.842137
0.649677

Amp =3
1.420946

0.998067
0.776979
1.411586
0.983101
0.771861
1.393911
0.972206
0.762196
1.316614
0.966336
0.71993

1.445847

1.014008
0.790595
1.41936

1.000488
0.776112

Amp =4
1.673513

1.168587
0.915083
1.679419
1.161517
0.918313
1.672685
1.160388
0.914631
1.59769

1.180592
0.873623
1.708895

1.19109
0.93443
1.689062
1.186007
0.923586

(Continued)
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TABLE 8.2 (Continued)

Normalized Fundamental and Second Frequencies of Clamped-Simply Supported Microbeams in Different Nonlinear

Amplitudes and Rates of Cross Section Change, /, = 0.1

fh =—-0.2 Pure ceramic
AFG

Pure metal

ph =-0.4 Pure ceramic
AFG

Pure metal

Fundamental Normalize Frequency

Second Normalize Frequency

Amp =0
0.94304

0.666532
0.515658
0.866431
0.609572
0.473768

Amp =1
0.990572
0.699428
0.541649
0.920883
0.648047
0.503542

Amp =2
1.119771
0.789
0.612295
1.06596
0.750512
0.582871

Amp =3
1.304967
0.917664
0.713561
1.269201
0.893992
0.694004

Amp =4
1.525392
1.071059
0.834091
1.50689

1.061733
0.823973

Amp =0
0.915017
0.653106
0.500335
0.821266
0.582395
0.449071

Amp =1
0.978739
0.69967

0.535179
0.889462
0.636066
0.486361

Amp =2
1.146763
0.822148
0.627054
1.065817
0.773128
0.582793

Amp =3
1.379525
0.991373
0.75433

1.305304
0.957007
0.713745

Amp =4
1.64953
1.187311
0.901969
1.5793
1.165704
0.863567
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TABLE 8.3
Normalized Fundamental and Second Frequencies of Simply Supported Microbeams in Different Nonlinear Amplitudes and
Rates of Cross Section Change, /, = 0.1

Fundamental Normalize Frequency

Second Normalize Frequency

Amp=0 Amp=1 Amp=2 Amp=3 Amp=4 Amp=0 Amp=1 Amp=2 Amp=3 Amp=4
pb=-0 Uniform beam  Pure 1 1.08534 1.305322  1.603108  1.943083 I 1.08562 1.306237  1.604769  1.94551

ceramic

AFG 0.717417  0.778781 0.936916 1.150925 1.395211 0.721144 0.777235 0.923378 1.123329 1.353263

Pure metal  0.546804 0.593468 0.713755 0.876586  1.062486  0.546804 0.593621 0.714256 0.877494 1.063813

ph=-0.1 Pure 0.951496  1.040855 1.26852 1.573272 1.918655 0.951878 1.038088  1.258723  1.555326 1.892406
ceramic

AFG 0.680852  0.745581 0.91024 1.130333  1.379539 0.684561 0.746131 0.903839 1.116022 1.357291

Pure metal  0.520282  0.569144  0.693632  0.860271 1.049128 0.520491 0.567631 0.688274 0.850458 1.034775

ph=-02 Pure 0.90135 0.995457  1.231955 1.544568 1.896049 0.902954 0.990198 1.211677 1.507152 1.841302
ceramic

AFG 0.643126  0.711496  0.882899 1.108977 1.362825 0.647354 0.715842 0.887655 1.114404 1.369095

Pure metal  0.492862  0.54432 0.673638  0.844576  1.036767 0.493739  0.541444 0.662549 0.824117 1.006831

ph=-04 Pure 0.794972  0.900852  1.15787 1.487744  1.85218 0.80212 0.891825 1.115162  1.407951  1.735479
ceramic

AFG 0.563393  0.640542 0.827024 1.065558 1.328579 0.570634 0.640525 0.812304 1.035036 1.282563

Pure metal  0.434694  0.49259 0.633128 0.813504 1.012779 0.438603 0.487653 0.609775 0.769873  0.948967

pb=-02 ph=0 Pure 0.999513  1.084874 1.304891 1.602698 1.942679 1.000118  1.080845 1.290293 1.575647 1.902841
ceramic

AFG 0.717513  0.779664  0.939588  1.155699  1.402145 0.721148 0.780907 0.935483  1.145442 1.385696

Pure metal  0.546537 0.593213 0.713519 0.876361 1.062264 0.546868 0.59101 0.705537  0.86157 1.040481

(Continued)
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TABLE 8.3 (Continued)

Normalized Fundamental and Second Frequencies of Simply Supported Microbeams in Different Nonlinear Amplitudes and
Rates of Cross Section Change, /, = 0.1

Bh=-0.1
Ph=-02
Bh=-04

Pure
ceramic

AFG

Pure metal

Pure
ceramic

AFG

Pure metal

Pure
ceramic

AFG

Pure metal

Fundamental Normalize Frequency

Second Normalize Frequency

Amp =0
0.950176

0.68033
0.51956
0.899197

0.641991
0.491684
0.791162

0.561051
0.43261

Amp =1
1.039819

0.746065
0.568577
0.993909

0.711258
0.543473
0.897929

0.639801
0.490991

Amp =2
1.268078

0.912939
0.69339
1.231647

0.884563
0.673469
1.156583

0.829429
0.632424

Amp =3
1.573459

1.135566
0.860374
1.545569

1.112743
0.845123
1.488025

1.071258
0.813658

Amp =4
1.919436

1.387333
1.049555
1.898291

1.368671
1.037993
1.853859

1.337458
1.013697

Amp =0
0.9522

0.684703
0.520666
0.903475

0.647625
0.494024
0.803024

0.57115
0.439096

Amp =1
1.033735

0.75047
0.56525
0.986272

0.713593
0.539297
0.888582

0.638022
0.48588

Amp =2
1.243827

0.917554
0.680129
1.197862

0.879917
0.654996
1.103011

0.803448
0.603131

Amp =3
1.528111

1.140617
0.835577
1.481914

1.100422
0.810316
1.385766

1.019117
0.757742

Amp =4
1.852589

1.392988
1.013003
1.804439

1.348799
0.986674
1.703198

1.259572
0.931315
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TABLE 8.4

Normalized Fundamental and Second Frequencies of Clamped Microbeams in Different Nonlinear Amplitudes and Rates of

Cross Section Change, /, = 0.1

pb=-0

Uniform beam Pure ceramic

AFG
Pure metal
ph=-0.1 Pure ceramic
AFG
Pure metal
ph =-0.2 Pure ceramic
AFG
Pure metal
ph=-0.4 Pure ceramic
AFG
Pure metal
pb=-02ph=0

Pure ceramic
AFG
Pure metal
ph=-0.1 Pure ceramic
AFG
Pure metal
ph =-0.2 Pure ceramic
AFG
Pure metal
ph=-0.4 Pure ceramic
AFG

Pure metal

Fundamental Normalize Frequency

Second Normalize Frequency

Amp =0
1

0.714029
0.546804
0.951769
0.678467
0.520431
0.902513
0.642194
0.493498
0.800373
0.567146
0.437647
0.999085

0.714239
0.546304
0.951694
0.679235
0.52039
0.90328
0.64352
0.493917
0.80283
0.569591
0.438991

Amp =1

1.021209

0.729358
0.558401
0.974085
0.694646
0.532633
0.92623

0.659135
0.506466
0.827181
0.586426
0.452306
1.020313

0.729728
0.557911
0.974101
0.695409
0.532642
0.927177
0.660515
0.506984
0.829698
0.589095
0.453682

Amp =2

1.081996

0.773268
0.59164

1.037763
0.740775
0.567453
0.993533
0.707202
0.543268
0.902234
0.640351
0.493345
1.08115

0.774078
0.591177
1.038026
0.741527
0.567597
0.994968
0.708733
0.544053
0.90492

0.643621
0.494814

Amp =3

1.175573

0.840813
0.642808
1.135139
0.811234
0.620698
1.095626
0.780094
0.599093
1.013936
0.720509
0.554424
1.174794

0.842253
0.642382
1.135753
0.811977
0.621034
1.097751
0.781848
0.600255
1.016882
0.724624
0.556035

Amp =4

1.294351

0.926479
0.707756
1.257907
0.899964
0.687829
1.223322
0.871241
0.668917
1.151185
0.81889

0.629473
1.293641

0.92866

0.707368
1.258928
0.900703
0.688387
1.226248
0.873266
0.670517
1.15446

0.823987
0.631263

Amp =0

0.718212
0.546804
0.951764
0.682174
0.520428
0.902478
0.645356
0.493478
0.800063
0.568856
0.437477
0.999552

0.718329
0.546559
0.951738
0.682562
0.520414
0.90287

0.646009
0.493693
0.801271
0.570017
0.438138

Amp =1

1.044291

0.746532
0.571022
0.996693
0.712908
0.544996
0.947565
0.679216
0.518132
0.846755
0.606481
0.463009
1.042171

0.748018
0.569863
0.994551
0.714878
0.543824
0.945984
0.67955

0.517268
0.846299
0.606518
0.46276

Amp =2

1.16593

0.824973
0.637535
1.119472
0.797206
0.612132
1.070206
0.770936
0.585193
0.972039
0.706216
0.531515
1.159553

0.829975
0.634048
1.111991
0.803167
0.608041
1.063696
0.770489
0.581633
0.967535
0.703589
0.529052

Amp =3

1.342503

0.940073
0.734086
1.296609
0.919374
0.708991
1.246159
0.901881
0.681405
1.148941
0.845166
0.628245
1.330558

0.949718
0.727554
1.282217
0.930508
0.701121
1.233332
0.900455
0.674391
1.139401
0.839303
0.623029

Amp =4

1.554826

1.079741
0.850185
1.508541
1.066081
0.824876
1.455731
1.057238
0.795999
1.357051
1.007007
0.742041
1.536802

1.094488
0.840329
1.486657
1.082828
0.81291

1.436104
1.05478

0.785267
1.342196
0.997782
0.733918
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drop with 3,. The second frequency of the AFG microbeam experiences a similar
decrease when 3, = 0.4 and Amp is greater than or equal to 2.

Table 8.3 demonstrates that the second normalized frequencies of the simply sup-
ported pure ceramic and metal microbeams decline as 3, decreases. The second
resonance frequency of the AFG (axially functionally graded) simply supported
microbeam reduces as 3, decreases, given that the amplitude (Amp) is less than or
equal to 3. Observations indicate that when the amplitude is 4 and the rate of cross
section change of the microbeam along the width is = 0, decreasing 3, from zero to
—0.2 results in an increase in the second frequency of the AFG microbeam. How-
ever, when the rate of cross section change along the thickness is high (3h > 0.2),
the second frequency decreases as 3, decreases. Table 8.3 shows that reducing the
B, leads to a rise in the fundamental frequency of the uniform AFG microbeam,
while causing a drop in the fundamental frequencies of the pure metal and ceramic
microbeams. In addition, reducing 3, leads to a drop in the linear fundamental fre-
quencies of non-uniform AFG, pure metal, and pure ceramic microbeams. Alterna-
tively, when we enhance the nonlinearity and reduce the rate of cross section change
along the thickness of the microbeam (3, ), we see a distinct impact of 3, on the fre-
quencies under various situations. Specifically, the frequencies rise as 3, decreases.
At an Amp value of 4, the fundamental frequency of the non-uniform microbeams
increases as the 3, decreases. The second linear frequencies of the AFG, pure metal,
and pure ceramic microbeams are inversely proportional to the decrease in 3,. When
the microbeam is uniform or the rate of cross section variation along the thickness
is modest (3, <—0.1), the second nonlinear frequency of the AFG microbeam
grows as the 3, drops. Observations indicate that the second frequencies of the AFG
microbeam fall when (3, is less than or equal to —0.2. Similarly, the nonlinear second
frequencies of the pure metal and ceramic microbeams likewise decrease with 3.

Table 8.4 demonstrates that reducing the 3, leads to a drop in the fundamental
frequency of uniform pure metal and pure ceramic microbeams, whereas it results
in an increase in the fundamental frequency of uniform AFG microbeam. Table 8.4
demonstrates that the nonlinear fundamental frequencies of non-uniform AFG, pure
ceramic, and metal microbeams rise as b decreases. Furthermore, it has been shown
that altering the rate at which the cross section varies throughout the thickness has
an impact on the influence of 3, on the linear fundamental frequency of microbeams
made of pure ceramic and metal.

Table 8.4 demonstrates that the frequency of the clamped microbeams reduces
as the value of 3, decreases. The frequency of the AFG microbeam rises as the
value of 3, decreases, provided that the microbeam is uniform or has a low rate of
cross section change throughout the thickness (8h > —0.1 ). Furthermore, when the
value of 3, is less than or equal to —0.2, the linear second frequency of the clamped
microbeams grows as 3, decreases. Table 8.4 demonstrates that the nonlinear second
frequencies of both pure ceramic and metal microbeams drop as 3, increases. The
influence of 3, on the frequencies of the microbeam is contingent upon the nonlin-
earity and 3,. By modifying these parameters, the impact of (3, is altered.

Tables 8.5 show the normalized fundamental and second frequencies of microbe-
ams with clamped, simply supported, and clamped-simply supported boundary



TABLE 8.5

Normalized Fundamental and Second Frequencies of Clamped Microbeams in Different Nonlinear Amplitudes and Small-

Scale Parameters, 3, =—0.3, 8, =—0.2.

Fundamental Normalize Frequency

Second Normalize Frequency

l,=0 [,=0.1 [,=0.2 1,=0.3
Amp=0  Pureceramic 1 1.033057 1.125864 1.264486
AFG 0.710923  0.734785 0.801723 0.901588

Pure metal 0.546804  0.56488 0.615627 0.691426
Amp=2  Pureceramic 1119012  1.148685 1.232959 1.360951
AFG 0.794602  0.815994 0.876741 0.968959
Pure metal 0.61188 0.628105 0.674187 0.744173
Amp=4  Pureceramic 1.412733  1.436529 1.505372 1.612828

AFG 1.001446  1.01851 1.067957 1.145271
Pure metal 0.772488  0.7855 0.823143 0.881901
Amp=8  Pureceramic  2.220503  2.23591 2.281716 2.355972
AFG 1.571296  1.582057 1.614321 1.667139
Pure metal 1.21418 1.222604 1.247651 1.288255

ly=0.4
1.435294
1.024498
0.784824
1.521217
1.084351
0.831807
1751212
1.244928
0.957569
2.455347
1.738327
1.342593

l,=0
1
0.713307
0.546804
1.199483
0.87013
0.655882
1.652242
1.219743
0.903452
2.801016
2.094046
1.531606

l,=0.1
1.033154
0.737369
0.564932
1.227673
0.889927
0.671297
1.673757
1.233888
0.915217
2.815541
2.10185
1.539549

[,=0.2
1.126254
0.804869
0.61584
1.308065
0.946683
0.715255
1.736141
1.275684
0.949329
2.858107
2.126377
1.562824

/,=03
1.265351
0.905569
0.691899
1.430903
1.033947
0.782424
1.833854
1.342601
1.002759
2925466
2.168211
1.599656

l,=0.4
1.436764
1.029489
0.785628
1.585709
1.144427
0.867072
1.96037

1.430657
1.071938
3.013625
2225871
1.647862
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conditions. The tables provide the frequencies for various amplitudes and small-scale
characteristics. The small-scale parameter has the effect of increasing the linear and
nonlinear frequencies of pure ceramic, pure metal, and AFG microbeams. The stiff-
ness of the microbeam is directly proportional to the small-scale parameter, resulting
in a rise in the frequency of the microbeams.

8.3.6 CONCLUSIONS

In summary, the key findings of this research may be summarized as follows:

e The study demonstrates that the primary and secondary frequencies of
clamped, simply supported, and clamped-simply supported microbeams rise
in response to the nonlinear amplitude, small-scale parameter, and the rate
of cross section change along the thickness (h).

» The impact of the rates of cross section changes (3, and 3,) on the AFG
microbeam may vary in certain situations.

e The impact of these factors on microbeams made of pure metal and ceramic.

8.4 CASE STUDY 2

8.4.1 INTRODUCTION

The suggested approach involves using a micro/nanobeam that follows the principles
of nonlocal strain gradient theory and von Karman hypothesis to study nonlinear
vibration and instability zones. The behavior of the beam is influenced by its size.
The micro/nano piezoelectric sandwich beam is affected in its axial direction by the
parametric excitation. Furthermore, the electric enthalpy energy density is used to
analyze the impact of flexoelectricity.

8.4.2 MATHEMATICAL MODELING

Figure 8.5 depicts the schematics of a micro/nanobeam, showcasing its axial length
(L) and breadth (b). Furthermore, the distance between the micro/nanobeam and
stationary electrode is shown as g. The micro/nanobeam is exposed to an external
parametric excitation load at a frequency of {2 [7].

The electric Gibbs free enthalpy density is used to analyze the impact of
flexoelectricity.

1 1 1
Gb == _EkijEiEj _EbifklEi,jEk,l +5Cijk

1€ii€u _eijkEiEjk — My (Ekgij,l - EijEk,l) (8.85)
E; and E; represent electrical field variables, ¢, denotes strain components, ¢, , and
E, , represent the strain and electrical field gradients, respectively. In addition, &, b,
and C, define the tensor for the dielectric constant, nonlocal electrical coupling
coefficient, and elastic stiffness, respectively. On the other hand, € and u,,, repre-
sent the parameters for piezoelectric and flexoelectric effects.

ijkl
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The electrostatic potential is calculated using the following equation:

4
+z L5+
h

P

2
ey L, 0w

8k, Ox’

fy O*w

V
z +-=, (886
2k,, Ox’ (8:56)

2

P=—|<

) €y 0w _
2ky, Ox*

The variables V, and h, represent the piezoelectric voltage and thickness of the
piezoelectric layers, respectively. Furthermore, the electric field and electric field
gradient may be obtained in the following manner:

g ey Ow my Ow Y,

E =— = 2 2
: 0z ki, Ox 2k,, Ox° b,

(8.87)
0’ e, 0°
E_ = —a—z‘f:kia—;f, (8.88)
33

8.4.2.1 Nonlocal Strain Gradient Theory

The equation may be expressed using the nonlocal strain gradient theory (NSGT) as
follows:
(1= (ea®) Vo, = (1-1°V?)(Cpey )+ 7 (e B + 1B, ) (8.89)

ijk

0
The symbol V = — represents the differential operator, C.,, is the elastic coeffi-
X

8 ijkl
cient, ea is a nonlocal parameter, / is the length scale parameter, and ¢, represents
the strain. It is important to note that when considering the length scale for piezoelec-
tric and flexoelectric effects, the value of ~ is equal to v = 1 —[*V?*. Otherwise, when
not considering these effects, ~y is equal to 1 (y=1).

