


     Nonlinear Vibration 

and Dynamics of Smart 

Continuous Structures 

and Materials

Nonlinear Vibration and Dynamics of Smart Continuous Structures and Materials 

delves into intricate subjects concerning the analysis of nonlinear vibration issues in 

continuous structures. It covers general concepts and a history of nonlinear systems 

before evolving into kinetics and solution methods of continuous structures.

Exploring the implementation of new types of materials in various sectors of 

automobile, aerospace, and structural engineering, the book provides applicable 

information on the behaviors of smart structures. The book provides a set of 

mathematical formulations to solve nonlinear static and dynamic behaviors of smart 

continuous structures by applying principles of elasticity.

The book will interest academic researchers and graduate students studying 

structural engineering, mechanics of solids, and smart materials.



http://taylorandfrancis.com


       Nonlinear Vibration 

and Dynamics of Smart 

Continuous Structures 

and Materials

 Majid Ghadiri 



      Designed cover image: Majid Ghadiri 

First edition published 2025

by CRC Press

2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 Majid Ghadiri

Reasonable efforts have been made to publish reliable data and information, but the author and 

publisher cannot assume responsibility for the validity of all materials or the consequences of 

their use. The authors and publishers have attempted to trace the copyright holders of all material 

reproduced in this publication and apologize to copyright holders if permission to publish in this 

form has not been obtained. If any copyright material has not been acknowledged please write and 

let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 

transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 

hereafter invented, including photocopying, microfilming, and recording, or in any information 

storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.

copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, 

Danvers, MA 01923, 978–750–8400. For works that are not available on CCC please contact 

mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are 

used only for identification and explanation without intent to infringe.

 ISBN: 978-1-032-74747-7 (hbk)

ISBN: 978-1-032-74748-4 (pbk)

ISBN: 978-1-003-47069-4 (ebk)

DOI: 10.1201/9781003470694

Typeset in Times

by Apex CoVantage, LLC

http://www.copyright.com
http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003470694


v

     Contents 
  About the Author ......................................................................................................  xi 

 Preface.....................................................................................................................  xiii 

Chapter 1 Principles of Vibrations ........................................................................ 1

1.1 Introduction .............................................................................. 1

1.2 Historical Development of Vibration ....................................... 1

1.3 Significance of Studying Vibration .......................................... 3

1.4 The Fundamental Principles of Vibrations ............................... 4

1.4.1 Vibration .................................................................... 4

1.4.2 Components of a Vibrating System ........................... 9

1.4.3 Degree of Freedom .................................................... 9

1.5 Reviewing Mathematical Equations in Mechanical 

Vibrations ............................................................................... 10

1.5.1 The Differential Equation of Motion for a 

System with One Degree of Linear Freedom .......... 10

1.5.2 Undamped Free Vibration (c = 0) ............................ 11

1.6 Harmonic Movement ............................................................. 12

1.7 Free Vibration with Viscous Damper ..................................... 15

1.7.1 Critical Damping and Critical Ratio ........................ 15

1.8 Forced Harmonic Oscillations ............................................... 19

1.8.1 Overview.................................................................. 19

1.8.2 Motion Equation ...................................................... 20

1.8.3 Harmonic Response of a Damped System .............. 21

1.9 A Practical Analysis of Vibrations: Fatigue Failure 

Caused by Variable Loading .................................................. 25

1.9.1 Introduction to the Concept of Fatigue .................... 25

1.9.2 Relationships between Tension and  

Lifespan ................................................................... 27

References ......................................................................................29

Chapter 2 An Introduction to the Nonlinear Vibration ....................................... 30

2.1 Introduction ............................................................................ 30

2.2 Brief Review of Nonlinear Oscillations History .................... 30

2.3 Nonlinear Sources .................................................................. 32

2.4 Examples of Nonlinear Vibration ........................................... 33

2.4.1 Simple Pendulum ..................................................... 33

2.4.2 A Particle that is Confined and Connected  

by a Spring with a Nonlinear Behavior ................... 35

2.4.3 Particle in a Central Force Field .............................. 36

2.4.4 Mechanical Vibration with Dry Friction .................. 38



vi Contents

2.4.5 Variable Mass System .............................................. 39

2.4.6 Particle in a Spinning Circle .................................... 39

2.5 An Important Point ................................................................ 42

2.6 Introduction to Qualitative and Quantitative Analysis ........... 42

References ......................................................................................43

Chapter 3 Qualitative Analysis of Nonlinear Vibration ...................................... 44

3.1 Introduction ............................................................................ 44

3.2 Phase Plane ............................................................................ 44

3.2.1 Phase Plane Analysis ............................................... 46

3.2.2 Techniques for Generating Portrait on the  

Phase Plane .............................................................. 46

3.3 The Investigation of Existence and  

Uniqueness Theorem.............................................................. 52

3.4 Stable Systems ....................................................................... 52

3.5 Analysis of the Qualitative Behavior of Second-Order 

Nonlinear Dynamic Systems Using the Linearization 

Approach Around the Fixed Point ......................................... 57

3.6 Review of a Few Points .......................................................... 65

3.7 Classification of Fixed Points ................................................ 68

3.7.1 Tip ............................................................................ 71

3.7.2 Hyperbolic Fixed Points, Topological 

Equivalence, and Structural Stability ...................... 72

3.8 Qualitative Behavior of n-Order Nonlinear Dynamic 

Systems by Using the Linearization Approach Around 

the Fixed Point ....................................................................... 72

3.9 Analysis of Nonlinear Systems Using a Phase Plane ............ 74

3.10 Cases of the Existence of Limit Cycles ................................. 77

3.10.1 Poincaré Theorem .................................................... 77

3.10.2 The Poincaré-Bendixon Theorem ............................ 77

3.10.3 Bendixon’s Theorem ................................................ 78

3.11 A Geometric Interpreting a Differential Equation ................. 80

3.12 The Theory of the Bifurcation ............................................... 81

3.12.1 Saddle-Node Bifurcation ......................................... 82

3.12.2 Graphic Contracts .................................................... 82

3.12.3 Transcritical Bifurcation .......................................... 83

3.12.4 Pitchfork Bifurcation ............................................... 85

3.12.5 Technical Terms in the Bifurcation .......................... 88

References ......................................................................................88

Chapter 4 Solution Methods ............................................................................... 90

4.1 Introduction ............................................................................ 90

4.2 Different Ways of Solving Problems Using the 

Perturbation Method .............................................................. 90

4.2.1 Introduction to Perturbation Method ....................... 90

4.2.2 Straightforward Expansion Method......................... 91



viiContents

4.2.3 Lindstedt-Poincaré Method ..................................... 91

4.2.4 Multiple Time Scale Method ................................... 94

4.2.5 Averaging Method ................................................. 104

4.2.6 The Harmonic Balance Method ............................. 107

4.2.7 Examination of Nonlinear Vibrations in the 

Damper .................................................................. 108

4.3 Generalize Differential Quadrature Method ........................ 116

4.3.1 Introduction ........................................................... 116

4.3.2 History ................................................................... 116

4.3.3 Principles ............................................................... 117

4.4 Weighted Residual Method .................................................. 121

4.4.1 Introduction ........................................................... 121

4.4.2 Principles ............................................................... 122

References ....................................................................................137

Chapter 5 Forced Vibrations of Nonlinear Systems .......................................... 139

5.1 Introduction .......................................................................... 139

5.2 Forced Harmonic Vibrations in Nonlinear Systems ............. 139

5.2.1 An Analysis of the Resonant Oscillations  

of a Nonlinear System in the Absence of 

Damping ................................................................ 140

5.2.2 Analysis of the Resonant Oscillations of a 

Nonlinear System, Including the Influence of 

the Damping Effect ................................................ 142

5.3 Forced Vibrations of Systems with One Degree  

of Freedom ........................................................................... 146

5.3.1 Systems Exhibiting Third-Order Nonlinearity ...... 147

5.4 Hard Excitation without Resonance ..................................... 154

5.4.1 Superharmonic Resonance Ω≈
1

3
w









  ................. 156

5.4.2 Subharmonic Resonance Ω≈ 3w( )  ..................... 160

5.5 Parametric Excitation ........................................................... 163

5.5.1 Introduction ........................................................... 163

5.5.2 Parametric Excitation in a Linear System ............. 164

5.5.3 Primary Resonance Caused by Harmonic 

Excitation in the Linear System ............................ 165

5.5.4 Nonlinear Effects on Parametric Excitation .......... 168

References ....................................................................................180

Chapter 6 Nonlocal Systems and Kinematics of the Continuous Structures .... 182

6.1 Introduction .......................................................................... 182

6.2 Explanation the Dynamics of a Continuous Environment ... 182

6.3 Displacement Field .............................................................. 183

6.4 Small Deformation ............................................................... 184

6.5 Rectangular Plates Subjected to Small Deformations: 

von Karman’s Theory ........................................................... 186



viii Contents

6.6 Fundamental Principles Underlying Non-classical 

Continuum Mechanics Theories .......................................... 191

6.6.1 Fundamentals of Nonlocal Theory ........................ 191

6.6.2 The Hypothesis of Modified Stress Coupling ....... 193

6.7 The Equations that Govern the Stress Couple  

Theory for a Changeable Body ............................................ 193

6.7.1 A Novel and Comprehensive Iteration of 

the Theory Rooted in the Concept of Strain 

Generalization ........................................................ 195

6.8 Modified Couple Stress Theory for Non-isotropic 

Materials .............................................................................. 196

6.9 Fundamentals of Modified Strain  

Gradient Theory ................................................................... 196

6.10 Nonlocal Strain Gradient Elasticity Theory ......................... 200

6.11 Variational Method ............................................................... 202

6.12 Hamilton Principle ............................................................... 203

6.12.1 Utilizations of the Hamilton Principle ................... 205

References ....................................................................................206

Chapter 7 An Introduction to Smart Materials.................................................. 208

7.1 Introduction .......................................................................... 208

7.2 What are Smart Materials? ................................................... 208

7.3 Applications of Smart Materials .......................................... 210

7.3.1 Biomedical Applications ....................................... 210

7.3.2 Energy and Power Applications ............................. 210

7.3.3 Other Applications ................................................. 210

7.4 Advantages and Challenges of Smart Materials .................. 211

7.4.1 Advantages of Smart Materials ............................. 211

7.4.2 Challenges of Smart Materials .............................. 212

7.5 Composite Materials ............................................................ 213

7.5.1 Characteristics of Composite Materials ................. 214

7.5.2 Application of Composite Materials ..................... 214

7.5.3 The Classification of Composite Materials ........... 216

7.5.4 Fiber Composite Materials .................................... 216

7.5.5 Enhancements of Fiber Composite Materials ........ 216

7.5.6 Composite Materials Consisting of  

Many Layers .......................................................... 217

7.5.7 Particulate Composite Materials ............................ 217

7.5.8 Composite Materials by Combining Different 

Elements ................................................................ 218

7.5.9 The Composition of the Material .......................... 218

7.5.10 Multiple Layers ..................................................... 219

7.5.11 Study of the Mechanical Properties and 

Behavior of Composite Materials .......................... 219

7.5.12 Attributes of a Layer that is Aligned in  

a Single Direction .................................................. 221



ixContents

7.5.13 Study of Structural Equations in  

Linear Elasticity ..................................................... 222

7.6 Functionally Graded Materials (FGM) ................................ 224

7.6.1 FGM Definitions .................................................... 224

7.6.2 Definition and Characteristics of  

Functionally Graded Materials .............................. 226

7.6.3 Advantages of Functionally Graded Materials ...... 227

7.6.4 Manufacturing Techniques for Functionally 

Graded Materials ................................................... 228

7.6.5 Properties and Performance of Functionally 

Graded Materials ................................................... 229

7.6.6 Material Attributes Modeled as a Power 

Function (P-FGM) ................................................. 232

7.6.7 S-shaped Functionally Graded Material ................ 232

7.6.8 Material Qualities in the Context of an 

Exponential Function (E-FGM) ............................ 234

7.6.9 Mori-Tanaka Homogenization Method ................. 234

7.7 Viscoelastic Materials .......................................................... 236

7.7.1 Elastic Behavior ..................................................... 237

7.7.2 Plastic Behavior ..................................................... 238

7.7.3 Viscoelastic Behavior ............................................ 238

7.7.4 The Stress-Strain Relationship in a  

Viscoelastic Material ............................................. 239

7.8 Magnetostrictive Materials .................................................. 241

7.8.1 The Origin of Magnetism in Materials .................. 242

7.8.2 Basic Equations of the Material ............................ 244

7.9 Flexoelectric Materials ......................................................... 245

7.9.1 Applications of Flexoelectric  

Materials ................................................................ 246

7.9.2 Fundamental Equations of  

Flexoelectric Materials .......................................... 253

7.10 Metamaterials ....................................................................... 254

7.10.1 Auxetic Materials .................................................. 254

References ....................................................................................255

Chapter 8 Dynamics of Nonlinear Smart Continuous Structures—Beams ...... 258

8.1 Introduction .......................................................................... 258

8.2 Nonlinear Equation of Transverse Vibration of Beams ....... 258

8.2.1 Background ............................................................ 258

8.2.2 Nonlinear Governing Equation of the 

 Euler-Bernoulli Beam (Thin Beam) ..................... 259

8.3 Case Study 1 ........................................................................ 265

8.3.1 Introduction ........................................................... 265

8.3.2 Formulation ........................................................... 265

8.3.3 The Governing Equation and Boundary 

Conditions .............................................................. 268



x Contents

8.3.4 Solution Methodology ........................................... 271

8.3.5 Numerical Results ................................................. 273

8.3.6 Conclusions ........................................................... 284

8.4 Case Study 2 ........................................................................ 284

8.4.1 Introduction ........................................................... 284

8.4.2 Mathematical Modeling ......................................... 284

8.4.3 Solution Method .................................................... 288

8.4.4 Results and Discussion .......................................... 293

8.4.5 Conclusion ............................................................. 301

8.5 Case Study 3 ........................................................................ 301

8.5.1 Introduction ........................................................... 301

8.5.2 Theory and Formulation ........................................ 302

8.5.3 Equations of Motion .............................................. 304

8.5.4 Solution Methods ................................................... 309

8.5.5 Results and Discussion .......................................... 312

8.5.6 Conclusion ............................................................. 322

References ....................................................................................322

Chapter 9 Dynamics of Nonlinear Smart Continuous Structures—Plates ........ 323

9.1 Introduction .......................................................................... 323

9.2 Nonlinear Equation of Transverse Vibration of Plates ......... 323

9.2.1 Introduction ........................................................... 323

9.3 Nonlinear Classical Plate Theory ......................................... 324

9.3.1 Introduction ........................................................... 324

9.3.2 The Nonlinear Governing Equation of a 

Rectangular Plates ................................................. 324

9.4 Case Study 1 ........................................................................ 330

9.4.1 Introduction ........................................................... 330

9.4.2 Theory and Formulation ........................................ 330

9.4.3 Constitutive Equations ........................................... 330

9.4.4 Solution Method .................................................... 338

9.4.5 Results and Discussion .......................................... 343

9.4.6 Numerical Results ................................................. 344

9.4.7 Conclusion ............................................................. 354

9.5 Case Study 2 ........................................................................ 354

9.5.1 Introduction ........................................................... 354

9.5.2 Mathematical Model .............................................. 354

9.5.3 Auxetic Core Materials .......................................... 355

9.5.4 CNTRC Face Sheets .............................................. 356

9.5.5 Solution Method .................................................... 361

9.5.6 Results and Discussion .......................................... 366

9.5.7 Conclusion ............................................................. 375

References ............................................................................ 387

Index  ..................................................................................................................... 389   



xi

       About the Author 
Majid Ghadiri is Associate Professor in the Department of Mechanical Engineer-

ing, Imam Khomeini International University (IKIU), Qazvin, Iran. His research 

interests include nonlinear vibrations, dynamics of micro and nano structures, 

applied mathematics, and fracture mechanics. Dr. Ghadiri has authored more than 

100 high- quality, peer-reviewed research articles in his fields of interest. He has also 

edited and authored multiple books for well-known publishers. He is a distinguished 

reviewer whose expertise helps the editors of prestigious journals judge research 

articles.



http://taylorandfrancis.com


xiii

       Preface 
The objective of this book is to delve into intricate subjects concerning the analysis 

of nonlinear vibration issues in continuous structures. The target audience for this 

material is graduate students seeking to expand their knowledge in this area. This 

document aims to present the fundamental principles of nonlinear vibrations in a 

clear and concise manner, both in theory and in practice. Numerous practical exam-

ples have been utilized to elaborate on nonlinear concepts comprehensively. The 

methodology employed for elucidating and articulating the subject matter is designed 

to familiarize the student and researcher with the primary and essential principles 

of linear vibrations. In essence, the approach involves a comprehensive coverage of 

these principles. Subsequently, the individual acquires knowledge of the fundamen-

tal principles underlying nonlinear vibrations, followed by an understanding of the 

techniques employed in the analysis and resolution of such issues. The researcher’s 

cognitive abilities are significantly tested by the presentation of a practical and intri-

cate example.

The literature reveals the lack of a comprehensive book concerning nonlinear 

vibration and dynamics of smart continuous structures. Because of the existence 

of such a lack in the literature, the proposed book will be arranged to analyze the 

nonlinear vibration and dynamics of smart continuous structures thoroughly. The 

proposed book, Nonlinear Vibration and Dynamics of Smart Continuous Structures 

and Materials, offers a wide range of application-based and practical considerations 

of state-of-the-art smart continuous structures. A fascinating exploration of the ana-

lytical and numerical solution procedures can be found in this comprehensive book, 

and each chapter provides and embraces detailed information of crucial characteris-

tics of nonlinear vibration and dynamics of smart continuous structures. If you want 

to find a thorough all-in-one answer for all aspects of nonlinear vibration and dynam-

ics of smart continuous structures, this book is highly recommended. In the proposed 

book, the first chapter will be dedicated to the principles of vibration. Chapter 2, “An 

Introduction to the Nonlinear Vibration”, contains general concepts and a history of 

nonlinear systems. Qualitative analysis of nonlinear vibration will be discussed in 

Chapter 3. Solution methods of continuous structures will be presented in Chapter 4. 

In Chapter 5, nonlinear forced vibration will be discussed. Nonlocal systems and 

kinematics of the continuous structures will be explained in Chapter 6. An intro-

duction to smart materials will be presented in Chapter 7. In Chapter 8, dynamics 

of nonlinear smart continuous structures—beams—will be discussed in detail, and 

in Chapter 9, dynamics of nonlinear smart continuous structures—plate—will be 

analyzed.
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       1  Principles of Vibrations

     1.1 INTRODUCTION

This chapter starts the examination of oscillatory motion in a rather uncomplicated 

manner. Following a short historical overview, we analyze the significance of vibra-

tions. Next, we enumerate the many stages employed in vibration analysis and pro-

vide concise explanations of the terminologies and principles that are involved. This 

chapter declines to provide a qualitative analysis of the subject.