This study uses the Euler-Bernoulli beam theory to determine the displacement
field in the following manner:

Uu=u—z—,v=0w=w (8.90)
Ox
Here, “u” represents the axial displacement and “w” represents the transverse
displacement. The von Karman strain-displacement theory yields the following
expressions:

Et)

ou  w 1(ow)
L= b 8.91
©x Ox ¢ ox* 2 [ 8x] (8:51)
2
Ep. = % = —ZT”: (8.92)

It is important to note that in the Euler-Bernoulli beam theory, the strain gradient in
the x direction is negligible compared to the strain gradient in the z direction and
may be disregarded. The constitutive equations for the piezoelectric Euler-Bernoulli
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beam theory, including the flexoelectric effect, are derived within the context of the
nonlocal strain gradient theory as follows:

2
(1—(ea)2 Vz)a ( l2V2)E5 + 7| e 2@0 H g;p] (8.93)
(lf(ea)z Vz)T ’y[,u 8—@] (8.94)
pevd 31 aZ

By substituting equations (8.87), (8.88), (8.91), and (8.92) into equations (8.93) and
(8.94), we get the following expressions.

2 ou O’w ow e, O*w
1—(ea) Vo, =(1-PV?)E| —— 72— n
(1= (ea)” 2o, = ) o Zax2+2[8x] e o
(8.95)
Hay 82_W VP)Jr & *w aw,
2k, Ox*  h, il ky, Ox*
O’w  p, Ow Ve
1—(ea)’ V2 O P W 8.96
( (ea) )T TN Tk 08 2k, 00k, (8:90)

Where N, M, and P, represent the stress resultants and are calculated as follows:
_h
_ 2
N.=[ ,2,+ o dz+ f o dz+ f a dz (8.97)
-z +h,,
M .
f L) dz+ f zoﬂder f 2o dz (8.98)
_h
P.=[ ; Todz + f (8.99)
By inserting equations (8.95) and (8.96) into equations (8.97)—(8.99), we may get that
(1 (ea) 92N, = (1-12¥*)|(EA) a“+ o +7(2be,,V, ) (8.100)
" | Ox ox
(1= (ea)’ 9° M, = (1-19?)|~(E1) AT WO B ECTRR T PR
" & Ox’ 7 ky, Ox° .
(1—(ea)2 v2)P = | —h,p s oW +2u,,bV, (8.102)
xxz k33 8)6 31

It is important to clarify that these phrases are introduced in the following manner:

(EA), =(E, A +E,A"), (EI) =(E,I+E,) (8.103)

Iso Iso

A =bh, A" =bh, (8.104)
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bh® 1 2
I=—, [=b|=h*h,>+hh>+=h’ 8.105
12 [2 g R I ( )

It is important to note that E,  and E, represent the Young’s modulus of the elastic
and piezoelectric layers, respectively. The governing equation is found using Hamil-
ton’s variational technique.

K—(U- - 1
5[ [k—(U—w)]ar=0 (8.106)
Here, variations in external forces are defined as follows:

6 war=["[ " 5W dxdt (8.107)

The equation is given by g = F, + F, 4+ Fcos§lt . Furthermore, the electrostatic and
Casimir forces are shown below:

bV, ) _
F = L’>2[1 +0.65 u] (8.108)
2(g—w) b
-
__ mhe i (8.109)
240(g—w)

The symbol 50 represents the vacuum permittivity, which has a value of
8.854x10 " C*N 'm . V_dc refers to the applied voltage on the elastic layer. More-

over, the Planck constant is & =1.055x107", and ¢ = 2. 998><1O8 — represents the
velocity of light.
The first form of strain energy may be expressed as:

6 [var=["[* f ] | b b e 8.110)

+h,,

The variation of kinetic energy is defined as follows:

0’u 0w
det fO 0( { ﬁ]l,[a —Déw
Here, I,, represents the axial inertia, /, represents the translatory inertia, and /,

represents the rotary inertia. These values are calculated using the formulas

1, =b(p,,h+pp2h,) and I, = %(,o,m}f +pp (2hp );) It is worth mentioning that

Su+|1 dxdt  (8.111)

P, and p, denote the density of the elastic and piezoelectric layers, respectively.
The governing equation for the micro/nanobeam may be obtained as follows:

ON.. 9
=1 [ﬁ] (8.112)
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M, 0P, 0w 0w o'w
w9 e |y +F +F +Fcosu=1,|—|—1,| —— 8.113
o ok ax “ [3t2 aeor) &1

The expression N may be represented in the following manner:

1 0° L ow 0w
N, =(EA), [ ] B[ St o 8.114)

Within the context of nonlocal strain gradient theory, it may be expressed as:
84
+
ox* ]
O*w

(82_

4 2
—(EI,, —gxiv ! # 3‘

—bh,

A=V

+(1-1V? )[

33

Ow [ L 0w, ow_ 0w
Ll;[ﬁx) ol [fO ox’ gy Ox (‘33)d]
82w_ ey (V)
ox*  2(g—w)

27 2 4

(EA),;

(8.115)

(eaz))[a 2|+ (1= (ea®)V?)(2be,,V,
Ox

[1+0.65%]+

240(g —w)* orr | 'lox*or’

The Taylor series expansions for electrostatic and Casimir forces are implemented
as follows:

1 2w 1 3wt 4wd swt 5wt 6w’
oW WA oW oW L O (8.116)
(g—w) & & & & & & &8
1 4w 1 10w® 20w 35w 56w°
LA L (8.117)
(g—w) & & ¢ g 8
1 6w 1 2w 56w’ 126w’  252w°
Wy oW o | LY - (8.118)
(g—w) & & & 8 8 8

8.4.3 SoLuTioN METHOD

8.4.3.1 Galerkin Technique

The Galerkin approach may be used to get an approximate solution for the simply
supported boundary condition. This solution can be written as follows:

w(x,1)= gb(t)sink%x (8.119)
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One may argue that ¢ ( t) represents the time-dependent unknown parameter, whereas
sin— x represents the spatial basis function. By replacing the Equation (8.119) with
equation (8.115), we get the following:

¢
a 2
B, B,, B,, B,, and B; are defined as follows:

B =2 4+B,¢+B¢*+B,¢ +B, =0 (8.120)

nm. ., 2\| AT »
B =(-1, -1, [T) ](1+(ea )[T) ] (.121)

**(El)eﬁc( yra4et )) Ik31 (L)(1+l( Ty

33

n n )’ nr NA
bh, For [ T+ 12[ 7r]) Dbe,V [ ”] 1+ea2[l] pde
ks L L 8
_ — 8.122
0.65 ,bV,’ _ 12ea’e,bV,’ _ 5.85ea’c,bV,’ n mhe _ ea’m’he ( )
82 gS g4 60 5 2g7
2 2
F cos Qt[ﬂ] 1+ ea’ [ﬂ]
L L
B — 6¢,bV,’ [ 8 J_ 0.65¢,bV,.’ [ 8 ]_ 30ea’s,bV,’ [ 8 ]_ 11.7ea’s bV, [ 8 ]+
} 2¢* 37w g 3m g° 3m g 3m
m*he [i 7 2lea’n’he [i]
6 8
24¢° 3w 12¢g 3T (8.123)
4 2 2 2 2
1.95¢,V. 19.5 v
B, =—(EA) |"T| L1t ea [ﬂ} 195V, [§]+ 93¢ &Vy, [3] (8.124)
x4 4 L 2g 4 g 4
B — &bV, [4} 0.65¢,V,,’ [4] 3ea’s,bV,’ [ 4] 1.95ea’s,V,’ [4 ] n
5 2 |7 T 4 T 3 s
2 L 2 L L ; L
8 s _ §_ § (8.125)
7he [i] _ ea’mhe [i}
240g* 12¢° (L
In addition, dimensionless parameters are added in the following manner:
Q
T = 5[’ ¢ = r’l/)’ r = g (8.126)

By using these dimensionless parameters and substituting them into Equation (8.120),
the governing equation for the micro/nanobeam may be derived as follows:

@ + 8% = —en, — 8772’(/)2 + 87731/13 +en,pcos2T (8.127)
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In addition, S, 7,, 1, 1;, and 77, may be defined as follows:

4w * B 4B 4B 4B,r*
Szz_wg W= =, 1, = 32’ 0y = 4’2,
Q0 B B, B BQ
ar =) ] @129
L L
= B

To investigate the parametric resonance of the system, the dimensionless frequency
is defined as follows:

S=1l+4¢o (8.129)

Here, o is defined as the parameter that represents the detuning.

8.4.3.2 Multiple Time Scales Method

The Nayfeh and Mook technique [8], which involves various time scales, is used to
tackle the fundamental issue. Subsequently, a collection of initial approximations of
the first order are taken into account as follows:

G (r,e) = Uy (T T )+t (T, T )+ (8.130)
In which:
I,=1, T =eT (8.131)

T, and T, were seen to differentiate between the rapid and gradual time scales. Using
Equation (8.131), the following determination may be made:

4 _d 4 D teD .. (8.132)
aT  dT, | dT,

2 2
& & d

=t €E£+...:D§+25DODI+... (8.133)
0 0 1

Therefore, by replacing Equations (8.132) and (8.133) into Equation (8.127) and set-
ting the coefficients of ¢’ and €' equal to zero, the following may be obtained:

e’ : D1y +w, Y, (8.134)
e' 1D, +1b, = —2D,Db, — 203, — 1,3, —0,Dyt, +n310,c0s2T,. (8.135)

The solution to Equation (8.134) may be obtained as follows:

¥, = A(T, )exp(iT, ) + A(T, )exp (iT, ). (8.136)
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The function A exhibits an unknown complex behavior, whereas A represents its
complex conjugate version. Substituting Equation (8.136) into Equation (8.135) yields
the following result:

D, 41, =[—2id —20A—3n,A°A+ %Z] exp (iT, ) —1,A" exp (3T, ) +

(8.137)
%Aexp (3iTO) +cc
Hence, the secular factor must be removed from the equation.
—2id (T])fZJA(T])fSn_;AzKJr%K(T]) =0 (8.138)

It is essential to take into account the polar form of function A( ) as shown next:

1
A(T) =S a(T,)exp|iB(T,) (8.139)
Where «(7;) and 3(7;) are actual functions. By substituting Equation (8.139) into

Equation (8.138) and then separating the real and imaginary parts, the following may
be obtained:

= Tasm(2ﬁ) (8.140)
a,@’—aa—l—%a —%acos(Zﬁ). (8.141)

Furthermore, in order to assess the steady-state response, it is suggested that o =0

and af=0. The modulation equations for the major parametric resonance are
obtained as follows:

[%‘]Sin(Zﬂ) 0 (8.142)
o +3%a2 —%“cos(Zﬁ) (8.143)

8.4.3.3 Trivial Steady-State Response
To assess the stability of the system, we use the Cartesian form represented by the

. 1 D\ g . . .
equation A = 5( p —zq)e ), We then substitute A into Equation (8.138) as shown
[7,9]:

. . 3 . : .
1(p’—zq'>—ﬂ(p—zq)+%(p2 -q —21pq)(p+zq)+%4(p+tq):0 (8.144)
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To characterize the autonomous form of the system, it is important to take into
Lo o o . . .
account the value of 7,, which is equal to 7 By substituting this value into Equation

(8.144), the following derivation may be obtained:

/ o 31, 2 2\ Ty
=——q+—q(p’+q )=+ 8.145
r AR q(p q ) 44 ( )
g =Zp-2L p(p*+a)-Lp (8.146)
2 8 4

The last phase involves assessing the instability analysis of the system, specifically
focusing on the unremarkable steady-state response of the micro/nanobeam. It is
assumed that both p and q are equal to zero. Moreover, the Jacobian matrix of Equa-
tions (8.145) and (8.146) is defined as follows:

dp' dp’ o
dp dq| 0 2 4
dg' dg'| |0 _m

dp dg) 12 4

(8.147)

8.4.3.4 Non-trivial Steady-State Response

In order to ensure the stability of the piezoelectric micro/nanobeam, it is necessary to
reset the matrix determination to zero. In a non-trivial, steady-state solution, the value
of a is not equal to zero (== 0.). Therefore, it may be worded as follows [7]:

[%‘]Sin(Zﬂ) 0 (8.148)
o+ 20ar ~Mcos(25) (8.149)

The trigonometric function sin*B+cos’B=1) may be used in Equations (8.148) and
Equation (8.149) and so can be obtained as follows:

[0’ +—3g3 az] = (_774 )? (8.150)
377 : n
B — (24)2

[O‘-‘r 2 ] (4) (8.151)

The expression for the detuning parameter at the positive bifurcation point is obtained
by setting a equal to zero.

o=+ (%4)2 (8.152)
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8.4.4 ResuLts AND DiscussioN

In this part, the outcomes and numerical findings are thoroughly examined and
deliberated upon.

8.4.4.1 Numerical Results

The material qualities and geometrical requirements reported in Table 8.6 are
assumed for the current investigation. In addition, a simply supported border condi-
tion is used for this study. Figure 8.6 demonstrates the influence of flexoelectricity

TABLE 8.6
Material and Geometrical Properties of the Isotropic and Piezoelectric
Layers [10]

Silicon PZT-5H
Young’s Modulus 210 GPa 126 GPa
Gap 92 um -
Thickness 57 um 0.57 um
Width 5 mm 5 mm
Length 20 mm 20 mm
Piezoelectric Constant - c
—6.35—
e
Flexoelectric Constant - C
=7
—107=
m
Dielectric Constant - C
1.3x10°% —
Vm

10,315 T T . . |
g e T
—a— iy, = -Se-7
—e—;[;1=-10u—?
= 1031 — ey = 1567 |
]
Z
=
=
ey
B4
& 10305 4
=} A
2
Wy
=
L)
£
jm]
10.3 -
10,295 . L L 1 1
1 2 3 4 5 I3 7
Thickness 1078

FIGURE 8.6 The dimensionless frequency against the thickness of the simply supported
beam considering different flexoelectric parameter.
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on the nonlinear vibrational characteristics of a micro/nanobeam that is simply sup-
ported. The phenomenon of flexoelectricity results in an increase in the stiffness of
the beam. Additionally, when the flexoelectric parameter rises, the dimensionless
frequency also increases. It is important to acknowledge that flexoelectricity plays
a significant role in thin beams. When the thickness of the beam grows, this impact
may be ignored.

(ea =800e—6,l = 1.86—3)

Figure 8.7 illustrates the relationship between the dimensionless frequency and the
V.- When the direct current voltage (V,,) rises, there is a drop in the dimensionless
frequency. Furthermore, the dimensionless frequency decreases as the V, increases.
With the rise in V,,, the structure exhibits a higher degree of flexibility.

Figure 8.8 demonstrates that the pull-in voltage falls as the space between the
sandwich beam and stationary electrode shrinks. Moreover, Figure 8.8 showed that
when V,_increased, there was a corresponding drop in dimensionless quantity.

Figure 8.9 demonstrates the impact of the piezoelectric parameter on the fre-
quency that is not expressed in specific units. It can be seen that the piezoelectric
parameter enhances the structural rigidity and raises the dimensionless frequency.
The impact is more pronounced for the slender beams.

A graph is drawn to examine the impact of the length scale parameter on the non-
linear behavior of an electromechanical micro/nanobeam by comparing the dimen-
sionless frequency with the nonlocal parameter. Figure 8.10 demonstrates that when

Dimensionless Frequency

16 18 20

FIGURE 8.7 The dimensionless frequency versus the considering different piezoelectric voltage
V,..(thickness of the beam assumed (1—77um)) for S-S BC.
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FIGURE 8.8 The relation between the dimensionless frequency and the V, consid-
ering a different gap between the sandwich beam and stationary electrode for S-S BC
(V, =2,ea =800e —6,] =1.8¢ — 3).

Dimensionless Freguency

=1

1

1 2 3 4 5 i 7 ®
Thickness T

FIGURE 8.9 The relation between the dimensionless frequency and the thickness of the beam
for different piezoelectric parameters (ea =800e -6,/ =1.8¢—-3,V,=0,V, = O).

the length scale grows, the dimensionless frequency also increases. Furthermore, the
dimensionless frequency drops as the nonlocal parameter increases.

Figure 8.11 illustrates the impact of adding different parametric loads. Increasing
the magnitude of external parametric stresses results in the expansion of stable areas.
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FIGURE 8.10 The relation between the dimensionless frequency and the nonlocal parameter
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FIGURE 8.11 The amplitude response against the detuning parameter applying a different
parametric excitation (ea =800e—6,] =1.8¢— 3).

Figure 8.12 illustrates the influence of the piezoelectric parameter on the ampli-
tude response and the zones of instability. The gap between the stable and unstable
solution decreases as the piezoelectric parameter rises. Therefore, it can be seen that

the piezoelectric parameter significantly influences the dynamic instability of elec-
tromechanical micro/nanobeams.
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FIGURE 8.12 The effect of piezoelectric parameter on the amplitude response against the
detuning parameter (V, =V, =1l,ea =1.5¢—3,l =1.8¢—3,F = 0.05).
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FIGURE 8.13 The effect of v, on the amplitude response against the detuning parameter
(V, =1V,ea =1.5¢ -3, =1.8e - 3).