     1.2 HISTORICAL DEVELOPMENT OF VIBRATION

Presumably, upon the creation of the initial musical instruments such as whistles 

or drums, humans developed an interest in the concept of vibrations and started its 

research. The origins of wired musical instruments, like as the harp, may be traced 

to around 3,000 years ago through depictions found on ancient Egyptian artifacts. 

In that period, musicians and philosophers endeavored to investigate the principles 

governing sound and utilized these principles to enhance the functionality of musical 

instruments. The research of vibrational behavior has proven highly significant.

Over the course of time, researchers examined the vibrational characteristics of 

many systems and structures. Galileo was originally drawn to the Church of Pisa 

by the lamp’s oscillating motion. In addition, Robert Hook (1703–1635) performed 

tests to ascertain the correlation between the length of a wire and the frequency of 

its vibrations. Indeed, Joseph Sauer (1716–1653) conducted these investigations and 

employed the term “acoustic” to refer to the study of phonology [1].

Joseph LaGrange (1813–1736) conducted an analysis of the oscillation of the 

vibrating wire, which was published in an essay by the Academy of Turin in 1759. 

In this analysis, he conceptualized the wire as a finite number of homogeneous mass 

particles positioned equidistantly from one another. In 1744, Euler and Bernoulli 

conducted the first examination of the vibrations of thick beams, which subsequently 

became known as the Euler-Bernoulli theory or thick beam theory.

Over the past few decades, there has been an increasing significance in the study of 

vibrations in intricate systems. In 1902, Fromm conducted a study on the behavior of 

torsion vibrations in the grasshopper shaft’s design. Stefan Timoshenko (1872–1878)  

formulated a comprehensive theory on the oscillation of beams by studying rotation 

and shear deformation. This hypothesis is sometimes referred to as Timoshenko’s 

bean theory or thick beam theory.

Mechanical vibrations may be categorized into several types, including free and 

forced vibrations, damped and undamped vibrations, linear and nonlinear vibra-

tions, and regular and random vibrations. Free vibrations refer to the fluctuations 

of a system that occur without any external force acting on it, following the initial 

turbulence caused by either the initial displacement or velocity. On the other hand, 

https://doi.org/10.1201/9781003470694-1
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forced vibrations occur when a system varies under the influence of an external force. 

The term “undamped vibrations” refers to the movement of an oscillating system in 

which no energy is lost. Vibrations that occur when the energy of a system is lost due 

to any cause are referred to as damped. Linear vibrations refer to the movement of 

an oscillating system when all components, such as springs, masses, and dampers, 

exhibit linear behavior. On the other hand, if any of these components deviate from 

linear behavior, the movement of the system is referred to as nonlinear vibrations. 

Regular vibrations occur in an oscillating system when the amount of the effective 

excitation force is known at any given point, resulting in a predictable movement of 

the system. This type of excitation is referred to as regular excitation. Occasionally, 

the input force that stimulates a system is stochastic, and its magnitude cannot be 

ascertained at a certain instant. Random vibrations refer to vibrations that are created 

by unpredictable stimulus.

It is widely understood that the majority of dynamic phenomena, such as vibra-

tions, are characterized by nonlinearity. Nonlinear systems exhibit behaviors that 

are not possible in linear systems. In 1892, Poincaré and Lyapunov pioneered the 

mathematical theory of nonlinear vibrations. In 1892, Poincaré devised the concept 

of perturbation to estimate the solution of mechanical problems. In 1920, Duffing 

and Van der Pol discovered the first solution to nonlinear vibrations [2]. Furthermore, 

the phenomenon of chaos has garnered the attention of scientists, such as Glieck [3] 

and Peitgen and Richter [4], as one of the nonlinear phenomena.

It is noteworthy that engineers in the 1950s developed the finite element approach, 

which enabled the analysis of intricate mechanical systems with several degrees of 

freedom [5]. The research of vibration is comprehensively described in Table 1.1.

TABLE 1.1

Providing a Concise Overview of the Historical Development of the Field of 

Vibrations

Year/Period Event/Development

Ancient Times Understanding of basic vibrations in musical instruments (e.g., strings and 

drums).

6th Century bc Pythagoras studies vibrating strings and the relationship between length, tension, 

and pitch.

1st Century bc Vitruvius, a Roman engineer, writes about the vibration of structures.

17th Century Galileo Galilei investigates the oscillatory motion and pendulums.

1665 Robert Hooke discovers the law of elasticity (Hooke’s Law) related to springs 

and vibrations.

1687 Isaac Newton’s “Principia Mathematica” lays the foundation for classical 

mechanics and vibrations.

18th Century Daniel Bernoulli and Leonhard Euler develop theories on the vibrations of beams 

and plates.

1738 Daniel Bernoulli publishes the principle of superposition in “Hydrodynamic”.
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Year/Period Event/Development

1746 Jean le Rond d’Alembert introduces the concept of damping in vibrating systems.

1822 Joseph Fourier introduces Fourier series, allowing complex vibrations to be broken down 

into simpler components.

1842 Gustav Kirchhoff develops the theory of elastic vibrations.

1869 Lord Rayleigh publishes “The Theory of Sound”, a fundamental text on acoustics 

and vibrations.

19th Century Development of mathematical tools (e.g., differential equations) to analyze 

vibrations.

Early 20th Century Advances in material science and engineering improve understanding of 

structural vibrations.

1940s Development of vibration testing and analysis techniques during WWII for 

aircraft and machinery.

1950s Emergence of electronic devices (e.g., accelerometers) for measuring vibrations.

1960s Introduction of modal analysis and finite element methods (FEM) in vibration 

analysis.

1980s Advances in computational methods and software for simulating and analyzing 

vibrations.

21st Century Use of advanced sensors, machine learning, and real-time monitoring in vibration 

analysis.

TABLE 1.1 (Continued )

Providing a Concise Overview of the Historical Development of the Field of 

Vibrations

       1.3 SIGNIFICANCE OF STUDYING VIBRATION

Previously, scientists exerted much effort to comprehend the processes of nature and 

devise mathematical theories pertaining to vibrations. Currently, there is a growing 

focus on the study of vibrations and their practical applications. This is an endeavor 

to utilize the application of vibrations in the construction of machinery, foundations, 

buildings, engines, turbines, and control systems. The investigation of mechanical 

vibrations holds significance in the fields of engineering and science.

The significance of this matter stems from the following factors:

   • Enhancing the longevity of structures and equipment: Monitoring and 

regulating vibrations can avert early and partial breakdown, hence, extend-

ing the operational lifespan of equipment.

  • Enhancing efficiency and performance: Gaining a comprehensive under-

standing of vibrations and their management can contribute to the enhance-

ment of machinery and equipment’s efficiency and performance. This is 

because unmanageable vibrations have the potential to diminish efficiency 

and give rise to performance issues.
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• Safety: The regulation and supervision of vibrations in structures and machin-

ery can effectively mitigate accidents and potential threats to human life.

• Analysis and design of structures: In the design and analysis of structures 

and engineering systems, the recognition of vibrations plays an important 

role. This issue is vital to prevent resonance and resonance phenomena that 

can lead to the destruction of structures.

• Sound and acoustics: Mechanical vibrations are connected to the phenom-

ena of sound and acoustics. Gaining insight into this correlation can aid in 

minimizing noise and enhancing sound fidelity across various settings.

• Diagnosing and rectifying defects: Assessing vibrations is a prevalent 

approach for diagnosing defects and issues in machinery and structures. 

Vibration analysis can assist in the early detection of flaws prior to the 

occurrence of significant failures.

Studying mechanical vibrations can generally result in enhanced design, heightened 

safety, decreased maintenance expenses, and optimized performance of systems and 

structures.

It is often observed that the engines of most automobiles are prone to fluctu-

ations, leading to performance issues. For instance, a conventional diesel engine 

produces a significant amount of noise. In turbines, vibrations result in the failure of 

components.

Resonance occurs when the natural frequency of vibrations in a system matches 

the frequency of external stimulus. Hence, when engineering systems are designed, 

the ability of these systems to withstand vibrations is also considered (see Figure 1.1).

In contrast to the earlier described detrimental consequences, vibrations also 

possess beneficial industrial utilizations. For instance, vibrations find use in many 

devices such as conveyor, funnels, screens, washing machines, dental drills, time-

pieces, electrical massage devices, material oscillation testing, and even in the sur-

face cleaning of mechanical parts (Figure 1.2).

              1.4 THE FUNDAMENTAL PRINCIPLES OF VIBRATIONS

     1.4.1 VIBRATION 

Vibrational or oscillatory motion can be characterized in two distinct manners:

 1.  The process of continuous movement when potential energy and kinetic 

energy are alternately transformed.

 2.  A vibrating item is an elastic mass that exhibits oscillations.

Vibration or oscillation is the term used to describe any repetitive movement that 

occurs at regular time intervals. A pendulum is a weight suspended from a fixed 

point that swings back and forth under the force of gravity. Oscillation and elon-

gated thread motion exemplify oscillatory motion. The theory of vibrations pertains 

to the examination of the oscillatory motion of objects and the forces that are influ-

enced by it.



5
P

rin
cip

le
s o

f V
ib

ratio
n

s

FIGURE 1.1 Nature of wind-induced vibration experienced by Tacoma Narrows Bridge before its failure. The bridge opened on July 1, 1940, and 

collapsed on November 7, 1940.
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Oscillation systems can be categorized into many classifications:

 1. Classification based on the mathematical representation:

  1.1: Discrete systems  refer to situations when we encounter ordinary differ-

ential equations with the independent variable (time) constrained by a 

finite number of degrees of freedom.

 1.2: Continuous systems  refer to systems having an infinite degree of free-

dom, characterized by the presence of partial or partial differential equa-

tions that involve both spatial and temporal variables. 

 2. Classification based on the system’s behavior:

  2.1: Linear behavior refers to a situation where there is a direct and propor-

tional relationship between two variables.

 2.2: Nonlinear phenomena.  

Nonlinear behavior can be attributed to many factors:

Option A: Large displacements or rotations

Illustration 1.3 depicts the undamped oscillations of a simple pendulum.

The pendulum motion Equation (1.1) is displayed next.

 

− =

⇒ + = ⇒ + =

mg ml

g

l

g

l

sin

sin

q q

q q q q



 0 0
 (1.1)

It is important to observe that when the sine of q undergoes modest periodic displace-

ments (sin )q q , the equation takes the form of a linear equation.

FIGURE 1.2 Screening machine using vibrations.
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 FIGURE 1.3  Display of a simple pendulum.

 FIGURE 1.4  Display of the elastic behavior in both linear and nonlinear states.

Illustration 1–4 depicts a substance that exhibits both linear and nonlinear char-

acteristics and possesses elasticity.

a) Material with linear elastic behavior in the elastic range

b) Substance exhibiting nonlinear elastic behavior within the elastic range
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Illustration 1.5 depicts the impact of longitudinal stress on the beam with trans-

verse displacement.

There exist two methods for representing oscillatory systems:

 1.  Utilizing public behavior as a basis for modeling:

A)  Free vibration: referring to oscillation occurring without any external 

force.

  B)   Forced vibration: where oscillation is carried out in response to external 

stimulus and is categorized into three types: 1—harmonic, 2— periodic, 

3—non-periodic (in general). 

 2.  Energy consumption-based modeling:

A.  Without damper.

B.  With damper, which is further categorized into three types. The three 

categories are as follows: 1—viscose, 2—Coulomb, and 3—structural.

 FIGURE 1.4 (Continued)

 FIGURE 1.5  Display of a beam that has undergone transverse displacement due to axial 

force.
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     1.4.2 COMPONENTS OF A VIBRATING SYSTEM 

An oscillating system typically comprises three main components: a potential energy 

storage device (such as an elastic spring or item), a kinetic energy storage device 

(such as a mass or inertia), and an energy loss system (such as a damper or frictional 

element). During oscillation, the system undergoes a conversion of potential energy 

into kinetic energy, and vice versa [6]. In the case of the damped system, there is a 

loss of energy in each oscillation cycle, as seen in Figure 1.6.

              1.4.3 DEGREE OF FREEDOM 

The degree of freedom of a system is the minimum number of independent coor-

dinates needed to determine the state of all system components at any one time. 

The system depicted in Figure 1.6 consists of a mass, a spring, and a damper, and 

it possesses a single degree of freedom. The movement of the mass-spring-damper 

system seen in Figure 1.6 may be described using coordinates x and y. Indeed, the x 

and y coordinates are interdependent. Alternatively, the symbol q might denote the 

rotational movement (as seen in Figure 1.7).

FIGURE 1.6 Display of a diagram illustrating the structure of the mass-spring-plain damper.

 FIGURE 1.7  Display of a system with a single degree of freedom that exhibits a twisting 

motion.
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FIGURE 1.8 Systems with two degrees of freedom.

FIGURE 1.9 Systems that possess three degrees of freedom.

Figures  1.8 and 1.9 depict systems with two and three degrees of freedom, 

respectively.

                       1.5  REVIEWING MATHEMATICAL EQUATIONS 
IN MECHANICAL VIBRATIONS

     1.5.1  THE DIFFERENTIAL EQUATION OF MOTION FOR A SYSTEM 
WITH ONE DEGREE OF LINEAR FREEDOM 

Figure 1.10 presents the generic form of the differential equation of motion for a sys-

tem with one degree of freedom, as described by Newton’s second law.

 m cx t kx tx t ( ) ( ) ( )+ + = 0  (1.2)

Symbols m c,  and k  represent the mass values, damping coefficient, and spring stiff-

ness, respectively. The variable x represents the displacement from the equilibrium 

point.
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     1.5.2 UNDAMPED FREE VIBRATION (C = 0)

Under the assumption of no energy loss in the oscillation process, the equation of 

motion may be reduced as follows:

 m kx tx t( ) ( )+ = 0  (1.3)

The equation is homogeneous, and its solution is also homogeneous. The answer to 

this problem is represented in the following manner:

 

x t A t

k

m

n

n

( ) cos( ),= −

=

ω ϕ

ω

 (1.4)

The constants A and j are derived from the initial conditions, and their values are unknown. 

To initiate movement according to the initial conditions, one must modify either the initial 

position or the first velocity, or a combination of both. The free vibration response may be 

determined by including the initial conditions into the equation of motion.

 

x x

x V

x t x t
V

t
n

n

n

( )

( )

( ) cos sin

0

0

0

0

0

0

=

=









= +



w
w

w

 (1.5)

From the analysis of the free vibration response, it is evident that the system would 

undergo harmonic oscillations indefinitely, maintaining a consistent amplitude and 

frequency w
n
, which represents the natural frequency of the system. The natural 

FIGURE 1.10 One-degree system of freedom with a damper: a) system and b) free-body 

diagram.
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frequency refers to the frequency at which the system’s free fluctuations occur. The 

following are some crucial aspects:

• In a system without a damper, the amplitude of the movement remains 

consistent.

• In a system without a damper, the system functions in a harmonious manner 

at its natural frequency.

• The system’s motion is perpetual, with a continuous conversion of kinetic 

energy into potential energy and vice versa, extending indefinitely.

• The natural frequency of the system is independent of the initial conditions 

and solely determined by the parameters m and K.

• The amplitude of movement and the phase change differ according to the 

initial conditions.

     1.6 HARMONIC MOVEMENT

Oscillatory movement may be classified into two types: regular repetition, as seen 

in pendulum movement, and erratic repetition, as observed in earthquakes. When 

a movement is repeated within the same time frame, it is referred to as periodic 

motion. Harmonic motion is the most basic form of periodic motion. In the Scotch 

yoke mechanism depicted in Figure 1.11, the mass m undergoes simple harmonic 

motion. Within this system, a crank undergoes rotational motion with a certain 

radius, denoted as A , around a fixed point known as Point O . Point P , located at the 

other end of the crank, is inserted into a slotted rod.

When the wheel spins at an angular velocity w, the displacement x changes 

accordingly as follows:

 x A A t= =sin sinθ ω  (1.6)

The velocity and acceleration of mass m are as follows:

 x dx

dt
A t= = w wcos  (1.7)

 x d x

dt
A t x= =− =−

2

2

2 2w w wsin  (1.8)

This phenomenon is referred to as oscillatory motion, characterized by acceleration 

that is directly proportionate to the displacement. It is commonly known as sim-

ple harmonic motion. The vector OP
� ���

 (Figure 1.12) can be used to depict harmonic 

motion. This vector possesses a magnitude and undergoes rotational motion with a 

consistent angular velocity w. The picture of the end of the vector 
� � ���

X OP=  on the 

vertical and horizontal axes may be seen in Figure 1.12.

 y A t= sin w  (1.9)

 x A t= cosw  (1.10)
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FIGURE 1.11 Scout yoke mechanism.

FIGURE 1.12 Harmonic motion as the vertical representation of the terminal point of a 

rotating vector.
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Example 1–1: Calculate the natural frequency of the system depicted in Figure 1.13.

Response: Since the weight’s horizontal location does not impact the system’s 

natural frequency, we may conclude the following:

 ∑ = → + = → =M I ML ka
a

L

k

M
n

 θ θ θ ω
2 2 0  

Example 1–2: Figure 1.14 depicts a cylinder with a mass of m and a moment of 

inertia of J
0
. The cylinder is rolling without slipping and is confined by two linear 

springs with stiffness values of k
1
 and k

2
. Find the following: A) The natural fre-

quency of vibration for the system. B) The optimal value of parameter a to maximize 

the natural frequency.

FIGURE 1.13 A rod with no mass that is accompanied by a concentrated mass at its head.

FIGURE 1.14 Roller cylinder is restrained by a spring a) before b) after.
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Answer: A) The mass inertia for the cylinder may be expressed as follows:

 J mR J mR mR
c0

2 2 21

2

1

2
= = +,  

The equation of motion for the cylinder will be determined by a slight angular devi-

ation, denoted as q.

 

∑ = → + +( ) + +( ) =

→ =
+( ) +( )

=

M J J k R a k R a

k k R a

J

k

c c

n

c

 θ θ θ θ

ω

1

2

2

2

1 2

2

1

0

++( ) +( )k R a

mR

2

2

23

2

 

B) We put d da
n

w / = 0 . The result is a R= .

     1.7 FREE VIBRATION WITH VISCOUS DAMPER

Based on the general equation of motion (Equation (1.2)) and Figure 1.10, Equation 

(1.2) may be expressed in a more concise manner as follows:

  x t
c

m
x t

k

m
x t( ) ( ) ( )+ + = 0  (1.11)

Or

  x t x t x t
n n

( ) ( ) ( )+ + =2 02ξω ω  (1.12)

In Equation (1.12), x is a dimensionless quantity known as the damping ratio. The 

presence of a viscous damper in the system significantly influences the motion of 

the system due to the influence of x . The answer to the Equation (1.12) is as follows:

 

x t C e C e

C e

S t S t

c

m

c

m

k

m

( )= +

=
− +
























1 2

1

2 2

1 2

2 




− −








 −



















+
t

c

m

c

m

k

m

C e
2

2 2

2



t
 (1.13)

The values of C
1
 and C

2
, which are unknown constants, can be calculated based on 

the initial conditions.