To analyze the impact of varying voltage on the elastic layer, a graph is generated
to illustrate the amplitude response in relation to the detuning parameter. Figure 8.13
demonstrates that raising the applied voltage on the elastic layer expands the area
where stability is maintained and results in a decrease in the stiffness of the beam.

Figure 8.14 illustrates the impact of the spacing between the sandwich beam and
stationary electrode on the areas of dynamic instability. While the gap does not
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FIGURE 8.14 The effect of gap on the amplitude response against the detuning parameter

1
-1 0

Dctuning Paramcter o
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FIGURE 8.15 The effect of length scale parameter on the amplitude response against the

significantly alter the instability of the system, widening the gap reduces the ampli-
tude response.

Furthermore, in order to examine the impact of the length scale parameter on the
vibrational characteristics of the electromechanical system, the amplitude is graphed

it can be seen that the stable zone decreases in size.

against the detuning parameter in Figure 8.15. By raising the length scale parameter,

Figure 8.16 illustrates that the size of the stable area expands as the piezoelectric
voltage rises. The softening behavior might be identified or acknowledged.
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FIGURE 8.16 The effect of piezoelectric voltage on the amplitude response against the
detuning parameter (l =1.8e—3,ea=15e¢—-3,F=0.05V, = IV).
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FIGURE 8.17 The effect of direct current voltage on saddle node bifurcation points for differ-
ent values of force amplitude against the amplitude response (U = +5).

Figure 8.17 illustrates the saddle node bifurcation point for different levels of
force amplitude in relation to the amplitude response. It is evident that the amplitude
response diminishes as the V,_ rises. Put simply, changing the direct current voltage
(V) would result in the occurrence of a saddle node bifurcation point.

Figure 8.18 depicts the relationship between the force amplitude and the amplitude
response for various V. levels. Furthermore, it can be inferred that the amplitude
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FIGURE 8.18 The force amplitude against the response amplitude for different values of V,_
(U = 75).
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FIGURE 8.19 The dimensionless velocity against the dimensionless deflection for V, =1V

response diminishes as the V, grows, and the location of the subcritical pitchfork
bifurcation point remains the same.

Figures 8.19 and 8.20 show the phase portrait of the electromechanical micro/
nanobeam for various V. values. The location of the saddle node and center varies
as the V,_ increases.
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FIGURE 8.20 The dimensionless velocity against the dimensionless deflection for V,, =20V.
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8.4.5 CONCLUSION

The primary outcome of this investigation may be obtained in the following manner:

* The dimensionless frequency of narrow beams rises as the flexoelectric and
piezoelectric parameters increase.

* The pull-in voltage diminishes as the distance between the sandwich beam
and stationary electrode decreases.

* The dimensionless frequency and instability areas are significantly affected
by the length scale and nonlocal factors.

* By increasing the piezoelectric parameter, the distance between the bifurca-
tion sites is reduced.

» The stable area expands as the applied voltage on the elastic core and piezo-
electric layers increases.

8.5 CASE STUDY 3

8.5.1 INTRODUCTION

The study focuses on investigating the dynamic instability and vibration of function-
ally graded (FG) porous sandwich nanobeams, which are supported by a viscoelastic
foundation and subjected to an axial harmonic load, based on the nonlocal theory.
This article utilizes the Timoshenko and nonlocal continuum theories to include
shear deformation, rotational bending, and small-scale effects.
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8.5.2 THEORY AND FORMULATION

The problem’s layout is shown in Figure 8.21 and Figure 8.22. The nanobeam is com-
posed of a porous core (/,) and two face layers (/,) that are tightly fused together.
The sandwich FG porous nanobeam, with a length denoted as L, is experiencing
an axial harmonic load. The load has a frequency denoted as 2 and an amplitude
denoted as N,. The Timoshenko nanobeam under investigation is positioned atop a
viscoelastic foundation characterized by the parameters &, and c, [11].

(Nzcos(t)) (N4cos(0t))

(c) distribution 3

FIGURE 8.22 The cross section of FG porous nanobeam with different porosity distribution
pattern.
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8.5.2.1 Nonlocal Nanobeam Model

In the classical continuum theory, it is understood that the stress at a certain point
x is only connected to the strain at that same location. Contrarily, according to the
nonlocal elasticity theory, the stress field may be expressed as follows:

o= [ all'=x.7)T(x)ax’, (8.153)
&4
=" (8.154)

The symbol T (x) represents the classical stress tensor at a certain position x, whereas

the symbol o (|x' — x|) stands for the nonlocal modulus. Furthermore, ¢, represents a
coefficient associated with the material, whereas a and L correspond to the internal
and exterior characteristic lengths, respectively. The nonlocal constitutive relations
of a beam may be mathematically represented as follows:

2
7, —(ea) % =Ee, . (8.155)
, O E(Z)
- = , 8.156
TXZ (eﬂa) ax2 2 (1 + ’U) ’sz ( )

The variables o, and 7 represent the axial and shear stress, whereas ¢, repre-
sent the axial and shear strain. Additionally, E and v denote Young’s modulus and
Poisson’s ratio, respectively.

8.5.2.2 Porosity Distribution

The material properties along the z-direction of the porous core exhibit fluctuation,
which allows for the determination of material parameters, such as Young’s modulus
(E), mass density (p), and thermal expansion coefficient () [12].

E(z)=E [1—e,\(2)] (8.157)
p(z)=p[1—¢,\(2)] (8.158)
a(z)=a,[1-e,\(z)] (8.159)
Where:
cos 71'i , distribution 1
A (z) =Aicos|m ﬁ + % , distribution 2 (8.160)

A, distribution 3
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The values for e, and e, are obtained from the open-cell metal foam model.

e —1-L2 (8.161)
e =1- e, (8.162)
1(2 2 Y
A_i—[—,/leo —+1} (8.163)
e() e() @

The variables E,, p,, and o, correspond to the highest values of Young’s modulus,
mass density, and thermal expansion coefficient of the porous core, respectively. On
the other hand, E, represents the minimum value of Young’s modulus.

8.5.3 EQUATIONS OF MOTION

This work uses the Timoshenko beam theory to analyze the impact of shear defor-
mation on the FG nanobeam.

u (x,z,8) = u(x,1)+zp(x,1)
Uy (x,2,1)=0 (8.164)
u (x,2,1) = w(x,1)

The displacements along the x, y, and z axes are represented by u,, u,, and u,, respec-
tively, in Equation (8.164). The displacements of the beam are characterized by the
axial displacement (u), transverse displacement (w), and rotation of the cross section
(&). The normal and shear strains and stresses may be determined using the nonlin-
ear von Karman strain-displacement theory.

2
€ (x,t) = Ou 1[8W] +Z@_ga

“ox ' 2lar) o (8.165)
¥ (x,t) = <,0+a—w
® Ox
» 0%
Uxx - (eoa) 20( = E(Z>[8XX (x’t> —Oé(Z> AT(Z)]’
SO Lk e
Xz 0 P 2 _2(1+U)7u

Where:

T, 4T, T (8.167)
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The variables 7, and T denote the temperature of the upper and lower layers of the
nanobeam, respectively. The strain energy of the Timoshenko nanobeam is expressed
as follows:

U= j:)Lf (0,6, T 7.7, )dAdx
’ (8.168)
L Ou A 9w 8w
o fon o8l

The stress resultants (N, M, and Q ) may be represented in the following manner:

32]\’ 8u 1{ow) 0
N, —(e,a) o= Aot ax] +B, (,;j N’ (8.169)
62MX ou ow 890
Mx_(eoa)z axz Bll a—'_ [ax] +D11 8)(: MT (8170)
9’0,
0. —(e,a) 2. [ o ] 8.171)
)= [ E(z)a(z) AT (2)(1.2)dA
h,.
fé 'E,0,AT (2 1zdz+f AT(2)b(1,2)dz+  (8.172)
2

h(

fig . ElalAT(z)(l,z)dz
f

2

K represents the correction factor for shear. AU, s and D represent the stiffnesses
assomated with extensional, bending, and bendmg—extensmnal coupling, respec-
tively. The values are computed using the following formula:

h,
A“:fé Ebdz—i—f bdz—l—fﬁn Ebdz
BH:IZE: Ebzdz—i—f bzdz—i—fiLlEbde

i (8.173)
D“:fé 'E,b2? dz+f 2)b’ dz+fw Eb?* dz
ASS:Z(I:—U) f% Ebdz—i—f \ bdz+f% Ebd:
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The kinetic energy of a FG nanobeam is determined by the following
Kﬁ]flf auszraMyz Ou,
“2Jod | o ot ot

The potential energy resulting from external forces and the elastic basis is mathemat-
ically represented by the following:

W=

The equation of motion is derived using Hamilton’s concept

+|— dA dx

(8.174)

d 8.175
o | | (8.175)

2 2
N cos(Qt))[ ] Cd[(?)—v:]w—%kwwzékp[a—w]

[Fo(u—Kk-w)ar=0 (8.176)

By replacing the Equations (8.168), (8.174), and (8.175) with Equation (8.176), we get
the equations that describe the motion

2 2
S ON, 0u 0%y

02 a2 8.177
ox 2o e (8.177)
0 Ow) , 99 O'w w O*w ow
owi—I N, —= L] —+kw—k —+(N 97)) PAAIp s
w ax[ x 8x}+ o 0 52 +kw—k, pye + (N, cos()) €
(8.178)
3M 821/{ 82@
bp: —==0 =l —5+L,—F 8.179
® ox 0, Lo +1, o7 ( )
Where:

A (l,z, z’ )bdz + fé’p@) (1,2, z° )bdz +
2

h,
(10,11,[2) = fzw
2
—h,

(8.180)
fz A (1,z,zz>bdz

P b

By excluding the rotational and in-plane inertias, Equation (8.169) yields the stress
resultants as follows:

ou ow) oL r
—+— +B,——N 8.181
Ox [Bx] " ox ) ( )

I &*u

N, = (eoa)2 0 W

11
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ou ow ¢ T
M, =B, |—+~ +D, == —M" +
x 11 ax [ 8)6 ] 11 8)(: x
0? 0? 0 0 0 8.182
1, Zv—l—kww—kp 8):; +(N, cos(Qt)) %_5[1\," 6_2’]_,_ ( )
(e,a) oo
? oxor’

By inserting the expression for Q from Equation (8.179) into Equation (8.178) and
using the stress resultants, the dimensionless equations of motion are obtained, rely-
ing on the subsequent non-dimensional parameters:

eoa
x=XL, w=Wr, t=rtt,, y=->,
L
112 IOL4
Dy——=\=p 1,= (8.183)
11 7
L kI’ I? I
—k,=K,, P :Kp, N,—=N, P=Q1, c,—=C,
H ut,

Notably, the impact of the nonlinear damping factor is disregarded, resulting in the
dimensionless equations:

2 2 2 3 3 3
812/7A“r fl [a_w] 8V§/78”L 18_<de6W+L Nxdxavg
or 2u Jo |\ 0X 10).¢ p Joox  ox>  puJo 0X
Ldp o'W o'W ow
T C 1K, WfKPWJr(NCOS(PT))WJr 5
A fl [a_w]2 o'W _B\L (10p JOW L 1 OW
L 2u Jo |l 0X ox* o Joox  axt opdo T oxt | 0
o'w oW o*'w o*'w O’'w
+K -K +(Ncos(PT))—+C, ———
oxtor Ko xr Koy VeI G G g s
(8.184)
2
ow 1oy (8.185)

ksAssra_X + kaAsss" 8X

In order to solve the equations of motion, the Galerkin method is used.
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W(X,7)=W(r)¢(X) (8.186)
o(X,7)=5(7)y(X) (8.187)

By replacing Equations (8.186) and (8.187) with Equations (8.184) and (8.185), we
get the following:

MW+K,(Ncos(Pr)|W+CW* +C,SW+KW+KS+K,W+KW+ (8.188)
CW=0

C,W+C.S=0 (8.189)
Where:
M:U()'&dxl—yzuo'gﬁ”(pdxl, K, :lﬁl¢”¢dx]—72[f0'¢<4>¢dxl
K, = %NI[ Jiooax|-|[, ]¢%dX]], K,

[ fia-|fLoea]

R R N

, %[[ﬂwfdxf()‘(d)asd)f}
| [l rax [ x|
€, = [l ax [ @ roax] | [lwrax [ o

c, = U;Cﬂﬁz dX]—72 {cdfo1 ¢”¢dx}

C, = lfolkxAssrtbgﬁ dX], C, [j;‘[LksAssqp%w ]qbdxl
(8.190)

By substituting Equation (8.189) into Equation (8.188), we get the nonlinear equation
of motion.



Dynamics of Nonlinear Smart Continuous Structures—Beams 309

MW+ K, (Ncos(PT))W + KW +C,W+CW +CW* =0 (8.19])
Where:

C C
K=K+K+K-K C=-C (8.192)

5 5

The eigen functions corresponding to hinged-hinged boundary conditions are for-
mally defined as follows:

(b(X) =sin (1X)

and ¥(X) = cos(rX) (8.193)

The dimensionless natural frequency of the Timoshenko nanobeam is determined in
relation to its free vibration.

O = (8.194)

By using the mathematical technique of perturbation theory with the use of a pertur-
bation parameter €, the governing equation produces the following result:

W 2epuW +w’W +ec, cos (PT)W +ec,W* +&*c,W* =0 (8.195)

Where:
. C, K,N C o

= S c, = s cC, = —— R Cc, = 8.196
K 2eM ! eM M M ( )

8.5.4 SoLuTION METHODS

8.5.4.1 Multiple Scale Method

The technique of several scales is a very effective mathematical tool for solving
various nonlinear equations. It involves adding trial variables as distinct times-
cales, which frequently have physical significance on their own. The multiple scale
approach, developed by Mook and Nayfeh [8], allows us to get an approximate solu-
tion for Equation (8.195) in the following form:

W(r)=W,(T,.T,.T,) + W, (T,.T,.T,) + W, (T,.T,.T,) (8.197)
Where:

Iy=7 , Ti=er , T,= err (8.198)
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By replacing the equation represented by Equation (8.197) into Equation (8.195), and
subsequently for the identical power of &, the differential equations are as follows:

s (& + D)W, =0 (8.199)
e': (& + D, )W, = —2D,D,W, — e, W,” ¢, cos(PT) W, —2u.D,W, (8.200)
e : (& + D)W, = —2D,D,W, —2D,D,W, — D’ W, — 2¢,W, W, — c;W,’ — 8201
¢, cos(PT)W, —2[iD,W, —2iD,W,
The complex version of Equation (8.202) is used to solve Equation (8.199).
W, = A(T,.T,)exp[iwT, |+ A(T,.T, ) exp|—icT, | (8.202)

Where A and 4 are complex conjugates. Equation (8.200) is expressed in the follow-
ing format:

(674070, =50 ), (e 41
1 (8.203)
-6 [Aexp( (&+P)T,)+ Aexp(i(P— w)To)}-i-cc

Where cc represents the complex conjugate of the previously given variables. By
establishing the detuning parameter (¢ ) and setting P = 2w + o, we eliminate the
secular and small divisor components of Equation (8.203) in the following manner:

A 1 A Lo
—2iw(D,A+uA)—Ec,A e =0 (8.204)
The answer to Equation (8.201) is as follows:

_ A (5P
_—zp(p+2@)exp[l(w+ ) ]

By substituting equations (8.202) and (8.205) into Equation (8.201), the secular terms
of the differential equation of motion may be eliminated. This yields the following:

3c 5 [ exp[leT 3AZ]+cc (8.205)

ciA 10c;AA

D}A+2uD,A+2iOD,A+ —
: : T2(2pt+4po) 32

+3¢,A’A=0 (8.206)

Consequently, we combine Equations (8.204) and (8.206) in order to eliminate the
terms DA and D,A.

2

IOc2
3&?

_ 2

2iD, A+ APA—

A+|3¢c, — Aexp[laT] 0 (8.207)

Cl
3247 W
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Using the multiple-scale technique, Equations (8.204) and (8.207) represent the first
two terms.

2

) 3 10¢2] o+
2i0D, A + 3; — A+ e aa-|%a

A

L 3¢, — AexplioT,|=0 (8.208)
w W

In order to solve Equation (8.208), we must evaluate the following solutions for A
and A:

1 - 1
A:Ea exp[iﬁ} , A :Ea exp[—iﬁ] (8.209)
Here, “a” and “3” represent the amplitude and phase angle of “A” and “A”. By
substituting equation (8.209) into equation (8.208) and then separating the real and
imaginary components, we get the governing equations for variables o and 3.

aB’=Ha+H,a’ + Hyacos|y] (8.210)
a'=H,a—H,asin|y] (8.211)
Where:
_ 3¢ B e’ _ 3%, B 5¢°¢; _ e[, _go
Yoeadd 207 T 8h 12807 T 4w 207 (8.212)

H,=—cii, ~y=cot—203

Finally, by assuming that a’=0 and ' =0 (’y/ =co—20 '), the steady-state
response of the nanobeam may be expressed as follows:

[H1 %]a+H2a3 + H,acos[v]=0 (8.213)
H,a— H,asin[y]|=0 (8.214)

The investigation of the instability and bifurcation zones of the Timoshenko
nanobeam heavily relies on both the simple and complex solutions of the beam. In
order to get a solution that is not trivial (where an is not equal to zero), the trigono-
metric function cos’ [y|+ sin® [y] =1 is used in Equations (8.213) and (8.214).

2
[[H1 ET(T]aJera‘?] +(H4a)2 = (H3a)2 (8.215)

The non-trivial solution has a response amplitude (a) given by the following:

1
2
HL[%O—HI ey ]] (8.216)
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The simple solution of the system is found by using the Cartesian form of the solution
. S 1 . .
of Equation (8.208), which is given by A = E(p — zq)exp[zﬂT, ]

=328’ [P’ p— 645’ p + 64ic iy’ p— 8’ olde, p +16ed’c,p+3e°c] p
+32i’ P07 q +
(8.217)
64iBe’q +64e 1y’ q — 8ic” odc,q +16ied’c,q — 3is”clq +

64i°p' +640°q" =0

In order to get a self-governing version of Equation (8.217), it is necessary to substi-
tute B with 0/2. The imaginary and real components of Equation (8.217) are once
again separated, leading to the following:

1 e flq c'ocq ecq  3eclq .
! 1 1 1
= —eog— & _ & e (8.218)
P77 00 T T 4 e P
, ei’p eloep eop 3clp .

c 8.219
2w 8yt 4o ean M (8:219)

The Jacobian matrix of equations (8.218) and (8.219) may be obtained.

—efi 1 ep?  loc, e,  3elc
= 272 2 10 R80T a2 A 3
J= LEH e G 3e7q 2 20 8w 40 64w
—€co - N
2 20 8 40 640 —Ep
(8.220)

By computing the determinant and trace of matrix J, we may determine the stability
zones of the system by assuming positive values for .

2 2
3ec? c? co
A=420" +|lod+ef> ——L | —L|1— 8.221
a %0 "4l 2 (8:221)
T=-2¢/ (8.222)

8.5.5 ResuLts AND DiscussiON

This section will provide numerical data illustrating the instability and nonlinear
vibration of a Timoshenko FG nanobeam subjected to a harmonic axial load. The
findings will be presented in the form of figures and tables.

8.5.5.1 Numerical Results

The factors studied for analyzing the stability and bifurcation zones of FG sand-
wich porous nanobeams include porosity, nonlocal coefficient, viscous-Winkler
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parameters of foundation, temperature, slenderness ratio, thickness ratio, and ampli-
tude of parametric excitation.

E=200GPa, v=03, p=7850%8  az12x107°c!
-
b=2nm, h=4nm, L=10h,  h =07h  k,=5x10°Pa, ~’=l,

N=8nN, =05 k=

0 s

s c,= 5%107° Pa.s,

o A lw

T, =100 °c, T, =200 °c =0.05

Nevertheless, these factors might be modified in order to analyze their impact.
Figure 8.23 demonstrates the impact of porosity distribution on the curve of the
amplitude-detuning parameter. Based on Figure 8.23, it can be deduced that
modifying the structure of the porous core will not affect the behavior of the
nanobeams. Given this circumstance, an additional study will be undertaken just
focusing on the initial porosity distribution. This work used a continuous line to
represent stable solutions, whereas dashed lines are utilized to represent unsta-
ble solutions. When observed, two stationary points are formed for the negative
and positive values of the detuning parameter. Initially, when the value of ¢ is
increased, the stable branch of the trivial solution undergoes a transformation,
resulting in the presence of both stable and unstable branches. This indicates
that the point is undergoing a supercritical pitchfork bifurcation. Regarding the
second issue, specifically with subcritical pitchfork bifurcation, the reduction
of the detuning value leads to the creation of two unstable solutions. Subcritical
pitchfork bifurcation involves the first appearance of unstable equilibrium points
when a parameter is modified, while supercritical pitchfork bifurcation entails
the emergence of stable equilibrium points initially. These bifurcations represent
significant changes in the behavior of dynamical systems when parameters are
modified.

Figures 8.24 and 8.25 illustrate the impact of the porosity factor ¢, on the bifurca-
tion and instability states of the FG sandwich porous nano Timoshenko beam. Due
to the inverse link between response amplitude (o) and stiffness, it can be inferred
that an increase in the porosity coefficient leads to a rise in the non-dimensional
amplitude («). Furthermore, the region of instability will become more pronounced
as the value of ¢, increases. As seen in Figure 8.26, an augmentation in the porosity
coefficient will cause the supercritical and subcritical pitchfork bifurcation points to
migrate towards the right.

Figures 8.26 and 8.27 demonstrate the impact of the nonlocal component on the
nonlinear stability of a nanobeam. This is done by examining the effects of fixed
values for the detuning parameter (A) and forced amplitude (c,), as shown in the
corresponding figures. Both images demonstrate that increasing the value of the
nonlocal parameter results in a decrease in the non-dimensional amplitude (o).
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FIGURE 8.23 Non-dimensional amplitude versus detuning parameter curves different poros-
ity distributions.
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FIGURE 8.24 Parametric curves illustrating the relationship between non-dimensional ampli-
tude and detuning parameter, specifically examining the impact of the porosity coefficient.
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FIGURE 8.26 Non-dimensional amplitude versus detuning parametric curves: effects of non-
local parameter.

Another evident observation is that modifying this parameter has no impact on the
stability and bifurcation points of the system. Based on the information provided
in Figure 8.26 and Figure 8.27, it can be seen that taking into account the nonlocal
parameter will result in a reduction in the non-dimensional amplitude.

While prior characteristics have little influence on the stability and bifurcation
states of a nanobeam, the Winkler and damping parameters of the foundation have a
crucial role in determining the behavior of the Timoshenko nanobeam.

Figure 8.28 displays the relationship between the non-dimensional amplitude (a)
and the forced amplitude (c,) for different Winkler coefficients (k). As seen in Fig-
ure 8.28(a), the supercritical bifurcation point will exhibit a greater level of excitation
as the values of the Winkler coefficient grow. Similarly, Figure 8.28(b) exhibits the
similar behavior, and as the forced amplitude increases, the bifurcation points move
towards the right. Furthermore, when the value of k rises, the size of the non-triv-
ial unstable branch expands, leading to a corresponding increase in the location of
another bifurcation point associated with a saddle node.

Various values of the damping coefficient (C,) are examined to assess its impact
on the instability of a sandwich nanobeam. These findings are then visualized in
Figure 8.29. It is possible that a decrease in the damping coefficient might result in a
higher non-dimensional amplitude of excitation in both graphs. Moreover, by raising
the coefficient constant, the bigger value of forced amplitude leads to the presence of
all three kinds of bifurcation points: supercritical, subcritical, and saddle.
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Figure 8.30 illustrates the influence of temperature variations on the frequen-
cy-response curve. Clearly, a higher temperature results in a greater non-dimensional
amplitude of the solution. Furthermore, it is shown that the position of the bifurcation
points varies depending on the temperature values. The distance between two sites
of division, which is associated with the unstable basic solution, grows as the tem-
perature rises.

Figures 8.31 and 8.32 illustrate the impact of geometric parameters, namely, the

thickness ratio (=) and slenderness ratio (Z)’ on both the trivial and non-trivial

!
solutions. The graphs depict the relationship between the force amplitude of para-

metric excitation and the amplitude of the nanobeam. Both graphs exhibit two bifur-
cation points, namely, the saddle node and subcritical pitchfork. By examining the
impact of thickness and slenderness ratio on the stiffness of a nanobeam, it can be

inferred that an increase in the (h—L) and (;) ratio would result in a greater non-di-
s

mensional amplitude. Furthermore, when the detuning parameter is set to o = +25,

increasing the slenderness and thickness ratio results in the expansion of the non-triv-

ial unstable branch of the solution.
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8.5.6 CONCLUSION

The examination of this research yields the following findings.

e Decreasing the values of the porosity coefficient, slenderness, and thickness
ratio may result in reduced levels of nonlinear reactions.

* Among the factors that were evaluated, the nonlocal parameter had the least
significant effect on the instability and bifurcation state of the nanobeams.

* An elevation in the Winkler coefficient will lead to a decrease in the non-
dimensional amplitude and a displacement of bifurcation points towards the
right side.

e The dampening of the foundation has little impact on the dynamic response.
It has the ability to simply alter the location of the bifurcation points.

* The rising temperatures lead to greater amplitudes and an unstable trivial
branch of the nanobeams.
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Dynamics of Nonlinear
Smart Continuous
Structures—Plates

9.1 INTRODUCTION

The oscillation of plates is crucial in the analysis of practical systems, including bridge
decks, hydraulic structures, pressure tank covers, highway and airport pavements, ship
decks, aircraft, missiles, and machine components. The theory of elastic plates approx-
imates three-dimensional elasticity theory in two dimensions, allowing the deforma-
tion of each point in the plate to be described just by the deformation of the midplane.
A plate is a solid object confined between two surfaces. The separation between the two
surfaces determines the plate’s thickness, which is considered negligible relative to the
lateral dimensions, including the length and width for a rectangular plate and the diame-
ter for a circular plate. A plate is deemed thin when the ratio of its thickness to the lesser
lateral dimension (e.g., width for a rectangular plate and diameter for a circular plate)
is below 1/20. In this chapter, the governing equations of forced nonlinear vibrations of
rectangular plates are developed utilizing thin plate theory. The oscillation of plates on
elastic foundations and those subjected to in-plane loads is also described.

9.2 NONLINEAR EQUATION OF TRANSVERSE
VIBRATION OF PLATES

9.2.1 INTRODUCTION

This section examines the study of plate transverse vibrations under both free and
forced situations. The equations governing the plate’s movement are formulated
based on the concepts of Kirchhoff theory. Kirchhoff’s theory is relevant for the
analysis of thin plates, as it neglects the effects of rotational inertia and shear defor-
mation. Mindlin’s theory accounts for the influences of rotational inertia and shear
deformation. Mindlin’s theory is pertinent for analyzing structures with substantial
cross-sectional dimensions. The equations that describe the transverse vibration of
plates can be formulated as fourth-order partial differential equations. These equa-
tions are governed by eight boundary conditions at each extremity [1].

To elucidate the principles governing plate movement, it is essential to develop an
appropriate coordinate system. This system comprises the x coordinate, denoting the
plate’s length; the y coordinate, indicating the plate’s breadth; and the z coordinate,
representing the plate’s thickness or height. In addressing plate issues, the applied
loads and geometries are configured such that the displacements (u, v,w) along the
coordinates (x, y,z) are contingent upon the x,y, and z coordinates.
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9.3 NONLINEAR CLASSICAL PLATE THEORY

9.3.1 INTRODUCTION

Plates are planar objects with two dimensions significantly bigger than the third
dimension. They have the ability to endure several types of stresses, including ten-
sile, compressive, cross-plate, bending, twisting, and transverse shear forces. For
instance, a membrane is a planar structure that can only endure tensile and shear
forces acting on its central surface.

In classical plate theory, the middle plate is examined as a benchmark plate, align-
ing with the Kirchhoff hypothesis. Kirchhoff postulates the following [1, 2]:

1. The magnitude of deformation experienced by the middle plate is less than
the thickness of the plate.

2. The middle plate remains unaffected by bending and is considered to be in
a neutral state.

3. Avoidance of transverse shear forces is implemented.

4. Transverse tension is neglectable compared to other tension components.

However, laboratory studies indicate that traditional plate theory underestimates
deformation and overestimates natural frequencies, particularly at high oscillation
frequencies. Furthermore, in the context of composite materials, it is crucial to con-
sider shear stresses, which arise due to their relatively low shear strength. Alterna-
tive theories were offered to address the limitations of classical plate theory and
Kirchhoff hypotheses. One such theory is the first-order shear deformation theory for
homologous plates, which yields six partial differential equations.

The presence of significant elastic deformations and rotations in a structure with
varying thickness introduces geometric nonlinearities in the equations that govern its
behavior. When there are significant transverse displacements in a plate, the central
plate experiences strain and assumptions 1 and 2 become invalid. In order to deter-
mine the geometric nonlinearities of thin plates, the concept of van Karman strains
was previously introduced and explained.

9.3.2 THE NONLINEAR GOVERNING EQUATION OF A RECTANGULAR PLATES

The equations and boundary conditions that govern the static and nonlinear dynamics
of plates (as seen in Figure 9.1) are derived using a combination of classical and non-
linear plate theory of the van Karman type. Classical plate theory, as previously stated,
relies on Kirchhoff’s assumptions that the transverse sections of the plate are flat and
rectangular in relation to the reference plate, both before and after deformation.

The displacement field for the plate is often stated as follows:

ow(x,t
u, = u(x,y,t)—z%
8 ’
u, = v(x,y,t)—z—wa(; ) ©.1)

U, = w(x,y,t)
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FIGURE 9.1 Schematic of an isotropic rectangular plate, placed on a visco-Pasternak sub-
strate and under a distributed external force.

The displacement components in the x, y, and z directions, denoted as u,, u,,
and u,, respectively, are located within the range of Equation (9.1). The displace-
ment field described in Equation (9.1) states that transverse sections, relative to
the reference plate, maintain a flat and rectangular shape both before and after
deformation. To clarify, both normal transverse stresses and transverse stresses
are not considered.

Now, consider the Green’s strain-displacement connections in the Lagrangian
perspective and take into consideration the assumptions that govern von Karman’s
theory [3]:

1 1 > Ou  1(0u, ’
S T 5(”1,1 +uy, +u3,1“3,1) =u, +5(u3,1) =—+t=

o T ox 2\ ox ©92)
o o 1ow]
Too0x oxt 2\ 0x
1
€y TEn = E(”z,z Ty, + "’3,2"‘3,2) 9.3)
1
S 5(“3,3 tiy;+ u3,3u3,3> =0 9.4
1
€y =& =™ 5(”1,2 Uy, + ”3,1”3,2) 9.5
1
€ T &3 ™ 5(“1,3 tuy, + "‘3,1“3,3) =0 9.6)

1
€, =Ep= 5(142,3 +u,, + “3,2'43,3) =0 9.7
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The Hamilton principle is employed to derive the governing equations. Thus, the
Hamilton principle can be expressed in the following manner:

5f (T —m+W,,)dt =0 9.8)

th

Regarding Equation (9.8), T represents kinetic energy, m represents strain energy,
and W represents the work done by the external force.

ext
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In the context of Equation (9.9), N and M _ are defined as follows:

N xx h xx
N, :fiﬁ o, 1dz

2
ny UX)’

(9.10)

M.\:x h XX
My.v = f i’l Ty zdz

2
Mn U}ry

Regarding the Equation (9.10), N_, normal force, and M represent the values
exerted on the A-cross-sectional area. Next, we will utilize T to compute the kinetic

energy:
[I ii— I — 6u+[ ]
6T :*fA v+1 w6w+[ o —I]u] dA ©.11)
PRCA PR Pl
Ox > 9y Jdy

In order to determine the work done by the external force (W, ), we express it in the
following manner:

5 f W,di= [ i ;f(x, y.t) Swdxdyd ©.12)

By including the obtained Equations (9.9), (9.11), and (9.12) into the overarching
Equation (9.8) and setting the coefficients du, v, and éw to zero, we may derive the
equations of motion as follows:

Su: N, +N_ =Iji—I,

XXX

§v: N, +N, =Iy—I,

Xy, X Wy

(9.13)

XX, XX Xy, Xy )y Xy

Sw: M, +2M  +M_  +(N, W) +(Nyyw’y)’y+(N W’X).,v+

(Nyw, ) 4 f (eyat) = Lo+ 1, {3, 430, }+ L, + 1,5,
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And boundary conditions as follows:

u=20, Or (Nn)nx +(va)ny =0
v=20,0r (ny)nx Jr(Ny_‘,)n, =0

y

w=0,0r (M, +M, +N.w +Nw )n + (M, +M, +Nw )n =0

XX, X Xy, X

) 9.14)
S5 =0.0r (M, )n,+(M,)n, =0

0

(;y” 0, Or (M, )n, +(M,)n, =0

The governing equations of the plate in terms of displacement expressions are derived
in the following manner:

&u 9 Pu__ Owdw . Ow dw
A =5 +(A, +Ag)—— + Ay — + A, ——+A,—
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In Equations (9.15), (9.16), and (9.17), the values of A,_.]. and D, for a homogeneous
plate will be as follows:

I v 0
4,]= Eh2 v o1 0 9.18)
o 0 (1-w)2
D,]= Ly 4] (9.19)
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In Equation (9.18), E represents the modulus of elasticity, and v represents the Pois-
son coefficient. Furthermore I,1,, and I, are explicitly specified as follows:

2
[1y0,. L) = [p[lz, 2] dz= plh,O, %‘ (9.20)

|
ol (SIES

In Equation (9.20), the presence of symmetry results in /, being equal to zero. It is
important to mention that the value of /, will be zero when the density p remains
constant and the middle plate is chosen as the reference plate.

In the following, for a symmetrical rectangular plate supported by a visco-Paster-
nak substrate with isotropic and homogenous material under a distrusted, arbitrary
external force, the equations that describe the movement of the plate (9.1) can be
succinctly described as follows:

M M OM,
Pty 2 PMe Ty Dy D] Dy O D 00
Ox Oxdy Ay Ox ox) oyl Pay) ox| oy
0 ow O*w 9w o'w
Ny | =L 2| 202 25,2
oyl ¥ ox ox*or*  Oy*or

]+
9.21)

09

It is noted that the energy of nonlinear rectangular plate vibrations with significant
amplitude is mostly affected by the inertia of the plate, which has a negligible effect
on the energy in the middle.

Given the influence of the viscoelastic substrate (consisting of a spring and damper)
and the external force f, as shown in Figure 9.1, we can express the following:

f=kw—k 82_w+32_w +c 8_w+f 9.22)
YO axt eyt Cor ! '

The linear coefficient of the Winkler spring in the elastic bed is denoted as k,, the
Pasternak shear coefficient is represented by k., the elastic bed damping coefficient
is denoted as c,, and the external transverse force is denoted as f,.