     1.7.1 CRITICAL DAMPING AND CRITICAL RATIO 

The value of the damping constant, denoted as c, at which the square root term in Equa-

tion (1.13) equals zero, is referred to as the critical damping and is symbolized as C
c
:

 
C

m

k

m

c

2
0

2









− =  (1.14)
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In other words:

 C m
k

m
km m

c n
= = =2 2 2 w  (1.15)

The ratio between the constant damping and critical damping is referred to as the 

viscous damping ratio and is defined as follows:

 x =
c

C
c

 (1.16)

Therefore, Equation (1.13) is expressed as follows:

 x t C e C e
n nt t

( )= +
− + −{ } − − −{ }

1

1

2

12 2ξ ξ ω ξ ξ ω

 (1.17)

It has been noted that at x = 0, the vibration is undamped. Typically, there are three 

modes that may be taken into account for x  damping:

 1. System with a damping ratio less than 1 ( )ξ<1 . Given that ( )x2 1-  is a 

negative value, we may express it as follows:

 
x t C e C e

e C e

i t i t

t i t

n n

n n

( )= +

= +

− + −{ } − − −{ }

− −

1

1

2

1

1

1

2 2

2

ξ ξ ω ξ ξ ω

ξω ξ ω
CC e

i tn

2

1 2−{ }ξ ω

 (1.18)

  The variables f f
0 0 2 1
, , , , ,X X C C are derived from the initial conditions. For 

the initial condition x t x( )= =0
0
, and  x t x( )= =0

0
:

 x t e x t
x x

tn
t

n

n

n

n
( ) cos sin= −( )+ +

−
−








−ξω
ξ ω

ξω

ξ ω
ξ ω0

2 0 0

2

21
1

1











 (1.19)

  Also if:

 C x C
x x

n

n

1 0 2

0 0

21

′ ′
= =

+

−
,

 ξω

ξ ω
 (1.20)

  We have:

 X C C= +( ) ( )
1

2

2

2  (1.21)

 f= −tan ( )1

1 2
C C/  (1.22)

  Equation (1.19) represents the harmonic oscillation of damped system. The 

angular frequency of this movement, known as the frequency of damped 

vibrations, may be expressed as follows:

 ω ξ ω
d n
= −1 2  (1.23)
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  The frequency of damped vibrations is consistently lower than the natural 

frequency of the undamped vibration ( )w
n

. Figure 1.15 and 1.18 depict the 

graphs of Equations (1.19) and (1.23), respectively. It is important to men-

tion that the underdamped vibration is the sole state in which movement 

exhibits oscillatory behavior  [7].

2. Critically damped system (x = 1)

  For x = 1 in this situation, the answer to Equation (1.17) will be determined 

by the presence of dual roots in the characteristic equation.

 x t( )=−( )c c+ e
−wnt

1 2
 (1.24)

  By utilizing the initial conditions x t( )= =0 x
0
 and x t ( )= =0 x

0
:

 x t( )= +x x +w x t  e−w t
 (1.25) ( ) n

0 0 n 0 

  Equation (1.25) denotes a non-periodic motion. According to this equation, 

when t →∞, e
−wnt
→ 0. As a result, the mentioned movement finally stops 

(Figure 1.19).

  3. Overdamped system (x > 1)

  In this case, Equation (1.17) is given as follows:

{ }− +ξ ξ2 2−1 ω ξ

x t( )= +C e
n nt t{ }− − ξ ω−1

1
C e

2
 (1.26)

nditions x t( )= =0 x
0
, x t ( )= =0 x

0
:

x x2

0
ω ξ

n ( )+ −ξ 1 + 
0

C
1
=

2 1ω ξ2

n
−

 (1.27)

− −x x
0
ω ξ

n ( )ξ2 −1 − 
0

C
2
=

2 1ω ξ2

n
−

 

  For the initial co

 

            

FIGURE 1.15 Vibration of the damped system.
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FIGURE 1.16 Comparison of motions based on different damping settings.

FIGURE 1.17 A rolling disk on an inclined surface that is impeded by a spring and damper.

Equation (1.26) demonstrates that regardless of the initial condition of the sys-

tem, the motion remains continuous. As the roots are negative ( )− ±x x2
− <1 0 ,  

the momentum experiences exponential decay over time (Figure 1.16).

Example 1–3: Determine the natural frequency and motion equation of the system 

Figure 1.17 (a).

Response: We have demonstrated the discrepancy of the cylinder in r relation to 

the state of static balance using the variable x (Figure 1.17 (b)):

3 4k
 ∑ =F mx m→ +x c x k+ =2 0x → =w  

2
n

3m
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 FIGURE 1.17 (Continued)

Example 1–4: Derive the equation of motion for the oscillatory system shown in 

Figure 1.18 (a) and determine its natural frequency of vibration.

Response: We demonstrate the angular displacement of the rod in relation to the 

state of static balance using the symbol q (as shown in Figure 1.18 (b)), and we obtain 

the following:

3 3       
∑ =M J θ θ→−k l  l c l l l l

   θ k 
o    − θ θ 3  

    − 
   = J θ4  4 4  4  4 4  o

  
cl2 3 4kl2

J θ+ θ θ+ =kl2

o
0→ =ω

161 4
n

3J
o

In which:

7
 J m 2

o
= l  

48

   1.8 FORCED HARMONIC OSCILLATIONS

     1.8.1 OVERVIEW 

Vibrations occur in a system when it experiences fluctuations due to external stimu- 

lus. The state of arousal can manifest in several forms, including harmonic, non- 

harmonic, periodic, non-periodic, or random patterns. The reaction of a system to 

harmonic excitation is referred to as its harmonic response. The reaction of a system 

to a sudden and sustained excitation that is abruptly applied is referred to as a tran-

sitory response.

This episode focuses on analyzing the reaction of systems that possess a sin-

gle degree of freedom to harmonic excitation. If the excitation frequency matches 

the system’s natural frequency, the system reaction will significantly increase. The 

occurrence of this condition, known as resonance, leads to system failure and should 

be actively prevented.
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     1.8.2 MOTION EQUATION 

The equation of motion for a mass-spring and damper system with the external force 

F(t) applied at a specific location (as shown in Figure  1.19) may be expressed as 

follows:

 mx t cx t kx t F t ( ) ( ) ( ) ( )+ + =  (1.28)

The equation in question is heterogeneous, and its general solution is derived by 

adding the homogeneous solution x t
h
( ) and the particular solution x t

p
( ). The homo-

geneous component refers to the solution of the given problem.

 mx t cx t kx t ( ) ( ) ( )+ + = 0 (1.29)

This displays the oscillations of the system that occur without any external forces. 

As free vibrations decay with time, the general solution of Equation (1.28) reduces to 

its particular solution. The presence of external excitation ensures the continuity of 

motion. Figure 1.20 indicates that the homogenous response of x t
h
( ) ceases to exist 

after time t , leaving only the particular response of x t
p
( ). Transient motion refers to 

the free vibrations that are attenuated due to dampening.

FIGURE 1.18 Rigid rod with a mass m that is constrained by a pin.
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                      1.8.3 HARMONIC RESPONSE OF A DAMPED SYSTEM 

The equation of motion for a damped system, under the influence of the force 

F t F t( ) sin=
0

w , may be expressed as follows:

 mx t cx t kx t F t ( ) ( ) ( ) sin+ + =
0

w  (1.30)

The solution to Equation (1.30) is given by the particular solution.

 x X tt
p
( ) sin( )= −ω φ  (1.31)

FIGURE 1.19 Mass-spring-damper system.

FIGURE 1.20 Homogeneous, particular, and combined solutions for Equation (1.28) in the 

underdamped system.
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By substituting the Equation (1.31) into Equation (1.30), the outcome is as follows:

 X k m t c t F t−( ) −( )+ −( )




=ω ω φ ω ω φ ω

2

0
sin cos sin  (1.32)

By utilizing trigonometric connections and doing mathematical operations, we will 

obtain the following:

 X
F

k m c

=

−( ) −









0

2
2

2 2
1 2

w w
/

 (1.33)

 φ
ω

ω
=

−











−tan 1

2

c

k m
 (1.34)

Now, let us establish the definitions of the following quantities:

 w w
n c n

k

m
c m= =, 2  

 ξ
ω

ξω= = = =
c

c

c

m

c

mk

c

m
c n

n
2 2

2,  

 d
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 (1.35)
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ξ
ω

ω

ω

ω
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2
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n
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=
−
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


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−tan 1

2

2

1

ξr

r
 (1.36)

The quantity M
X

st

=
d

 is called the magnification coefficient or amplitude ratio. The 

graphic in Figure 1.21 shows the variation of 
X

st
d

 and j with respect to the frequency 

ratio r.

Example 1–5: A beam with a uniform mass, denoted as m, is connected at Point 

O and supported by two springs and a damper, as seen in Figure 1.22. The termi-

nal position of the P-point of the PQ spring experiences a sinusoidal displacement 

represented by the equation x t x t( ) sin=
0

w . Determine the angular displacement 

required to reach the stable condition of the beam.

 l m k N m c N s m m kg x cm rad s= = = − = = =1 1000 500 10 1 10
0

, , , , ,/ / /w  
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FIGURE 1.21 Changes in 
X

st
d

 and j by frequency ratio r.