Additionally, we can express the values for M, M)_y, and Mxy:
2 2
M, =-p|22 L
Ox dy
0w 0w
M =-D|—+4v——+ 9.23
yy [ayZ ax2 ] ( )
2
M, =-D(1-0)| Y
v Ox0y

The bending stiffness of the plate, denoted as D, is given by the formula

ER’ o . .
D = ———. By substituting the aforementioned equations for M _, M

12(1-v7) e 20
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M, into the governing equation, the equation of motion is derived by applying van
Karman’s nonlinear relationships in the following manner:

Ow o 0w  Owl | Ow |\ 0w | 0w ||,
axt  Toxtayt oyt ot Plox*ayt  By*oy?
0w N 82w] . aw] *wlc,, [8w]2 LG [8w]2 ow| . 0w Ow
G| q.2 2 d o |7 3215 | 3. Sl Al T a1t a2 5.
Ox ady ot| 0Ox"|2\0x 2 Oy Ox|  Ox™ Ox 9.24)
*w dw| Iw|c, [Ow : c, | OW oow| 9w ow 0w Ow
Ciy e e e e e R e ot oo
Oxdy dy| 9y | 2 (0x 2 | dy dy| ~ 0xdy Ox dy” Oy
o Pwlowl ow O ow 6_w[a_w]_
 ax* | dy “ ox Oxdy dy  * 9y’ | ox :
The coefficients c,, c,,, ¢,,, and ¢, are defined as follows:
Eh vEh Eh
i Rt il ey B

9.4 CASESTUDY 1

9.4.1 INTRODUCTION

This study examines the parametric vibration and dynamic instability of a rectan-
gular and symmetric magnetostrictive sandwich composite plate (MSCP) over a
visco-Pasternak medium. The MSCP is composed of three layers, with a magneto-
strictive layer encompassing the core and composites as its top and bottom surfaces.
The study focuses on the MSCP and its response to temperature variations, paramet-
rically stimulating forces, and magnetic loads. The analysis takes into account the
geometrical von Karman nonlinearity.

9.4.2 THEORY AND FORMULATION

Figure 9.8 displays a sandwich plate composed of three layers atop a visco-Paster-
nak medium. Figure 9.8 illustrates that the three layers stated are magnetostrictive,
forming the core of the sandwich structure. The top and lower faces are believed to be
composite layers. The MSCP has dimensions a for length and b for breadth. The core
has a thickness of 4, while the faces have a thickness of & 2 [4].

9.4.3 CoNsTITUTIVE EQUATIONS

The modelling of sandwich plates in this part utilizes the first-order shear deforma-
tion theory (FSDT). FSDT models are widely favored for their ease of analysis and
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.
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b

FIGURE 9.2 Schematic of a MSCP subjected to temperature increment, parametrically
exciting force, and magnetic field placed on a visco-Pasternak medium.

programming, making them very popular arithmetic models. The displacement fields
are provided according to the first-order shear deformation theory of plates.
(x.y.0)+ 2, (x,y.,1)

(x.y.1)+ 20, (x..1) (9.26)

w(x,y,2,1) = w(x,y,1)

it (x,y,2,t)=u

V(x,y,z.0)=v

The functions u(x, y,t), v(x, y,t), and w(x, y,t) represent the displacement com-
ponents parallel to the x, y, and z axes, respectively. The functions ¢, (x, y,t) and
o, (x, Y, t) represent the rotation angles of the normal vector with respect to the y and
x axes. The strain field for FSDT, which is not linear, may be mathematically repre-
sented using the von Karman hypothesis, as stated in reference.
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The equation that describes the relationship between stress-strain and the impact of
magnetostrictive material on it is represented as:

T Q?] QTz Q;{'ﬁ 0 0 & O‘lc 1 ¢
T 0, 0, 0% 0 0% a0, €3
Oo = Qis Q(zg Qgs 0 0 Yo (=10 AT |- €36 Hz (9.28)
Oy 0 0 0 Qfm QZS Vyz 0 0
o 0 0 0 0% 0%|y.] LO 0

o, represents stress while ¢, represents strain. The model shown above demonstrates
that the strain and magnetic field are mutually exclusive. In Appendix A, there is a
detailed explanation of the words Q° ;» which represent the converted elastic stiffness
coefficients of the core. The symbol AT denotes the temperature changes, which are
assumed to be unaffected by time. The symbol «; indicates the thermal expansion
coefficient. The magnetostrictive constant is denoted as e, and H_ represents the
magnetic field as:

ow(x,y,2.1)

H =KI(x,y,t)=K.C(1) py

9.29)
The equation presented involves the constant K, which is influenced by several factors
including the number of turns and the width of the coil. In this study, the variables / (t) s
w(x, Y, z,t), and C (t), respectively, denote the coil current, transverse displacement,
and control gain. It is worth noting that the control gain remains constant and is set to
1. Additionally, the product of K and C (t) is referred to as the velocity feedback gain.

The correlation between stress and strain of the face layer is expressed as follows [5]:

ol =c¢lef (9.30)

Let f represent the number of layers. According to Hook’s rule, we can deduce the
following:

xx ¢, ¢, 0 0 0% a,
n Cy € 0 0 Of1% a,,
o t=[0 0 ¢, 0 o0l{r,t-10 AT 9.31)
ol 100 0 ¢ o] |0
o | 100 0 0 elly| Lo
where
El _ I/IZEZ E2
11_1_V|2V21 12_1_V12V21 22_1_’/12V21
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Composite

FIGURE 9.3 Schematic of the angle of the fibers in the lamina.
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E,E,, v,,1,,G,, Gy, and G,; denote the material characteristics of the composite
layers, specifically graphite epoxy (AS/3501) as assumed in this paper. Additionally,
Figure 9.3 illustrates that the composite fibers are unidirectional, with 6 representing
the angle of the fibers relative to the x-axis.

The equation of motion may be derived by using Equation (9.32) using the energy
technique and Hamilton’s principle.

[“o(u—Kk-w)ar=0

9.32)

The variables U, K, and W symbolize the energy stored in a system due to deforma-
tion, the energy associated with motion, and the energy transferred to or from the
system by external forces, respectively.

The equations of motion may be derived by using Hamilton’s principle.

ON, ON, azu D¢
¢ —— 4+ = = p + : 2‘
Ox ady 8 ot
ON, ON, . o% >,
ox oy ‘o ' or
0 ow ow| 0 ow ow| 00
« —|N,—+N_ —|+—|N ——+N,—|[+—=+
8x[ tox Y (‘3y] 8y[ Tox 7 8y] Ox
2 2 2
Sk, w—k [‘Z Vf+‘2 ]+(N cos(m))
ow 0*w
e o b or
oM, o*v %,
et N i Sy W S AT St '8
ox Oy 2 Yort Tt o
oM_ oM 8%y 0%y
. i L0 = I, —+1, 2
Ox Oy Q,= Yot or

00,

dy

(9.33)
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Where (1,),1,,1,) represent the mass moments of inertia and are defined as follows:

L L3
1,.1,.L)= [ 2 "p (L2.2%)d 2 0. (Lz,27)d
(1,.1,.1,) f% p(zz)erf%p(zz)erf

—h,

5on(bed)ie 034
2 b

Where p, represents the mass density of the face layer and p_ represents the mass
density of the core layer. The force resultants Nij and moment resultants. The calcu-
lation of M;; may be expressed by using the displacement gradients, magnetic field,
and temperature in the following manner:

N, Ay A,
Ny A, Ay
Nw _ A Ay
M, B, B,
M,‘ B, B,
M, Bs By

Ae B, B, B
Ay B, By By
A B By By
Bg D, Dy, Dy
By, Dy, D, Dy
B, D, D, D

N oM
T T
N, M|
NT  MT
xy xy
L Qll
+ zhﬁ le
2
o |Qu
[ e
2 f 0
NP
N/
NP

>

=)
=

\éo rr)o
IR
XX XEX

:§ ‘viﬂ *g

0|l

0 |{a, {(1.2)AT(z)dz

Q66 0

o, t(Lz) AT (z)dz +

o, t(L,2) AT (z)dz

h, 0, O
Tty
= f h, O, 0O
2 0 0
0, 0|l
0, 0
0 0Okll0
0, 0]y
0, O
0 Okll0
’Mf n |63
’Mf = f 2h
M’ 2o

e (L)K.C(0) S d:

ow

(9.35)

(9.36)

(9.37)
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A., D., and BU. represent the stiffness values for extensional, bending, and bend-

§j> e
ing-extensional coupling, respectively. These values are specified in relation to the
lamina stiffness Qi,., which is given as follows:

h, hy
(48,0, )= [0 (1) [0 (1)
2 2
b

f:é_thiij (1, Z, zz)dz (i,j = 1’2’6)

(9.38)

The equations of motion (Equation (9.53)) may be reformulated in terms of displace-

ments (u.v.w) by substituting the expressions for the force and moment resultants
from Equations (9.35) to (9.37).

O*u  Ow O*w v Ow O*w
11 _2+__2 + 1215 o 5
Ox°  Ox Ox OyOx 0Oy Oyox
n [ O'u O 82w8_w ow 32w]
16

Oyox 0x>  0Ox* Oy Ox Oydx

¢ ¢ D¢, 00
_|_B X +B Y +B X Y
" ox? 2 oyox | dyox  Ox?
2 2 2 2
A, | Qe QO (O Ow O (9.39)
OyOx  Ox OyOx dy”  0Jy Oy

+
dy*  Oyox 0Oydx Oy Ox 0y°

[82u 0*v 0*v ow awasz
66 + o

9°¢ 0’9, 2’¢, 9’9,

+B *+ B > +B S —
Coyox P oyt |l oy Oyox
ON' ~ON' | (ON" ON’ Du 0%,
- + =l o+ —5

Ox ady Ox Oy ot ot
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A 8_211+8_W(92W LA 9’ +8_w82w
“lox®  ox ox? *|9ydx By dydx

[ u v Pwow Ow 32w]
+ A + .

Oyox Ox*  0Ox* Oy anax

o o ¢, 09,
8,20 45, 00 Beé[ o

o ox? OyOx Oyox  Ox’

Ou_ Ow I’w

+A
| ayox  Ox dyox

0*v  Ow O*w
gy 9.40
2 [8y2 Ox Oy’ ] (©-40)

Du v v ow  dwdw &6, . p 0’9,
“loy*  Oydx Oydx Oy  Ox 9y Poyox 7 oy
9 9 ¢, |[ONT  ONT
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g [P, ow P v, ow
16| 9yox ~ dx dydx 26 8y2 Ox (9y2
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Where
Oou 1 0w, ov 1 Bw (9u ow  Ow Ow
N =A,|—+=(—) |+A4,|—+= ATl
’ 12[8x 2(8x)] 22[8y 2 a Aﬂ‘[ ox Oy 8x]
9, 09, d¢, 09,
Ble+Bzz 8_y+BZ6 dy +E —N; —N;,
ou 1.0 ou Ow Owd O
u w u w W OwW
N, =Ag|—+ + +=(— —+—
» ‘“[ax 2(6 )} A26[ dy ( )] [a ox Oy ax]
99 8¢ d¢p. 0,
+By, —+ 4
* ox “ 9y T Cloy  ox

9.4.4 SoLuTioON METHOD

The governing equations of the sandwich plate have been computed under the “The-
ory and Formulation” section. The equations of motion were solved using the Galerkin
technique. The Galerkin technique is used to solve the governing equation of motion
under simple boundary conditions, assuming the answer to be the following [6]:

u(xy,) =37 737 Ulr]cos[ax]sin[3y]
v(eyr) =30 37 V [r]sin[ax]eos[y]
wlyt) =370 730 Wr]sin[ax]sin[gy]
(x wt) =322, Xt]eos[ax]sin[y]
(v,3,) =32 737 ¥ [t]sin[ax]eos[ 3]

a:—’ :—
& b

a

(9.45)

By putting Equation (9.45) into Equations (9.39) to (9.43), the resulting equations may
be stated as follows:

C,W +C,U+C,V+C,X+C,Y+CW=0
Co, W +C,U +CoV+Cp X+ CpY +Co W =0
Cy W’ +C,UW + C,VW + C, XW + C,.,YW + C, X +C,)Y
+C W+ C,,WW (9.46)

+Cy W +Cyy, WHCy, cos(Q2) = 0
C41W2 FCLUHCLV+C X +C Y +C,W =0
Cle2 FCUHCRV + G, X +CsY +C W =0
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The C; constants are extended in Appendix B. The variables (U,V,X,Y) were
obtained by computing them in terms of W.

U=S,W+S,W>+S.,W
V=8,W+S,W* +S,W
X =S, W+S,W* +S, W
Y =8,W+S,W+S,.W

9.47)

The S, constants are enlarged in Appendix B in terms of C,,.
Next, we replace Equation (9.47) into the third expression of Equation (9.46) to get
the governing equation of motion:

Wte(e,W+c, )W +w*W + K, cos(Q)W +eK,W? + KW =0 (9.48)
Where:

(C39 + C32513 + C33S23 +C34S33 +C35S43) c = C310 + C36S33

I C311 e C311
(_.L)Z — C38 +C36S3] +C37S41 , K] — C312 ,
C311 C311
K2 — C32S11 + C33S21 +C34S31 +C36532 + CSSS41 + C37S42
C311
K3 — C3l + C3ZSIZ +C33522 + C34S32 +C35542

C311

9.4.4.1 Multiple Scale Method

The approach proposed by Nayfeh and Mook [7], known as the multiple scale
method, is used to solve Equation (9.48). According to this approach, the expansion
of W is expressed in the form of a second-order approximation:

W(t) =W, (T,.T,.T,)+ W, (T,.1,.T,) + W, (T,.T,.T,) (9.49)
T, represents rapid time scales, whereas 7, and 7, represent slower scales that cor-

respond to variations in amplitude and phase resulting from nonlinearity, damping,
and resonances, respectively.

T,=t, T, =et, T,=¢t (9.50)

By substituting the Equation (9.49) into Equation (9.48) and equating at the same
order of €, we may get the following partial differential equations.

(w* + DOZ)WO =0 9.51)
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(w? + D,? )W, = —2D,D,W, — K,W,’ — K, cos(Q) W, — ¢, D,W; —c,Dyw, (9.52)
—2C,D,W,W, — C,D,\W,* — K,W,” — K, cos(Q) W, (9.53)

Initially, our objective is to find the solution to a partial differential Equation (9.51)
in the specified format.

W, = A(T,.T, )expiwT, |+ A(T,.T, ) exp[—iwT, | (9.54)

The function A is unknown and depends on 7, and 7,. The pairs (4, A) are complex
conjugates. By replacing the Equation (9.54) in the right-hand side of Equation (9.52):
(w* + Dy} )W, = —iw(2D,A+c,A) "™ — K,AA—(2ic,w + K,) A%e™"

1

_ . (9.55)
_EK] (Aet(w+SZ)TU +Ael(ﬂfw')TU )"‘CC

The function cc represents the complex conjugate of the previous terms. The resonance
conditions derived in this example are primarily the principal resonance 2 >~ 2.
Q=2w+eo (9.56)

o represents the detuning parameter. By omitting the secular and small divisor com-
ponents, Equation (9.55) may be simplified when Q ~ 2w.

1 —
fiw(ZDlAJrczA)fEK]Ae’“T‘ =0 (9.57)
The solution to Equation (9.52) is provided as follows:

W 2ic, ™M AT,] K, AT

‘ 3w - 20(Q+2w)

KzeZinO A [T

+ [ 3K,A[T|A[T, ]+ cc ©.58)

3w’

Similarly, by replacing Equation (9.54) and (9.58) into Equation (9.53) using the sec-
ond-order approximation:

(w + D)W, = H, [exp(iwT, )|+ H, [exp (21T, )|+ H, [exp (3iwT, )]
+ H,exp(i(w+2)T, )| +
HJexp(i(w+292)T, )|+ H, [exp(i(2w+Q)T, )|+ H, [exp(i(w -
DT,)|+ Hy[exp(i627, )|

(9.59)
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The solvability criteria of Equation (9.59) may be expressed in the following manner,
after deleting secular terms.

4 _
H, [exp (iwT,)|= 0 — D;’ A+ 2iwD,A — gcfAZA +¢,D,A

KA 2ic,K,A*A
8w +442° w
10K2A’A

2

(9.60)

+3K,A’A=0
3w

By using Equation (9.57) to delete the terms DA and D,A from Equation (9.60), we
may get the following result:

2 2 2 .
3K 10K 2ic,K
siwD,A |- B | 1O g 4 20K,
4 32w w ; w
ax KA o 9.61)
4w

It can be shown that Equation (9.57) and (9.61) represent the first two components in
a multiple-scale analysis of the following:

2 2 2 .
2iw[A+€c—2A]+52 Ko gy |3k, 10K 4 26K ) gl
2 3w 4 T 3w 3 9.62)
%EKI 1 —S—Z A exp [ieat] =0
In Equation (9.62), A and A are expressed in polar forms.
1 . - 1 .
A(t) = Ea(t) exp{lﬁ(t)], A(t) = Ea(t) exp[—lﬂ(t)} (9.63)

[Pt

Which are the amplitudes and phases of steady-state responses referred to as “a” and
“G6”. By substituting Equation (9.63) into Equation (9.62), the equations regulating
the amplitudes and phases may be derived by separating the real and imaginary
components.

aB' =Ga+G,a’ +G,acos[v] (9.64)
a'=G,a+Ga’ —G,asin[v] (9.65)
Where:
3K &g G - 3'K, 5K, o G —[K [1_5_0'}
o6’ 8w ? 8w 120 6w’ ’ 4w 2w (9:66)

K,
40?

G,=-05¢ec,, G,=-¢ [ ], y=c¢cot—20
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To determine the steady-state response, we assume that @’ =0 and ~'=0
(*y’ =eco—203’ ) ; thus, modulation equations for the principal parametric resonance
are expressed as follows:

[G, —%T]a—l-sz +G,acos[y]=0 (9.67)
G,a+Gsa’ —G,asin[y|=0 (9.68)

9.4.4.1.1 Non-trivial Steady-State Response

To get a non-trivial solution for the system, it is necessary to delete the determinant
of the coefficient matrix. In order to analyze the system’s steady-state reaction, it is
necessary to take into account that a is not equal to zero (a = 0). Therefore, the fol-
lowing will be obtained [8]:

¥ =0— [G1 —%j]a +G,a’ = —Gyacos[r] (9.69)
a'=0— G,a+G,a’ = G,asin[v] (9.70)

By using the trigonometric identity cos’ h]—l—sin2 [fy] =1 in Equations (9.69) and
(9.70), the resulting equations are as follows:

2
[[G, —%]a—i—Gza}] +(Ga+Ga’) =(G,a) 071)

Ultimately, the amplitude a is acquired in the following manner:

L
2(G; +G;)

a=

(e0 —2G,)G, —2G,G, +

9.72)

L
\/4G22 (G} =G} )—4(e0—2G,)G,G,G, +(~c0” +420G, — 4G +4G;)G; )]2

The stability of the fixed points and the steady-state solution is contingent upon the
characteristics of the roots’ natural portion. If the natural component of each root is
positive, then the associated steady-state solution is said to be unstable. Furthermore,
if the real component of each root is zero or negative, the associated steady-state
solution is stable.

9.4.4.1.2 Trivial Steady-State Response

In order to ascertain the stability of the trivial solution, we analyze the characteristics
of the linear solutions of Equation (9.62), which are the solutions of the following:
3K ¢

2

32w 4

2iw[A+E%A]+E2 f_\exp[isat] =0 (973)

1
A+—ck,
2

€o
1—==
w
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L . . 1 . .
To begin with, we define the Cartesian form of the solutionas A = > ( p— lq) exp [z 0T, ]

By inserting this expression into Equation (9.73), we may recast the procedure of the
solution as follows:

—64pfBew’ +32q€w3c2 —8p52w2c§ _817520‘*)[(1 +16p5w2K1 —1—317521(12
3.
+64qLew’i + (974)
32p5w3c2i + 8q52w2c§i — 8q520w1(1i + 16q5w2K1i — 3q€2K12i +640’ip" +
64w’q’ =0

Simultaneously, in order to render the equation self-sufficient, it is necessary for §
to equal o /2. In order to achieve autonomy, it is necessary to take into account the
phase angle in relation to the detuning parameter. By performing a separation of
the real and imaginary components in Equation (9.74), the following outcomes are
obtained [9]:

p/:7l€0q7€2C§q+€2g[i]q75K1q+352K£q7€£ (9.75)
2 8w 8w 4w 64w 2
1 ecip eoK,p eKp 3K'p ec
!/ 2 1 1 1 2
——cop+—2P 4 ——f - 9.76
1 2 P 8w 8w’ 4w 64w’ 2 i ( )

Now, we construct the Jacobian matrix for Equations (9.75) and (9.76) as shown next:

€, 1 e’ oK, ¢eK, 3K}
T —LE0— .t 3
7= 2 2 8w 8w 4w 64w
Lol e'c; oK, ek, 3K} ec,
8w 8w’ 4o 640’ 2
9.77)

Thus, we can express the determinant and trace of matrix A in the following manner:

2
K? K?
A=l + aw+ﬁ—3€—; T P (9.78)
4 3 41 2w
T =—¢c, (9.79)

Ultimately, if the condition ¢, > 0 holds true, we can determine the stability of the
system.

9.4.5 ResuLts AND DiscussiON

This study uses the first shear deformation theory to derive the equations of motion
for an embedded MSCP (multi-span continuous plate) that is supported by a
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viscous-Winkler-Pasternak foundation. The plate is subjected to uniform paramet-
ric excitation and a magnetic field. The study investigates the impact of several
factors, including different fiber angles, viscous-Winkler-Pasternak parameters,
temperature, thickness ratio, and velocity feedback gain, on the stability and bifur-
cation areas of the magnetostrictive sandwich composite plate. The characteristics
of the materials are outlined in Tables 9.1 and 9.2, while other aspects are taken into
account.

9.4.6 NUMERICAL RESULTS

This work introduces a theoretical analysis of the vibrations of a laminated com-
posite plate. The plate is exposed to an in-plane force, heat load, and is supported
by a viscoelastic foundation. This section investigates various significant parame-
ters related to the dynamics of the sandwich plate with a magnetostrictive material
core. In addition to parametric studies, factors such as velocity feedback gain, the
influence of the foundation, temperature change, thickness ratio, and fiber angle are
examined. The results are presented in plotted and charted form.

Tables 9.3 and 9.4, as well as Figures 9.4 and 9.5, illustrate the impact of veloc-
ity feedback gain (C(¢)Kc) on both the amplitude response and dynamic instabil-
ity. By adjusting the velocity feedback gain parameter, one may manipulate the
amplitude of the MSCP. The increase in the damping parameter is found to be
directly proportional to the increase in the feedback parameter. Figures 9.4 and
9.5 demonstrate that varying feedback gains have no impact on the subcritical and
supercritical pitchfork bifurcation points. However, they may lead to alterations in
the saddle points.

TABLE 9.1
Elastic properties of Terfenol-D [4].
Properties E, v, o, e, =e,
30 GPa 0.25 9.25% 10° kg/m? 442.55 N/(mA)

TABLE 9.2
Properties of composite layer [4].

c,; (Gpa) c,, (Gpa) ¢, =c,, (Gpa) ¢, (Gpa) ¢, =cs (Gpa)
0 =0 140.90 10.06 3.02 7 0
9 =45 46.25 46.25 32.25 36.23 7
0 =90 10.06 140.9 3.02 7 0

3
a=1lm b=a, h=0.1a, hc =08k, k, =5x10"Pa/m, k), =5x10°Pam, ¢z =3x10"Pas - — 001
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Effect of Foundation Parameters and Velocity Feedback Gain on Amplitude

TABLE 9.3

Response

K, K,

107 10°
5x10°
10x10°

5x107 10°
5x10¢
10x10°

10x107 10°
5x10°

o
0
10°
5x10°
10x10°
0
103
5x10°
10x10°
0
103
5x10°
10x10°

0
10°

5x10°
10x10°
0

10°
5x10°
10x10?
0

10°
5x10°
10x10°

0
10°

5x10°
10x10°
0

103
5x10°

C(HKc
10¢ 2 x 10* 3x10¢ 4x10*

0.012276 0.00607878 0.00404536 0.00303214
0.01226 0.00607123 0.00404033 0.00302838
0.011884 0.00588504 0.00391642 0.0029355
0.010559 0.00522888 0.00347975 0.0026082
0.011903 0.00589398 0.00392237 0.00293996
0.011886 0.00588567 0.00391684 0.00293582
0.011471 0.00568023 0.00378012 0.00283334
0.009986 0.00494515 0.00329094 0.00246668
0.011436 0.00566287 0.00376857 0.00282468
0.011417 0.00565355 0.00376237 0.00282003
0.01095 0.00542206 0.00360832 0.00270457
0.00924 0.00457541 0.00304488 0.00228225
0.012087 0.00598513 0.00398303 0.00298543
0.012071 0.0059772 0.00397775 0.00298147
0.011675 0.00578142 0.00384746 0.00288382
0.010271 0.0050863 0.00338487 0.00253708
0.011714 0.00580038 0.00386008 0.00289327
0.011696 0.00579167 0.00385429 0.00288893
0.01126 0.00557596 0.00371073 0.00278133
0.009688 0.00479756 0.00319272 0.00239306
0.011246 0.00556896 0.00370607 0.00277784
0.011226 0.0055592 0.00369958 0.00277297
0.010736 0.00531645 0.00353803 0.00265189
0.008925 0.00441962 0.00294121 0.00220454
0.01185 0.00586814 0.00390517 0.00292707
0.011833 0.00585972 0.00389957 0.00292287
0.011413 0.00565148 0.00376099 0.002819
0.009905 0.00490469 0.00326401 0.00244649
0.011477 0.00568326 0.00378214 0.00283485
0.011458 0.00567404 0.003776 0.00283025
0.010996 0.00544494 0.00362354 0.00271598

(Continued)
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TABLE 9.3 (Continued)
Effect of Foundation Parameters and Velocity Feedback Gain on Amplitude
Response

Ctkce
K, K, c, 10 2 x 10* 3% 10* 4x10*
10x10° 0.009307 0.00460878 0.00306708 0.00229889
10x10° 0 0.011008 0.00545121 0.00362771 0.0027191
10° 0.010988 0.00544089 0.00362084 0.00271395
5x10° 0.010468 0.00518342 0.0034495 0.00258553
10x10° 0.00852 0.00421908 0.00280774 0.00210451
TABLE 9.4

Effect of Geometrical Parameters, Temperature, and Velocity Feedback Gain
on the Amplitude Response

C(t)Ke
AT alb h/h 10¢ 2% 10 3 x 10¢ 4x10°
0 1 0.7 0.00965563 0.00476404 0.00316834 0.00237424
0.8 0.00826376 0.00409209 0.00272323 0.00204116
0.9 0.00724437 0.00359747 0.00239529 0.00179568
1.5 0.7 0.0178013 0.00867619 0.00575764 0.00431134
0.8 0.0163826 0.00804405 0.0053451 0.00400423
0.9 0.0156984 0.00775188 0.00515617 0.00386405
2 0.7 0.0280242 0.0132632 0.00875818 0.00654701
0.8 0.0260732 0.0125373 0.00830063 0.00621058
0.9 0.0255658 0.012438 0.00825143 0.00617802
150 1 0.7 0.00979356 0.00483209 0.0032136 0.00240816
0.8 0.00839241 0.0041558 0.00276563 0.00207294
0.9 0.00736044 0.0036551 0.00243367 0.00182445
1.5 0.7 0.0179629 0.00875496 0.00580991 0.00435048
0.8 0.0165258 0.00811439 0.00539183 0.00403925
0.9 0.0158232 0.00781347 0.00519713 0.00389475
2 0.7 0.028248 0.0133691 0.00882812 0.0065993
0.8 0.0262684 0.0126312 0.00836279 0.00625708

0.9 0.0257358 0.0125207 0.00830629 0.0062191
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TABLE 9.4 (Continued)
Effect of Geometrical Parameters, Temperature, and Velocity Feedback Gain
on the Amplitude Response

C(t)Kc
AT a/b h/h 104 2 x 10* 3 x10* 4 x 10*
300 1 0.7 0.0099305 0.00489966 0.00325853 0.00244183
0.8 0.00851997 0.00421896 0.00280766 0.00210444
0.9 0.00747546 0.00371222 0.0024717 0.00185296
1.5 0.7 0.0181243 0.00883361 0.00586211 0.00438957
0.8 0.0166689 0.00818464 0.00543852 0.00407422
0.9 0.0159479 0.00787506 0.0052381 0.00392545
2 0.7 0.0284718 0.013475 0.00889805 0.00665157
0.8 0.0264637 0.0127251 0.00842496 0.0063036
0.9 0.0259061 0.0126036 0.00836126 0.00626026
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FIGURE 9.4 Amplitude response versus force amplitude of parametric excitation curves:
Effect of velocity feedback gain at (a) 0 = —20 and (b) o = 20.
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Figures 9.6 and 9.7 illustrate the impact of foundation characteristics, such as the
Winkler and Pasternak coefficient, as well as the influence of viscous damping on
the stability of the system. The results indicate that the amplitude response is directly
influenced by the foundation coefficients. As the Winkler and Pasternak coefficients
increase, the amplitude response decreases, while keeping the excitation constant. In
addition, the crucial points of the pitchfork bifurcation shift towards the right. Fig-
ure 9.7a clearly demonstrates that the impact of the viscous damping parameter has a
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FIGURE 9.6 Amplitude response versus force amplitude of parametric excitation curves:
Effect of (a) Winkler stiffness and (b) Pasternak stiffness at o = 20.
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greater influence on the amplitude response compared to the effect of the foundation
parameters, although in a similar manner. Furthermore, it has been shown that reduc-
ing the viscous damping parameter causes a displacement of bifurcation points, with
a more pronounced effect on saddle points compared to subcritical pitchfork bifurca-
tion sites. Furthermore, it is evident that as the viscous damping parameter increases,
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while keeping the parametric excitation constant, the unstable region between the
supercritical pitchfork and subcritical pitchfork bifurcation points decreases in size,
resulting in a larger disparity between the stable and unstable curves.

Figure 9.8(a) and Table 9.4 provide the amplitude response values of the sys-
tem for different ratios of magnetostrictive layer thickness to total plate thickness
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FIGURE 9.8 Effect of thickness ratios on (a) amplitude response versus force amplitude of
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ﬂ) and amplitudes of parametric excitation (N ,). While the location of the subcrit-

ical pitchfork bifurcation point remains same, the thickness ratio has a substantial
impact on the amplitude response magnitude. It was observed that when the thick-
ness ratio increases, the amplitude response decreases. One potential explanation for
this phenomenon might be that when the phrase related to magnetostrictive material
is used in the context of damping, an increase in damping leads to a reduction in the
magnitude of the amplitude response. Furthermore, it has been shown that saddle
bifurcation points manifest at reduced amplitudes as the thickness ratio increases.
Figure 9.8(b) examines the correlation between the stability of the system and the
thickness ratio. It does this by graphing the amplitude response against the detuning
parameter for various thickness ratio values. The findings indicate that when the
thickness ratio lowers, there is a noticeable separation between stable and unstable
pitchforks, resulting in a wider stable zone.

Figure 9.9 illustrates the impact of the aspect ratio (a/b) on the nonlinear
dynamic stability of the system. Based on the information provided in Figure 9.9
and Table 9.4, it can be concluded that the impact of changes in aspect ratio on the
amplitude response of the system is more pronounced than the impact of changes in
thickness ratio that were previously described. Furthermore, it is evident that when
the aspect ratio increases, the stable and unstable pitchforks separate, resulting in a
larger distance between them.

By analyzing Figure 9.10 and Table 9.4, which examine the impact of temperature
variations on the amplitude response of the system, it becomes evident that this factor
has a negligible influence on the system’s dynamic response and stability.
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FIGURE 9.9 Amplitude response versus detuning parametric curves: Effect aspect ratio at
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The impact of the fiber angle is seen in Figure 9.11. This graphic displays the
amplitude response versus the parametric excitation parameter at three distinct
angles: 0 = 0, 45, and 90 degrees. The fiber angle has a noticeable impact on the
amplitude response of the composite plate, while the orientation effects the elastic
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characteristics of the layers and the stiffness of the MSCP. This diagram illustrates
the impact of the fiber angle on a square plate with a length-to-width ratio of 1. As
anticipated, the outcomes for angles of 0 and 90 degrees are comparable for a square
plate. The greatest value is obtained for the outcomes of these two angles, whereas
the amplitude response for § = 45 is mostly lower. Additionally, it was determined
that the impact of fiber angle on thick plates is greater than on thin plates.

9.4.7 CONCLUSION

The primary objective of this work is to provide a comprehensive understanding
of the use of magnetostrictive materials in sandwich constructions, which have the
potential to be utilized in various composite structures. The results of a numerical
study examining the impact of important parameters are as follows:

* By adjusting the feedback velocity gain, the vibration of MSCP can be man-
aged, and increasing this parameter leads to greater damping.

* Modifying the velocity feedback gain does not influence the subcritical and super-
critical pitchfork bifurcation points, but it may cause changes to saddle points.

* Viscous damping has a greater impact on the amplitude response of the sys-
tem compared to the stiffness of the foundation. Additionally, its influence
on the saddle point is more noticeable than its effect on the pitchfork bifur-
cation point when the circumstances are subcritical.

* As the thickness ratio falls, the space between the two bifurcation sites widens.

* An increase in aspect ratio causes stable and unstable pitchforks to diverge,
resulting in a broader unstable region.

* The temperature does not have a substantial impact on the dynamic behavior
and stability of the system.

9.5 CASESTUDY 2

9.5.1 INTRODUCTION

The objective of this work is to examine the nonlinear vibration and instability of a
sandwich plate. The plate consists of an auxetic honeycomb core and a carbon nano-
tube reinforced composite (CNTRC) face layer. The plate is placed on a viscous elastic
foundation and subjected to parametric excitation. The analytical model incorporates
the Hamilton principle and utilizes nonlinear strain-displacement relations derived
from the von Karman theory and the first shear deformation plate theory (FSDT).

9.5.2 MATHEMATICAL MODEL

This research examines a sandwich plate composed of three layers: two face sheets
reinforced with nanocomposite carbon nanotubes (CNTs) and an auxetic core layer
supported by Winkler-Pasternak foundations. Figure 9.12 displays the measurements
and proportions of the sandwich plate, which include the length (a), width (b), and
the height of both the core (,) and the face layers (h,) [10].
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FIGURE 9.12 A schematic diagram of sandwich plate with an auxetic honeycomb core
and a carbon nanotube reinforced composite (CNTRC) face layer placed on a visco-Winkler-
Pasternak medium.

9.5.3 Auxetic CORE MATERIALS

The study presents a plate that has a honeycomb core with an auxetic property, mean-
ing it has a negative Poisson’s ratio. The core material consists of unit cells that pos-
sess important characteristics that are essential to its properties. The work uses the
formulae developed by Zhu et al. to compute the mechanical characteristics of the
honeycomb. The material has a distinctive characteristic known as a negative Poisson
ratio, which has the potential to provide benefits by lowering stress concentrations
and improving resilience [11, 12].
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The variables t,, /,, and 0 represent the thickness, length of the vertical cell, and the
angle of the rib, respectively.

9.5.4 CNTRC FACE SHEETS

The study introduces three variations of sandwich plates, consisting of two face
sheets composed of poly(methyl methacrylate) (PMMA) that are reinforced with sin-
gle-walled carbon nanotubes (SWCNTs). The panels represent three different config-
urations of carbon nanotube reinforcement (CNTRCs), where the volume proportion
of carbon nanotubes may be expressed as follows:

FG-UU - V. =V,

CNT CNT
2z—h,—h|| .
2|1- — Vir (top layer)
FG-00 — V,,, = ! 9.81)
2z+h, +h || .
2|1- — Veyr  (bottom layer)
—h,
2z—h —h,|| .
2 — Vir (top layer)
FG-XX — V,,, = !
2z+h +h || .
2 — Veyr  (bottom layer)
U

wCNT

Wenr T (pCNT /pm)_(pCNT /pm)wCNT
for V.. Here, the subscripts CNT and m refer to carbon nanotubes and the matrix,
respectively. The variables w and p denote mass fraction and density, respectively.
The effective shear and Young’s modulus of a CNTRC face sheet may be expressed
as shown next:

The equation V., = represents the relationship

Elfl = nIVCNTEﬁNT + vam’ E{Z = ﬁ, Glf2 = V : Vv ’
CNT + m CNT + mb (9 82)
EZCZNT Em GSNT Gm .