The governing equation of the rod is as follows:

 I k
l l

c
l l

k
l

x t
o
 q q q q=−
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 → + + = =I cl kl kl x t kl x t
o
 θ θ ω

1

16

5

8

3

4

3

4

2 2

0
( ) sin  

In which:

 I ml m
l

ml kg m
0

2

2

2 2 21

12 4

7

48

7

48
10 1 1 4583= +










= = ( )( )= −.  

Once the data is inserted into the equation, the equation of the system results in the 

following:

 1 4583 32 25 625 0 7 5 10. . . . sin q q q+ + = t  

Consequently:

 m c k M
eq eq eq
= = = =1 4583 31 25 625 0 7 5

0
. , . , . , .  

The steady response of a rod will obtain as follows:

 θ ω φ( ) sin( )t t= −Θ  

In which:
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
 

The result is obtained after inputting numerical numbers.

 Θ= =−0 01311 0 5779. , .rad radf  

As a result, the stable response will be as follows:

 q( ) . sin( . )t t rad= −0 01311 10 0 5779  

FIGURE 1.22 Uniform beam with mass m inhibited by a spring and a damper.
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1.9  A PRACTICAL ANALYSIS OF VIBRATIONS: FATIGUE 
FAILURE CAUSED BY VARIABLE LOADING

Fatigue is a potential consequence of vibration on a building or machine. Vibration 

control is crucial to prevent component failure caused by fatigue resulting from oscil-

lating loads. This evaluation is crucial when the structure and/or machine undergoes 

resonance circumstances. In the occurrence of resonance, oscillation is linked to 

significant amplitudes. Consequently, the probability of parts experiencing failure 

or malfunction as a result of low cycle fatigue rises. In this part, we will provide 

a concise overview of the fundamental principles of fatigue and then elucidate the 

correlation between the phenomena of resonance and the subsequent malfunction or 

structural failure induced by fatigue.

1.9.1 INTRODUCTION TO THE CONCEPT OF FATIGUE

During the tensile test of the material, the load is incrementally applied to provide 

sufficient time for complete strain to develop, resulting in the creation of the stress-

strain graph. However, there are many instances in which tensions have altered or 

where they fluctuate between certain values (Figure 1.28).

s
min
=Minimum Stresses s

a
= Average Stresses

s
max
= Maximum Stresses s

r
=Stress range

s
a
= Stress amplitude s

s
= Static or Stable Stresses

Frequently, machine components experience breakage as a result of repetitive or 

fluctuating pressures. However, thorough examinations indicate that the maximum 

stress levels generated were lower than the ultimate strength of the material and, in 

numerous instances, even lower than the yield strength. The salient characteristic of 

such failures is the frequent recurrence of tensions. This phenomenon is referred to 

as fatigue failure [8] due to this specific cause.

 FIGURE 1.22 (Continued)
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FIGURE 1.23 This figure illustrates many types of tension-time occurrences. The stress 

components depicted in Figure 1.23 are as follows.
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     1.9.2 RELATIONSHIPS BETWEEN TENSION AND LIFESPAN 

In order to assess the durability of the material when subjected to fatigue loads, the 

samples are subjected to varying stresses, and the number of loading cycles required 

for the sample to fail is recorded. Subsequently, they represent the outcomes in the 

form of a graph known as S-N (Figure 1.24).

Basquin presented a mathematical equation to represent the S-N curve within the 

range of N < ( )10 6. To enhance the fatigue resistance of the sample, it is advisable to 

subject it to a specific number of cycles.

 S a N
f

b=  (1.37)

The constants a and b are defined as follows, where N is the number of cycles that 

result in failure:

 a
f S

S
b

f S

S

ut

e

ut

e

=
( )

=−












2

1

3
, log  (1.38)

The fatigue resistance coefficient, denoted as f, may be derived from the curve pre-

sented in Figure 1.25.

The objective of vibration analysis is to mitigate the occurrence of resonance 

phenomenon. In linear systems, when the frequency of the excitation matches the 

 FIGURE 1.23 (Continued)
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FIGURE 1.24 Diagram of the S-N drawn from the results of the fully reverse fatigue exper-

iments for USN G41300, ( , max )S kpsi S kpsi
ut ut
= =116 125

FIGURE 1.25 Fatigue resistance coefficient f, (S
ut

 in the number 103
 cycles for 

S S S
e e ut
= =’ .0 5 )
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natural frequency, resonance occurs and results in a peculiar rise in the amplitude 

of oscillations. The occurrence of low cycle fatigue is observed when the device has 

prolonged operational circumstances. We will see a harmonic motion characterized 

by a significant oscillation range, resulting in the rapid deterioration of the machine 

components shortly after its initiation. Therefore, the examination of vibrations holds 

a prominent position in the field of engineering. In the context of machines function-

ing under near-escalation settings, the challenge of managing fluctuations to prolong 

equipment lifespan arises. This matter is addressed in control talks, coupled with the 

usage of energy absorbers.
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An Introduction to the 

Nonlinear Vibration 

     2.1 INTRODUCTION

The previous chapter focused on the analysis of equations and linear systems. While 

we often analyze systems in a linear manner, in reality, these systems are nonlinear 

[1]. Nonlinear analysis should be employed if the range of motion is not limited. In 

order to accurately depict a physical system, it is typically necessary to employ a non-

linear model. This is because linear analysis of the system’s whole behavior cannot 

effectively anticipate the events that arise in nonlinear systems [2]. In order to study 

nonlinear vibration issues, it is necessary to familiarize ourselves with the many phe-

nomena and concepts associated with these systems. This chapter will cover many 

phenomena in nonlinear vibrations, as well as the topics that will be discussed in the 

subsequent chapters.

     2.2 BRIEF REVIEW OF NONLINEAR OSCILLATIONS HISTORY

Nonlinear behavior manifests in numerous real-world occurrences. Consequently, 

scholars from various disciplines investigate nonlinear systems. The allure of non-

linear dynamics may elucidate why numerous scholars are drawn to the examination 

of nonlinear systems.

The study of dynamical systems originated in the mid-1600s with the introduction 

of differential equations by Newton. Poincaré played a pivotal contribution in the 

advancement of nonlinear dynamics throughout the late 1800s by utilizing qualitative 

analysis to study dynamical systems. His work was indeed a significant advancement 

in the field of nonlinear systems and led to the initial insight into chaos. Nonlinear 

oscillations are a fundamental aspect of dynamics. During the early 1900s, scholars 

were highly interested in studying nonlinear oscillations and their applications in the 

fields of physics and engineering. Over the course of these years, several influential 

scientists, including Van der Pol, Duffing, Cartwright, Levinson, Littlewood, Bogoli-

ubov, Krylov, Levenson, Minorsky, Vitt, Andronov, Birkhoff, and Kolomogonov, 

have achieved a significant advancement in the field of nonlinear oscillatory systems. 

Table 2.1 succinctly outlines their contributions in the aforementioned field [3].

According to Table 2.1, Russian scientists made significant contributions to the study 

of nonlinear oscillatory systems in the early 1900s. The advancement of high-speed 

computers after the 1950s was a significant breakthrough in the study of nonlinear 

oscillations. The study of nonlinear oscillatory systems has led to significant advance-

ments in the field, thanks to the use of newly developed computers. These advance-

ments have provided both theoretical and practical insights into nonlinear systems [4].

       2  
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Between 1950 and 1955, Hayashi authored several papers and conducted research on 

subharmonic, forced oscillations, and the stability of nonlinear systems. In the 1950s and 

1960s, a small number of researchers directed their attention towards studying nonlin-

ear oscillations in the field of plasma physics. Over the course of these years, Crandall 

emerged as a highly engaged scientist in the area of nonlinear vibrations, making note-

worthy advancements in random vibrations and the application of perturbation theory.

Notable scientists who have made significant advancements in the field of nonlin-

ear oscillations, particularly in the area of structural mechanics, throughout the latter 

half of the 20th century include T. Yamamoto, Y. Ishida, A. H. Nayfeh, D. T. Mook, 

R. Rand, F. C. Moon, and E. H. Dowell, among others. Lorenz’s discovery of chaos 

was a significant breakthrough in the field of nonlinear dynamics, with a profound 

impact on study in the area of nonlinear oscillatory systems.

Table 2.2 presents the primary achievements of the experts listed before in the 

field of nonlinear oscillatory systems [3].

The aforementioned experts formulated the fundamental principles underlying 

the science of nonlinear oscillations. After their initial studies, other researchers 

expanded the scope of the discipline to include not only large structures but also 

nonlinear oscillations in micro- and nano-systems. Currently, several research stud-

ies have been conducted on the interaction between fluids and structures, as well as 

the nonlinear modelling of their oscillatory systems. Chaotic vibration analysis of 

structures is a burgeoning research area in the study of nonlinear oscillatory systems.

Over the past 20 years, there has been a significant growth in the number of 

research initiatives focused on nonlinear oscillatory systems. Researchers such as 

TABLE 2.1

Important Contribution in the Field of Nonlinear Oscillatory Systems  

(Early 1900s)

Renowned Scientists Reported Contributions in Nonlinear Oscillations

B. Van der Pol Introduction of relaxation-oscillations

G. Duffing Observation of cubic nonlinearity

M. Cartwright and 

J. E. Littlewood

Relaxation-oscillations and the topological approach for 

solving of nonlinear problems

N. N. Bogoliubov and N. M. Krylov One of the first educational tools in the field of nonlinear 

mechanics and also developed the asymptotic methods 

in nonlinear mechanics

A. A. Andronov and A. A. Vitt Self-excited oscillations and one of the first educational 

tools in the field of nonlinear oscillations

A. Kolmogorov Nonlinear diffusion equation

G. D. Birkhoff Dynamical systems with two degrees of freedom

N. Levinson Transformation theory utilized for nonlinear equations

N. Minorsky Parametric excitation

M. E. Levenson Analyzed the Duffing equation

J. A. Shohat Studied the Van der Pol equation
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Amabili, Chen, Kerschen, Bergman, Awrejcewicz, Mickens, Cveticanin, Inman, 

Balachandran, Esmailzadeh, and Spanos have made significant contributions to 

the advancement of novel works in the field of nonlinear oscillations. Table 2.3 

displays a portion of their recent advancements in the field of nonlinear oscillatory 

systems [3].