Gl =G},

/o f
12> G23 - 1'2G12
V represents the volume fractions in the given context. The values of the correction
parameters 7, are shown in Table 9.5. The CNTRC face sheets possess effective

Poisson’s ratio and thermal expansion coefficients as follows:

s

/. oNT
Vi, =V, Veyr TV,Y,

CNT _ CNT
Oéf _ VmEmam +VCNTE]] a]]
1

VE +V.,E]N

m—m

(9.83)

m-_m

agz = (1+Vm)v o +(1+V1C2NT)VCNTazczNT Uty
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This work uses the first-order shear deformation theory to establish the governing
equations for sandwich plates that have auxetic honeycomb cores and are placed
on visco-Pasternak foundations. These plates are subjected to parametric excitation.
The strain displacement, as described by the von Karman nonlinear relation, may be
expressed as follows:

u 1[8_w]
Ox 2\ 0x [N
SO I R I T o
€, e’ e, dy 2\ 9y (;0).
Yot =17 o t+2{y =10 OV Owwiy, ya (9.84)
0 I dy Ox 0Ox Oy %+i
/yyz Y ¥z v ¥z a BX
gl 7’ 0 v, '
Xz Xz Xz 8}7 SD,V O
L °
ox 7

The equations provided indicate that u, v, and w represent displacement coefficients
for the coordinates (x, v, z), while ¢ and ¢, represent the rotations of the normals
at the midpoint relative to the x and y axes, respectively.

The strain-stress link between material characteristics is dependent on temperature.

3

x

I o, ¢, 0 0 O
Ty O, 0, O 0 0l¢
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=

o, t=[0 0 Q, O Vo (9.85)
ol |0 0 0 0, 0},
. 0 0 0 0 0Ol

Q, represents the lowered stiffnesses of the layer under plane stress, as determined
by the material coefficients.

The formula for calculating the moment and force resultants is determined based
on displacement gradients.
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The shear correction factor is denoted as K, whereas the extensional stiffness is rep-
resented by A, the bending stiffness by B, and the bending-extensional coupling
stiffness by D,. These values are computed using the following formula:

/AT

h
(4,.8,0,)= [ "o (122 dz+f 0 (12" de+
2 ] (9.87)

ht

f:é,]”Q;ace (],z,zz>dz (i,j =1,2,6)

The nonlinear equilibrium equations of the sandwich plate may be found using Ham-
ilton’s principle.
ON. ON, 9 n 0™,
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The equations of motion may be expressed as coefficients of (u, v, w) and (¢, ¢,)
using the force and moment resultants.
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9.5.5 SoLUTION METHOD

The Galerkin technique may be used to solve these equations given straightfor-
ward boundary conditions. This approach aids in the examination of the free and
forced vibration of sandwich plates with auxetic honeycomb cores and CNTRC face
layers [6].

u(x,y,t)= >3 "Ult]cos[ax]sin[By]
T
(x,2,1) = > ">~ "W/t]sin[ax]sin[By]
(x,2.1) = > 75" "X[t]cos[cux]sin [ 3y]
(eyr)=>"" Z Y [¢]sin[ax]cos[BY]

mm
o=—-, =—
& b

a

(9.94)

The following equations will be derived by putting Equation (9.94) into Equations
(9.89) through (9.93):

HW?+H,U+H,V+H,X+HJY=0
H,W*+H,U+H,V+H,X+H.Y=0

H, W’ +H,UW +H_ VW +H XW +H YW+ H, X
. . (9.95)
+H,Y + H W+ H W+ H, W+ H,, cos(Qr) =0

HW*+H,U+H,V+H,X+HJY+HW=0
HW? +H,U+H,V+H,X+H,Y+HW=0

The coefficients of H;, are given in Appendix C. In dynamics stability, the lateral
direction (w) is the most crucial displacement component for various structures.
Therefore, the in-plane and rotational inertia factors are disregarded. The variables
U,V,X,and Y were computed in relation to W using the following equations:

h

1

L
L,|[w

‘ L22 {WZ} (9.96)

1 32

L

N

[

~ X <
N~~~

41 42

Appendix D offers an elucidation of L constants in relation to H,.. To get the gov-
erning equation of motion, we replace Equation (9.97) into the third formula of Equa-
tions (9.96).
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W+eo, W +w’W + K, cos(Qt)W +eK,W* +*K,W’

h
:05fﬁ (T—7+W,)dt=0 (9.97)
Where:
H Hy +H,L, +H,L H
Cl — 39 , wZ — 38 + 3631 + 37741 , Kl — 311
H3IO H310 H310
K _ H32L11 +H33L21 +1134[‘31 +H36L32 +H35L4] +H37L42
2 s
H310
K _ H31 + H32L12 +H33L22 + H34L32 +H35L42
=
: H

310

9.5.5.1 Multiple Scale Method

Nayfeh and Mook suggest a technique of solving Equation (9.98) using several scales.
They derive the second-order approximation of W as follows [7]:

W(t) =W, (T,.T,.T,) +eW, (T, T,.T, ) + £*W, (T,.T,.T,)
Where:
T,=t, T,=ct, T,=¢"t (9.99)

The following partial differential equations may be obtained by substituting Equa-
tion (9.99) into Equation (9.98) and assessing them at the same ¢ scale.

(w* + Dy )W, =0 (9.100)
(w? + D, )W, = —2D,D,W, — K, W,’ — K, cos ()W, — ¢, D,W; — ¢, Dyw, (9.101)

(wz +D02)W2 = _2D0D1W1 _ClDowl _2D0D2Wo _D12Wo 9.102)
—C,D,W, —2K,W,W, — K,W,’ — K, cos ()W, '

To begin, the first task is to solve the partial differential Equation (9.101) in the fol-
lowing manner:

W, = A(Tl,Tz)exp[ino]—FZ(Tl,Tz)exp[—inO} (9.103)

Where A and A are complex conjugates. The Equation (9.102) is expressed in the
following format:

(w2 +Do2)VVl _ —iw(ZDlA—i—ClA)e[UT" _KZAA_K2A262MO

1 i(w 3 Q—w
-k, (Ae (r T | 70T ) tee (9.104)
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In Equation (9.105), the word “cc” denotes the complex conjugate. The secular and
small denominator factors in Equation (9.105) may be eliminated by introducing the
detuning parameter (o) and assigning it the following value.

1 -
—iw(2D,A+c,A) —EKlAe‘”T' =0 (9.105)
The answer to Equation (9.102) is as follows:

K i($2+;ﬁ)7},A K. ¥ A2 AA
VVI — + le - + 2€ = _ K2 _2
20(Q+20) 30 w

+cc (9.106)

By using the same approach to eliminate the secular elements in the previous equa-
tion of motion, denoted as Equation (9.104), we substitute Equation (9.107) into
Equation (9.103), resulting in the following equation:

W+ D, )W, = J, [exp(iwT, )]+ J, [exp (21T, )|+
J,[exp (3iwT, )|+ 1, [exp(i(w+Q)T, )| +
Js[exp(i(w+2Q)T, )|+ I [exp(i(20 +Q)T, )|+ 0107
J, [exp (i(2w-Q)T, )] +J, [exp(iQ7, )]

By eliminating secular components from Equation (9.108), the requirements for its
solvability may be stated as follows:
J,[exp(iwT, )| = 0 — DA+ 2iwD,A+c,D,A
KA 10K;A’A
8w+ 4 3w’

+3K,A’A=0 (9.108)

By use Equation (9.106) to exclude variables x and y from Equation (9.109), one may
get the following:

> 3g? 10K> 2ic K, -~
2iwD A+ |~ Ay |2 3k, - T2 A2
4 32w w
KoA o _, (9.109)
4w

It is easy to show that Equation (9.106) and (9.110) correspond to the first and subse-
quent components of the multiple-scale analysis of the given statement.

. K2 2 10K2 _
2 3w 4 3w

%EKI 1-=Z| Aexplicot] =0 (9.110)
w




364 Nonlinear Vibration of Smart Continuous Structures

The polar representations of A and A in Equation (9.111) are as follows:

A() =3 alt) explis(r). ()= %a(z‘) expl8()] @11

An amplitude and phase of the steady state response are determined by @ and S3.
To get the governing equations, one may substitute Equation (9.112) into Equation
(9.111) and then separate the real and imaginary components.

aB'=G,a+G,a' +G,acos|y] (9.112)
a'=G,a—G,asin[v] (9.113)
Where:
G - 3’K] ¢
' 64w’ 8w’
c LK 5K
: 8w 124° °

G, =|Klli—=2|,

4w 2w ©.114)

G, =—05¢ec,, y=¢e0t-23

Consequently, the steady-state response may be obtained by assuming the following

presumption: a’ = 0. Furthermore, 7' =0 (7' =0 —23'). The modulation equa-
tions are calculated using the following formulae:

G, 670](1+G2a3 +G,acos[y]|=0 (9.115)

G,a—G,asin[y|=0 (9.116)

9.5.5.1.1 Trivial Steady-State Response
One may assess the stability of the trivial solution by computing the Cartesian form

of the solution (A = %( p—iq) expiBT,)) in Equation (9.111), where it is used to make

the equations autonomous. Thus, the following equations are shown [13]:

1 e’clq €'0Kq eK,q 3°Klq ec

! 1 1 1 1 1
SR L =y = 9.117
P T a ek 27 MDD

1 ecip eoKp eKp 3K'p ec
'=—eop+——+ e L1 9.118
i 2 P 8w 8w? 4w 64w’ 2 1 ( )
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To assess the stability of the system under the condition of a simple steady-state
response, we construct the Jacobian matrix for Equations (9.118) and (9.119) as shown
next:

dp' dp’
d] d
j = p/ q/
dg dgq
€ 1 62012 szaKl eky 382K12 ©.119)
77 ——E0 — + 5~ t 3
J = 2 8w 8w 4w 64w
22 2 2.2
1 £ q e O'K] aKl 3e K1 ec
1
8w 8w 4w 64w 2

2 3.K2 2 K2 2

A=cw +|owt sz 200 D 59 (9.120)
4 3w 40 2w
T=—cc, 9.121)

Ultimately, by assuming ¢, > 0, we can determine the stability of the system.

9.5.5.1.2 Non-Trivial Steady-State Response

The non-trivial steady-state response can only be evaluated when the value of “a” is
not equal to zero (a = 0) in Equations (9.116) and (9.117). The outcome will be as
follows:

v'=0— [G1 —%T]a +G,a’ =-G,a cos[’y] (9.122)

a=0-G,a=G,a sin[v] (9.123)

The frequency-response equation is obtained by analyzing the phrase
(cos® [’y] + sin” ['y] =1).

(9.124)

1
2
:\Gi[%’_qi,/G;—Gj]
2

Equation (9.125) may be used to calculate the instability and bifurcation diagrams of
auxetic honeycomb cores with CNTRC face sheets in sandwich plates.
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9.5.6 REesuLts AND DiscussioN

The sandwich plate used in this research included a honeycomb core, an auxetic con-

ductive layer, and a carbon nanotube reinforced composite layer (CNTRC) on both

the top and bottom surfaces of the honeycomb core. The material qualities used in a

sandwich plate are shown in Table 9.6 and Table 9.7. The sandwich plate has certain
. o h t

dimensions. The interior auxetic core is characterized by § = —45, l—” =land L=
h h

0.01385. Furthermore, the parameters considered for the elastic foundation and tem-

perature condition are as follows:
k, =10°Pa, k, =10’ Pa, c,=1200Pas, T =300°K, ¢=0.01
The influence of the geometrical parameters of the core material (namely, the cell

angle and length ratio) on the amplitude of parametric excitation of sandwich plates
with auxetic cores can be seen in Figure 9.13 and Figure 9.14. Unlike the cell angle,

TABLE 9.5

The Corrective Parameters for CNTs-Polymer Composites

Venr ™ ., 3
0.12 0.137 1.022 0.715
0.17 0.142 1.626 1138
0.28 0.141 1.585 1.110
TABLE 9.6

The Material Properties of the Core and Faces Layers

Material E (GPa) v a (x10°%/K) a (kg/m¥)
Honeycomb material 69(1-0.0053 AT) 0.33 23(1+0.00072 AT) 2700
PMMA (3.52-0.0034 AT) 0.34 45(1+0.005 AT) 1150
CNTs See Table 9.7 0.175 See Table 9.7 1400
TABLE 9.7

The Young’s Modulus, Shear Modulus, and Thermal Expansion Coefficients
of SWCNTs

T (K) E,, (TPa) E,, (TPa) G,, (TPa) a, (x10°/K) Q, (x10°/K)
300 5.6466 7.0800 1.9445 3.4584 5.1682
500 55308 6.9348 1.9643 45361 5.0189

700 5.4744 6.8641 1.9644 4.6677 4.8943
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the location of the bifurcation point moves towards the left as the cell angle rises.
The subcritical pitchfork bifurcation point placements shift to the right as the length
ratio increases. Dashed lines represent complex unstable solutions that are not easily
predictable or straightforward. Moreover, it was deduced from Figure 9.14 that aug-
menting the length ratio beyond the value of 2 would not have a substantial impact
on the nonlinear characteristics of the sandwich plate.

Figure 9.15 illustrates three distinct forms of carbon nanotube (CNT) reinforce-
ment on the face layer XX, OO, and UU of the sandwich plate. The purpose is to
compare the nonlinear dynamic amplitude. The influence of the carbon nanotube
(CNT) reinforcement on nonlinear behavior is evident. Moreover, FG-OO amplifies
both the magnitude and the distance between supercritical and subcritical bifurca-
tion points, hence, expanding the region of instability. This figure demonstrates that
the selection between the other two forms of carbon nanotube (CNT) reinforcement
has a little impact on the responses and extent of the unstable zone. Therefore, the
reinforcement type used for the nonlinear behavior of sandwich plates in this study
is FG-UU.

Figure 9.16 depicts the correlation between the amplitude response (a) and the
detuning parameter (b) for different values of CNT volume percent. Figure 9.16
demonstrates that higher CNT volume percentages lead to a decrease in both the
amplitude and useable area of the sandwich plate. The analysis of Figure 9.15 and
Figure 9.16 has led to the conclusion that carbon nanotubes have a pivotal impact on
enhancing the rigidity of a sandwich plate.

Figure 9.17 demonstrates the impact of foundation damping coefficients on both
dynamic instability and bifurcation sites. Both figures clearly demonstrate that the
reaction amplitude of a sandwich plate may be reduced by raising the damping coef-
ficient. By augmenting the coefficient constant, bigger values of forced amplitude

0.25 |
I = FG-UU
3 020}  ® FG-00
o] s FG=XX
&
2 015
o
o Supercritical ....l' “.“““_.1
o o 40| PitchforkBif. ge e e
] 10 et ’
—g [ .... .'-ll-. oeet
= ..'
2 g0 ®
é '. Subcritical
: pitchfork Bif.
0.00 f
- . : - . - L LI% 10
-6 -4 ] 0 2 4 5 8

Detuning parameter (g}

FIGURE 9.15 Effect of different types of CNT reinforcements on amplitude vibration ver-

sus detuning parameter curves at N, =10’ (N).
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will result in the appearance of all three kinds of bifurcation points, namely, super-
critical, subcritical, and saddle.

The instability of the sandwich plate is influenced by the Winkler-Pasternak foun-
dation parameters, as seen in Figure 9.18 and Figure 9.19. Therefore, an increase in the
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02l & V=0.12 ]
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FIGURE 9.16 Effect of different values of CNT volume on amplitude vibration versus
detuning parameter curves at N, = 10’ (N).
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foundation parameters will lead to a decrease in the response amplitude of the sand-
wich plate. The placement of the bifurcation points may be influenced by modifying
the stiffness characteristics of the foundation, as shown in Figure 9.18 and Figure 9.19.
The crucial aspect is that the Pasternak foundation has a greater influence on the
system compared to the Winkler foundation. This discrepancy may arise from the
nonlinearity of the Pasternak foundation and displacement, in contrast to the Winkler
foundation. The foundation serves as a dampening mechanism. Therefore, it is evident
that as the foundation coefficients grow, the fundamental frequency decreases.
Figures 9.20, 9.21, and 9.22 depict the relationship between a detuning parameter
and the response amplitude. These figures demonstrate how the geometric properties
of sandwich plates, such as the ratio of core thickness to width, length-to-width, and
slenderness ratio, affect both trivial and non-trivial solutions. All diagrams have two
bifurcation points, namely, a supercritical pitchfork and a subcritical pitchfork. Fig-
ure 9.20 demonstrates that a greater ratio of (, /h) leads to an increased response
amplitude and a wider gap between two bifurcation points, indicating an expansion
of the unstable region. Similarly, Figure 9.21 demonstrates the relationship between
the length-to-width ratio and the properties of the system, and this connection can
be understood using the same reasoning. From the analysis of Figure 9.22, it is clear
that an augmentation in the thickness of the sandwich plate will result in a reduction
in the amplitude level. This occurs due to the enhanced rigidity of the sandwich plate.
The dynamic response of sandwich plates is analyzed by considering a temperature
rise with three different values, as seen in Figure 9.23. An increasing temperature has
a negative impact on the nonlinear dynamic response of the sandwich plate, causing
an increase in its amplitude. The decrease in the rigidity of the sandwich plate may be
attributed to the heat impact. Furthermore, changes in the temperature increment val-
ues do not seem to have a substantial impact on the location of the bifurcation points.
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9.5.7 CONCLUSION

The study concludes with several key findings.