     2.3 NONLINEAR SOURCES

Nonlinear systems are characterized by the absence of the concept of superposition 

principles in their description. Nonlinearity is a common occurrence in structural 

mechanics, manifesting in many forms and conditions. These include nonlinearities 

associated with geometry, material properties, inertia, and friction.

Material nonlinearity refers to substances that have stress-strain relationships 

characterized by elastic-plastic behavior. Nonlinear geometry is designed to accom-

modate nonlinear interactions between displacement and strain. This particular form 

of nonlinearity is often addressed in study. The sources of this nonlinear behavior 

include the tension of the middle plate, significant curvature in structural parts, and 

substantial rotation. Inertial nonlinearities occur due to the concentration or disper-

sion of mass. These nonlinear types are expressed in the governing equations as the 

time derivatives of the displacements. Friction-induced nonlinearities of significant 

magnitude arise from dry friction, cohesion-slip, and residue. These nonlinearity 

phenomena are present in the governing differential equations [5, 6].

TABLE 2.2

Important Contributions in the Area of Nonlinear Oscillatory Systems 

(1950–2000)

Scientist Major Contributions in Nonlinear Oscillations

A. H. Nayfeh Enriching field of nonlinear vibrations with writing more than five 

highly cited books and 400 papers during 1970–2000

T. Yamamoto He published more than 130 papers and a number of books in the 

field of nonlinear vibration with special focus on rotor dynamics

Y. Ishida The main contribution of Ishida is nonlinear vibration, vibrations 

suppression and rotor dynamics

R. Rand High influence in the field of nonlinear oscillations with publishing 

more than 150 papers about vibrations of beam, Van der Pol 

oscillators, parametric excitation, and chaos

F. C. Moon He is one of the pioneers in the field of chaotic vibrations and 

explored chaos in structural systems

E. H. Dowell One of the highly influential researchers in the field of nonlinear 

dynamics with special focus on fluid-structure interaction

M. P. Païdoussis Païdoussis is one of the most influential scientists in the field of 

dynamical modelling of pipes and shells

R. A. Ibrahim He is one of the pioneers in the field of fluid sloshing and nonlinear 

oscillations
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Another source of nonlinearity arises from boundary conditions that exhibit 

nonlinearity in terms of both equality and inequality. An instance of nonlinear 

inequalities may be observed in the interaction of elastic objects, where the relative 

displacement of contact sites along the contact route must not exceed or be equal to 

the initial distance between these places [7]. Table 2.4 provides a concise overview 

of the several origins of nonlinear mechanical vibrations.

       2.4 EXAMPLES OF NONLINEAR VIBRATION

This section explores instances of nonlinear nature of the systems with a single 

degree of freedom, which are used to describe the nonlinear characteristics seen in 

physical systems.

We analyze a conservative system with one degree of freedom, where the govern-

ing equation is a simple nonlinear differential equation:

  x t f x x( ) ( , )+ = 0 (2.1)

     2.4.1 SIMPLE PENDULUM 

Examine the simple pendulum as depicted in Figure 2.1. The motion equation of this 

pendulum is given by the differential equation [8]:

 ml mglt2 0q q( ) sin+ =  (2.2)

TABLE 2.3

Major Contributions in the Area of Nonlinear Oscillatory Systems (Last  

Two Decades)

Scientist Contribution in Nonlinear Oscillations

M. Amabili An influential researcher in the area of nonlinear oscillatory systems with 

focus on shell structures and fluid solid interaction

L. Q. Chen An important figure in nonlinear vibration energy harvesting and 

vibration of axially moving continua

L. A. Bergman Development of vibration-based energy harvesting and nonlinear 

structural dynamics

B. Balachandran Analysis of nonlinear phenomena in beams, milling process, and different 

types of structures

R. E. Mickens Development of new types of nonlinear differential equations arising in 

nonlinear oscillatory systems

A. F. Vakakis Significant contribution in the field nonlinear normal modes and its 

applications in vibrations

P. D. Spanos Analyzing of nonlinear and random vibrations is the main focus of his 

research

E. Esmailzadeh Analyzing of nonlinear vibrations of beam- and plate-type structures
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Which can be rewritten as follows:

 q q+ =
g

l
sin 0 (2.3)

TABLE 2.4

Various Sources of Nonlinear Mechanical Vibrations

Source Description

Material Nonlinearities Arise from the inherent properties of materials where the 

stress-strain relationship is not linear, such as in rubber or 

biological tissues.

Geometric Nonlinearities Occur when deformations are large enough that linear 

assumptions (like small angle approximations) no longer 

hold, e.g., in pendulums, beams, plates, and shells.

Boundary Condition Nonlinearities Result from constraints that change with displacement, such as 

contact problems, or supports that exhibit nonlinear stiffness.

Friction and Damping Nonlinearities Caused by nonlinear friction or damping mechanisms, such as 

Coulomb friction or damping that varies with velocity or 

displacement.

Electromechanical Coupling Nonlinear behavior arising from the interaction between 

mechanical and electrical systems, as in piezoelectric 

materials and magnetoelastic effects.

Parametric Excitation Generated by periodic variation of system parameters, such as 

in Mathieu’s equation where stiffness varies with time.

Internal Resonances Occur when energy is transferred between modes of vibration 

within a system, leading to complex motion and nonlinearity.

Rotational Effects Nonlinear vibrations in rotating systems due to gyroscopic 

forces, centrifugal stiffening, or dynamic unbalance.

Impact and Collision Nonlinear response from transient forces during impact or collision 

events, resulting in high-frequency content and large deformation.

Nonlinear Aeroelastic Effects Arise from the interaction of aerodynamic forces with flexible 

structures, leading to phenomena like flutter or limit cycle 

oscillations.

FIGURE 2.1 Simple pendulum.
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The foundation of a nonlinear differential equation is in the comparison of the Equa-

tion (2.1).

 f
g

l
( ) sinq q=  (2.4)

It is a well-known fact that for small angles θ, the value of sin θ is about equal to θ 

(sin )q q= . Equation (2.2) is reduced into linear terms as a consequence.

 θ ω θ+ =
0

2 0 (2.5)

In which:

 w
0

1 2

=










g

l

/

 (2.6)

The presence of significant angular momentum is responsible for the emergence of 

the nonlinear state in this particular example.

     2.4.2  A PARTICLE THAT IS CONFINED AND CONNECTED  
BY A SPRING WITH A NONLINEAR BEHAVIOR 

For our second example, we will analyze the motion of an object with mass m on 

a horizontal plane without any friction. This object is coupled to a spring that does 

not follow a linear relationship (as seen in Figure 2.2). The differential equation 

governing the motion of the mass is given by the function x t( ) which describes its 

location [5].

 x t f x( ) ( )+ = 0 (2.7)

The function f x( ) represents the force exerted by the spring on the mass. The lin-

ear spring equation, f x kx( )= , refers to a spring with a fixed value of k. The force 

exerted by a nonlinear spring is described by a deformed nonlinear function, as 

shown in Figure 2.2. The nonlinear component diminishes the force for a soft spring, 

but it amplifies the force for a hard spring. In this section, we consider the motion to 

occur in states where force is present and absent, along a curved path. We see that 

there is no loss, which results in the system being damped. In this particular instance, 

the presence of nonlinearity is mostly attributed to the behavior of material rather 

than to significant deformations.

Generally, the function f(x) in Equation (2.7) can be expressed in three  

different ways:

 1. f x kx( )= , representing a linear spring.

  2. f x k x
x

( )= +








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3

3
 , representing a hardening spring.
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 3. f x k x
x

( )= −











3

3
, indicating a softening spring.

     2.4.3 PARTICLE IN A CENTRAL FORCE FIELD 

As an illustration, we analyze the motion of a particle on a flat surface subjected to 

the effects of a central force field (Figure 2.3) [5].

The equation that governs the motion of the particle with mass m may be derived 

by expressing Newton’s second law in the r-θ coordinate system:

 m r mF rr( ) ( ) − + =q2 0 (2.8)

 m r r  q q+( )=2 0 (2.9)

If the field is gravitational, the variable m indicates the mass of the particle. Con-

versely, if the field is electric, m represents the electric charge of the particle. The 

Equation (2.9) can be expressed by means of integration as follows:

 r p2 q =  (2.10)

The variable p is a constant. This equation is a conservation angular momentum. 

Results obtained by eliminating q  from the Equations (2.9) and (2.10) are as follows:

 r p

r
F r− + =

2

3
0( )  (2.11)

By substituting the dependent variable r  with its reciprocal u r= −1 and replacing 

the independent variable t  with q , Equation (2.9) may be simplified. Ultimately, the 

derivatives are transformed in the following manner:

 FIGURE 2.2  (a) System of mass and spring. (b) Specifications of spring.
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Thus, Equation (2.11) becomes the following:
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p u
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1 1
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
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


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=  (2.14)

The nonlinearity of the system in this instance arises from the effects of inertia and 

material characteristics.