* The amplitude response curve indicates that increasing the cell angle and
decreasing the length ratio of the auxetic core lead to the earlier appearance
of supercritical bifurcation points.

* The type of CNT reinforcement has a significant impact on the location of
both supercritical and subcritical pitchfork bifurcation, as well as the stabil-
ity of the system. FG-XX sandwich plates have the most minimal unstable
area.

* By increasing the volume fraction of carbon nanotubes (CNTs), the stability
of the system is enhanced since it reduces the distance between two bifurca-
tion points.

» Temperature increases have a detrimental impact on the nonlinear vibration
of the sandwich plate.

e Sandwich plates can be mechanically reinforced by taking into account
the volume fraction of carbon nanotubes (CNTs) and the Viscos-Winkler-
Pasternak foundations.

* The unstable area of the plate increases as both the thickness of the auxetic
core layer and the height-to-length ratio increase due to the geometric char-
acteristics of the plate.
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Appendix A

0!, =0y, cos* 0+2(0}, +20 )sin’ fcos” 0 + s, sin* 0

0, = (Qfl +05, — 4Q66)sin2 fcos’ 0+ O, (sin4 6 +cos® 9)

05, =0y sin 0+ Z(QfZ + 2Qg6)sin2 fcos’ O+ 05, cos* 0

Q) = (Q“ O, — 20 ) sinfcos’ 0+ (sz — 05, +204 ) sin’ 0 cos
O3 = (Qfl -0, — 20 ) sin’ 6 cos § + (sz -0, +20 ) sinf cos’ 0
05 = (Q]"] +0Q5, —208, 205, ) sin® @ cos® 0 + O, (sin4 0+ cos* 0)
0, = 0., cos’ 0+ Q% sin’ 0

0% = (Q55 — Q44)51n900s6

Q% = O, sin” 0+ Q¢ cos’ 0
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Appendix B
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a’h

5.585053606381853h°A,, +5.585053606381854a°bA,,
 +2.792526803190927a°bA

C32 azbz

5.585053606381854ab’ A, +5.585053606381853a°A,,
| 42.792526803190927ab’ A,

C33 aZbZ

5.585053606381853b° B, +5.585053606381854a’bB,,
| £2.792526803190927a°bB,,

34 2712
ab
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5.585053606381854ab”B,, + 5.5850536063818534’ B,,
| +2.792526803190927ab’ B,

35 212
ab

C,, = —0.7853981633974483bK A,
C,, = —0.7853981633974483aK A,,

Cyy = %bz (2.46740110027ab’ NTx + 2.4674011002723a’bNTy
a

~2.4674011002795a°bK A,, —2.467401100272ab’K A
—2.467401100272a°bK , —2.467401100272ab°K ,
~0254''K,,,)

c 1.77775ab’e, h, +1.77775a’be, h,

39 212
ab

C,, = 0.25abC,
C,, = —0.25abl,

C,,, =2.46740110027ab’N,

312

- 732b°7B,, —164’7B,, +16a’wB, - 9ab’7B,, +9a’ 7B,

> C42:

v 36a°b 36a’h ’
9a’brB,, +9a’br’ By,
Co=" 36a°b
9a’b’ KA, +9ab’nD,, +9a’ 1’ Dy, 9a’br’ Dy, +9a’br’ D,
Cpy=- 2 » Cpis=— 2 >
36a°b 36a°b
Cy= —ibKﬂASS
16[727TB12 — 3-26127TB22 — 91727rzB66 9611727r2B12 + 9abz7rzB66
G =- s Gy =— >

36ab’ 36a’b
7 9a2b7rzB22 + 9b37rzB66

36ab’

Cy=
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9ab**D,, +9ab*7> Dy, @'’ KA, +7" (a’ Dy, + "Dy )
Coy =~ 2  Cs=— ’
36ab 4ab

Cy=— i aKmA,, Appendix C

C5(Cyy (CyCoy — CisCeg) +Coy (—CCsy 4 CiCi ) +
), =|C 4 (Cog(—CCoy +CyCep) + Cy (CooCos + CoiCo N+ |1 S
C3(Co5(ChCsy — CpyCeg) +Coy (—C o Css +CisCie))

S), = (=C,3Cy5C,,Csy +C,Cy,CiCs, 4 C,,CrsC,uCiy + C1iCosC, Co, —
C,,CysC;Csy — C3Cy CiCsy + C,,CyCusCsy — CyCy Cy Css +
C,,C34C15Css + C1,Cy,C,iCis 4 Cps(Coy (—CiCsy + Cpi(CuCy —
CyCs) + Cy (—CyCoy +C o)) — C,,CiC o Css

1 Cu (Cog(CyCyy — Cy Coy) + Coy (—CiCsy +C, Cs)
+C,(CyiCoy —CiC) /S,

| Ci6(Co5(CyCsy = Cy3Cs4) + Cpy (=Cy5Cs3 4 Cp3(C45Csy — CyyCss)) + *

= /S
13 1
Co6(C15(=CyyCs3 + C3Cs4) + €14 (Cy5Cs3 = C3Cs5) + C3(=Cy5Csy + €y Css))

S, =(((C,5C,, — C,,C,s)(C,5sC,y; —C,5C ) —(C,5C,y — CsC, N(Ci5Coy — C,,Co))
x((C;sC,, —C,Cys (CC, —C,Cys) —(CsC,, —C,C CCs, — C,,Ci)) —
(csc, —C,Cc.C,—-C,C)—(C,C, —C,Cx)CC,, —C,C))
x((CsC,, —C,C o )CCyy —C,Css) —(C5C,y — C,C,5 (CC, — C,,Cs5))))

CIS (C24 (_C45C52 + C42C56 )+ sz (C46C54 - C44C56 )
Sz1 = +C12 (Czs (_C46C54 + C44C56) + Cz4 (C46C55 - C45C56 ) / S;
+Cl4 (Czs (C46C52 - C42C56 ) + sz (_C46 - Css + C45C56 )
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SZZ = (C12C25C44C51 - C12C24C45C51 - C11C25C44C52 + C11C24C45C52
—C,C,5C, Cy, +C,,CoC i Cy, +C,C, CiiCo, + Ci (G, (C,C)
+C,,Cs)) +Cpy (—C,,Cy, +C,,C5) +Cy (C,,Cs, —C,,Cy,))
—C,C,,CsCs, + C,,C,,Cy Css — C,,C,, C,,Cos — C,,C,,C, Cos
+C,,C,,C,Css — C,,CyCCs, +C,, (Cps(—C,,C, +C,Cs,
+C,Cyy)+Cpy (CoyCyy — €, Ci) + Gy (—CoiCsy +C,C))) /S,

_ C26 (CIS (C44C52 - C42C52 )+ C14 (_C45C52 + C42C55) + C12 (C45C54 - C44C55 )+
Cl6 (Czs (_C44C52 + C42C54) + C24 (C45C52 - C42C55) + C22 (_C45C54 + C44C55 ))

%

23 2

S; = (C15C24C43C52 - C14C25C43C52 - C15C23C44C52 + C13C25C44C52
+C14C23C45C52 - C13C24C44C52 - C15C24C42C53
7C14C25C42C53 + C15C52C44C53 - C12C25C44C53 - C14C22C45C53

+C1 2 C24 C24 C45 C53 + Cl 5 C23 C42 C53 - C13C25 C42 C53
_Cl 5 C22 C43 C54 + Cl 2 C25 C43 C54 + Cl3 C22 C45 C53 + CI 2 C23 C45 C54
7C14 C23 C42 CSS + Cl 3 C24 C42 C55 + CI 4C22 C43 C55 - C] 2C24 C43 CSS

+C13C22C44C55 + C12C23C44C55 ))

C|4 (C23 (7C46C52 + C42C56) + sz (C46C53 - C43C56 )
S41 = JrClz (C24 (7C46C53 + C43C56) + C23 (C46C54 - C44C56 )) / S:
+C13 (C24 (C46C52 - C42C56) + C22 (_C4e - C54 + C44C56 )

S, =(,C,C.C, —C,C,.C,C,—C,.C,C,.C,+C CC,C,—-C,C,C,Cs,
+C,,C,,C,C, +C,C,C,C,, +C, (Cu(C,Cs +C,,C,,)+Cp,(—C,Cy,
+C,C,;)+C, (C,C,, —C,C,)—-C,C,.C,C,, —C, C,.C,,C,,
-C,C,C.C,, +C,,C,CLC, —C, C,,C,Coy +C(C,, (—C,,Cy,

+C41C52 )+ C22 (C44C51 - C41C54) + C21 (_C44C52 + C42C54 ) / S:

_ C26 (C14 (C43C52 - C42C53) + C13 (_C44C52 + C42C54 )+ C12 (C44C53 - C43C54 )
+C16 (C24 (_C43C52 + C42C53 )+ C23 (C44C52 - C42C54) + sz (_C44C53 + C43C54 )

*

43 4
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S, =(C,,C,,C,,Cs, — C,,C,sC,,Cs, — C,,C,,C,,Cs, + C,;C,iC,.Cs,
+C,,C,,C,C,, —C.C,,C,C,,

-CG,Cc,.Cc,—-C,C.C,.C,+CC,C,C,—-C,C.C,C,
-C,C,CC, +C,C,,C,C,LC,

+C,C,,C,C,, —C,CC.C,, —CC,C,.C,, +C,C.C,C,,
+C,C,C,.C,, +C,C,C,C,

-C,CC,Ci+CC,C,.C+C,C,,CLC, —C,C,,C,.Cy
+C,C,C,Cis +C,C,0C,C))
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Appendix C

_ m(32b°A,, —16a’A,, +16a’Ay) Ho—_ 7(9ab’TA,, —9a’TA,)

ne 36a’b e 36a’b ’
7(9a’brA,, —9a’brA,)
== 36a’h
7r(9ab27rBll - 9a37r366) 7T(9azb71'B12 — 9a2b7r366)
H14 = B s Iy = — 2 s
36a’b 36a°b
g TC16D°A, +32a°A, +160°A) m(9ab TA,, —9ab TAy)
B 36ab’ T 36ab’ ’
o o— 7'('(96121)71'1422 + 9b37TA66)
” 36ab’
m(9ab’ B, — 9ab’ TB) 7(9a’brB,, +9b’7B,,)
Hy =— » Hy =— ’

36ab’ 36ab’

—2.283025571109432b* A,, +a* (—4.5660511422b°A,,
 —2.283025571132a°A,, +3.0440340948125% A

H31 a3b3

5.585053606381854ab’ A,, +5.585053606381853a’A,,
| 42.792526803190927ab’ A,

H33 azbz

5.585053606381853b° B,, + 5.585053606381854a°bB,,
| 42.7925268031909274°bB,,

34 212
a'b

5.585053606381854ab’B,, +5.585053606381853a’B,,
 +2.792526803190927ab’ B,

35 2712
a’b

H,, =—0.7853981633974483bK A,
H,, =—0.7853981633974483aK A,,
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Hy = szz (2.46740110027ab’ NTx +2.4674011002723a’bNTy
a

—2.4674011002795a°bK A,, —2.467401100272ab’K A,
—2.467401100272a°bK , —2.467401100272ab°K , —0.25a°b’K,,, )

H,, =0.25abC,
H,, =—025abl,
H,,, =2.46740110027ab’N,

_ 32b°7B,, —16a’wB,, +16a’ 7B, _ 9ab’7B,, +9a’ 7B,

H, = CH.— ’
! 36a’h ® 36a°h
9a’bmB,, +9a’b’ By,
° 36a°b
H44 __ 9a3b2KA55 + 9ab27rD“ + 9a3772D66 , HH45 _ 9a2b7r2D12 + 9Cl2b71'2D66 ,

36a’b 36a’b

1
H46 = —ZbKTrASS

B 16b27TB|2 — 32a27r322 — 91)27TZB66

_ 9ab27TZB]2 + 9ab27r2366

H == B ’ H - s
! 36ab’ 2 36a’b

oo 9a’br’B,, +9b° 1’ By,
> 36ab’

g 9ab’mT’D, +9ab’w Dy a’b’ KA, +7° (@’ D, +b° Dy )

o 36ab’ ’ > 4ab ’

1
H56 = —ZCZK’TTAM
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Appendix D

HIS(H24(_H46H52 +H42H56)+H22 (H46H54 _H44H56))
Lu = +H12(H25(_H46H54 +H44H56)+H24(H46H55 _H45H56)) /L*z
+H14(H25 (H46H52 _H42H56)+H22(_H46 _Hss +H45H56))

L, =(HH,H Hs —H H, H,Hs, —H, HsH Hg; +H\ H, H,;Hsy —
H.,H,,H,H,—HHH.H,—H,H HH,+H H, HH,, —
H.,H,H,H,+H H,H.H,+HH,H,H, +
H,,(H,,(—H  Hy, + H, Hy,)+ Hy, (H, Hy, — H, Hy) + D1
H,(-H,H,+H_,H,)—H H,H, H, +
H,H,(H,H,+H,H,;)+H,,(-HH, +H,H)
+H21(_H45H53 _H43H55)

L: = (((H15H24 _H14H25)(H15H43 _H13H45)_(H15H23 _H13H25)(H15H44 _H14H45))
><((H|5Hz4 _H14H25 )(H15H52 _H12H55)_(H15H22 _lest)(H15H54 _H14H55))_
((H15H24 _H14H25)(H15H42 _H12H45)_(H15H22 _lest)(H15H44 _H14H45))

X((H15H24 - H14H25 )(H15H53 - H13H55)_(H15H23 - H13H25)(H15H54 - H14H55 ))))

21

HIS(H24(_H46H52 + H42H56)+ HZZ(H46H54 _H44H56))
= +H12(H25(_H46H54 +H44H56)+H24(H Hg, _H45H56))

46

+H14(H25(H46H52 7H42H56)+H22(7H46 *Hss +H45H56))
/L,
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L,=(H,HH,H,~H,H,H.H,—HH,H,H,

+H H,H.H,—H,H, H, H,,
+H H,H_.H,,

+H,H,H,H,,
+HH,(H,H, +H,H,,)
+H,(—H,H, +H,H,)
+H,(H,H,—H,H,,))

+H,H,HH,—H H,H,H,,—H,H,H, Hq
+HH,H,H,—H H,H H,,

+H,(Cx(-H,H, +H,H,+H,H,)+H,(H,H,

+ H21(_H45H52 +H42H55)))/L*2

L, = (HH,HH,—-H ,H,H,H,—HH, H,H,
+H,H,H,H,+H,H, +H,H,,
—H.,H, H H.,

-HH,H,H,+H HH,H.,+HH,H, H,
-H,H,H,H,—H H,H,H,,
+H,H, H H,,

HH,H,H,—H HH,H,—HH,H,_ H,,
+H,H,H,H, +H,H,HH,,
—H,H, H H.,

-H,H, H,H,+H,H,H,H,+H,H,H_ H,
-H,H,H,H,—H ,H,,H, H,

+ H12H24H44H55))

/L,

—H, Hy)
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H (H,(HH,—H,H,)+H,(—H,H. +H_H.,))
L, =|+H,(Hy(—H, H, +H,H. )+ H,,(H,H. — HH,))|/ L,
+H,,(Hy(H Hy — HyHy )+ Hyy (—H Ho + HyHe,)
L,=(H.H,H,H, —H, H,H.H,—H.H,H,H, +H,H,H,H, +H_H,H_H.,
—H,H,HH,
—HH,H,H, +H,HH,H,+HH,H,H, —H,H,H,H,
+H,H,H,H,
D.3+ H Hy,H,H,, —H,H,H,H, —HH,H H, +H,H, H.H, +H H,HH,,
+H,H,H,_H,
+H,H,H,H, +H,H,H,H, +H,H,H.H, —H,H,H.H—H_.H,H,H.
+H,H,H,H.,)))
L,=(HH,H,H, —H, H,H.H,—H.H.H,H,+H,H,H,H, +H H,H_H,
—H,H,H_H,
—HH,H,H,, +H, H,H,H,+HH,H,H, —H,H,H,H,
+H,H,H,H,
+H H,H,H, —H H,H,H, —H.H,HH,, +H,H,HH,, +H_H,H,_H,
+H,H,H,H,
+H, H,H,H, +H,H,H,H, +H,H,H H, —H,H,H.H—H_,H,H,H.
+H,H,H,H.,)))
H,,(Hy,(—H Hy, + H,H, )+ H, (H, H,, — H H,,))

L41 = +H12(H24(7H46H53 +H43H56)+H23(H46H54 7H44H56)) /Ltt
+H13(H24(H46H52 _H42H56)+H22(_H46 _H54 +H44H56))
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L42 = (H12H24H43H51 _H12H23H44H51 _H11H24H43H52 + H11H23H44H52 -
H12H24H41H53 +H11H24H42H53 +H12H21H44H53

+}114 (HZ'i (H42H51 + H4IH52) + H22 (7H43H51 + H41H53) +

HZI(H43H52 _H42H53))+H12H23H41H54 _H11H23H42H54 - DA
H12H21H43H54 +H11H22H43H54 _H11H22H44H53

+H13(H24(7H42H51 +H41H52)+H22(H44H5] 7H4|H54)+
HZI(_H44H52 +H42H54)))/L1

LZ = (H15H24H43H52 _H14H25H43H52 _H15H23H44H52 +H13H25H44H52
+ H14H23H45H52 - H13H24H45H52 - H15H24H42H53 - H14H25H42H53
+H15H52H44H53 _H12H25H44H53 _H14H22H45H53 +H12H24H24H45H53

+ HISH23H42H54 - H13H25H42H54 - H15H22H43H54 + H12H25 H43H54
+H13H22H45H54 +H12H23H45H54 _H14H23H42H55 +H13H24H42H55

+ H14H22H43 H55 - H12H24H43 HSS + H13H22H44H55 + H12H23 H44H55 ))
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