If a particle with mass m is experiencing a gravitational force F, which is given by 

F G
mm

r
= 0

2
, where m

0
 is the mass of the fixed object, G is the universal gravitational 

constant, and r  is the distance between the centers of the two masses (as shown in 

Figure 2.4), we can express this equation using the chosen variables as follows:

 F Gm m u=
0

2  (2.15)

By inserting the aforementioned sentence into Equation (2.14), we will obtain the 

following:

 − =− −Gm u h u
d u

d u
h u

0

2 2 2
2

2

2 41

q
 (2.16)

The result obtained following simplification as follows:

 
d u

d
u

G m

h

2

2

0

2q
+ =  (2.17)

The equation described by the second-order linear differential equation is nonhomo-

geneous. It is noted that the equation shows a linear relationship, when considering 

the force as the gravitational attraction [9].

FIGURE 2.3 Particle in a central force field.
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              2.4.4 MECHANICAL VIBRATION WITH DRY FRICTION 

The presence of nonlinearity is evident in the damping equation of the system  

(Figure  2.5). The system exhibits nonlinearity as a result of the dry friction 

between the mass m and the belt movement. This system involves two coeffi-

cients of friction: the static friction coefficient ( )µ
s

 represents the force required 

to initiate movement of the item by dry friction, while the kinetic friction coef-

ficient ( )µ
k

 represents the force required to maintain the object’s motion. The 

tangent component of the force is generated by the friction surface (F), which is 

the result of multiplying the friction coefficient by the force perpendicular to the 

surface [8].

The stages of the system movement, as depicted in Figure  2.5 (a), follow the  

velocity-force diagram illustrated in Figure 2.5 (b). Initially, the mass is posi-

tioned on the conveyor belt. The spring elongates as a result of the movement 

of mass m along the belt. As the spring is compressed, the spring force acting 

on the mass intensifies, surpassing the force of static friction. Consequently, 

the mass initiates sliding motion and swiftly moves towards the right. Conse-

quently, the spring force is discharged until it is halted by the kinetic friction 

force. Subsequently, the spring starts the process of reaccumulating its potential 

energy. The variation of the damping force with the velocity of mass is seen in 

Figure 2.5 (b). The equation for mass movement may alternatively be expressed 

as follows:

 mx F x kx + + =( ) 0 (2.18)

The friction force F is a nonlinear function of x, as shown in Figure 2.5 (b). When x  

is significantly big, the damping force is positive, resulting in the removal of energy 

from the system. When x has small values, the damping force acts in the oppo-

site direction and transfers energy to the system. Despite the absence of external 

stimulus, this system exhibits oscillatory motion. The term used to describe these  

self-generated vibrations is mechanical vibrations.

FIGURE 2.4 The particle m moving and under tensile force.
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     2.4.5 VARIABLE MASS SYSTEM 

Conventional systems assume that the mass and spring components remain con-

stant during the solution process. However, in systems with changeable mass, a 

more comprehensive approach is required to accurately analyze the dynamics. 

A widely recognized example of a system that exhibits changing mass is a rocket. 

The fluctuating mass of a missile is a significant challenge in conducting a com-

prehensive and dynamic analysis since it introduces a nonlinear impact on the 

system.

Now contemplate the system including a mass that can vary, as seen in Figure 2.6. 

The mass of this system is dependent on x, in the case of big x shifts, and the motion 

equation is as follows:

 
d

dt
mx kx( ) + = 0 (2.19)

The aforementioned relationship is a nonlinear differential equation resulting 

from a changing mass.

     2.4.6 PARTICLE IN A SPINNING CIRCLE 

As an illustration, we analyze the movement of a mass ( )m  that is sliding without 

friction down the edge of a circle with a radius ( )R . This circle is also spinning at 

a constant angular velocity (Ω) while maintaining a distance equal to its horizontal 

diameter. The particle m is subject to the forces depicted in Figure 2.7 [5].

Based on the force diagram provided, while using Newton’s second law in two 

distinct directions, we will have the following:

 
− + = +

= − +

mg N mR mR

N mR mR mR

cos sin cos

sin sin cos

q q q q

q q q q

q

q

 
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2

2
Ω

22 sinq
 (2.20)

Now we can exclude N from the two aforementioned relationships:

FIGURE 2.5 Dry friction damping.
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 mR m R mgR2 2 2q q q q= −Ω sin cos sin  (2.21)

In this particular example, the nonlinearity arises as a result of the combined effects 

of inertia and large deformation.

The governing differential Equation (2.21) can also be derived using the Lagrange 

technique. To express this, we shall arrange kinetic energy and potential energy in 

sequential order:

 T= +( )
1

2

2 2 2 2mR q qΩ sin  (2.22)

 ν =−mgR cosq  (2.23)

FIGURE 2.6 Variable mass system.

FIGURE 2.7 The moving particle on a soft rotary wire.
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By formulating the Lagrange equation, we obtain the following:
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Ultimately, by incorporating the energy relationships of the movement and potential 

into the Lagrange equation and conducting calculations, the equation of motion (2.21) 

is derived. Earlier, various nonlinear sources were discussed as an example. The 

subsequent discussion will explore the methods for analyzing nonlinear problems. 

Table 2.5 displays notable equations that describe nonlinear mechanical vibrations.

TABLE 2.5

Some Famous Nonlinear Mechanical Vibration Equations.

Equation Name Equation Description

Duffing Equation  x x x x cos t+ + + =2 3δ α β γ ω( ) Describes the motion of a damped 

oscillator with a more complex restoring 

force.

Van der Pol Equation  x x x x− − + =µ( )1 02
Models electrical circuits and biological 

systems; exhibits self-sustained 

oscillations.

Pendulum Equation q q+ =
g

L
sin( ) 0 Governs the motion of a simple 

pendulum; nonlinear due to the  

sin(θ) term.

Korteweg–de Vries  

(KdV) Equation

u uu ut x xxx− + =6 0 Describes waves on shallow water 

surfaces; famous for its soliton solutions.

Lorenz Equations 



x y x

y x z y

z xy z

= −( )
= −( )−
= −





















σ

ρ

β

Describes atmospheric convection; 

famous for chaotic solutions.

Mathieu Equation d x

dt
a q t x

2

2
2 2 0+ − ( )( ) =cos

Describes parametrically excited systems; 

used in the study of vibrating systems with 

periodic coefficients.

Hill Equation d x

dt
f t x

2

2
0+ =( )

General form of a second-order linear 

differential equation with a periodic 

coefficient; arises in the stability analysis 

of dynamic systems.

Lotka-Volterra  

Equations



x x xy

y xy y

= −

= −



















α β

δ γ

Models predator-prey dynamics; 

nonlinear interaction terms between 

species populations.

Klein-Gordon  

Equation

∅+ ∅+ ∅ =m2 3 0l Relativistic version of the wave equation 

with a nonlinear term; used in field 

theory.

Burgers’ Equation u uu vu
t x xx
+ = Simplified model for turbulence and 

shock waves; nonlinear advection term.

(Continued )
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Equation Name Equation Description

Rayleigh Equation   x x x x+ − + = ( )2 1 0 Models self-excited oscillations like those 

in a clarinet reed or steam engine 

governor.

Sine-Gordon Equation ∅ −∅ + ∅ =
tt xx

sin( ) 0 Appears in the study of crystal disloca-

tions and nonlinear wave propagation.

Fermi-Pasta-Ulam- 

Tsingou (FPUT)  

Problem

x x x x x

x x

x x

n n n n n

n n

n n

= − − −

+ −

− −

+ −

+

−

( ) ( )

[( )

( ) ]

1 1

1

2

1

2

a

Studies energy distribution in a nonlinear 

lattice; revealed insights into the 

foundation of chaos theory.

AW (Ablowitz-Weiss) 

Equation

u u u u
tt xx
+ + + =α β2 3 0 Nonlinear wave equation; appears in 

various physical contexts, including 

shallow water waves and nonlinear 

optics.

        2.5 AN IMPORTANT POINT

When studying the behavior of nonlinear systems, we come across significant terms 

and phrases, such as primary resonance, secondary resonance, internal resonance, 

jumping phenomenon, parametric excitation, limit cycle, and saturation phenome-

non. These terms are used to describe the behavior and phenomena observed in the 

analysis of nonlinear problems [4]. In the subsequent chapters, we shall elucidate 

several terminologies with meticulousness.

     2.6  INTRODUCTION TO QUALITATIVE 
AND QUANTITATIVE ANALYSIS

There are two methodologies for examining the nonlinear systems [4]:

 1. Qualitative analysis: The method of qualitative analysis, often employed in 

nonlinear dynamics, utilizes phase plate drawing concepts, such as stable 

equilibrium point, unstable equilibrium point, fixed point, separation point, 

saddle point, and others.

 2. Quantitative analysis: The quantitative approach involves studying the 

 behavior  of the nonlinear system by analytical and semi-analytical 

approaches, such as perturbation, which is utilized in the analysis of nonlin-

ear vibrations.

The subsequent chapters will thoroughly analyze the behavior of nonlinear systems 

using two distinct approaches: quantitative and qualitative.

TABLE 2.5 (Continued )

Some Famous Nonlinear Mechanical Vibration Equations.
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       3  Qualitative Analysis of 

Nonlinear Vibration 

     3.1  INTRODUCTION

Dynamics, despite its interdisciplinary nature, is fundamentally a field of physics. 

In the late 1800s, Poincaré introduced a novel approach to equations, prioritizing 

qualitative analysis above quantitative analysis. Instead of scrutinizing the precise 

locations of the planets at any given moment, he instead raised a different inquiry: 

Is the solar system inherently stable, and would the planets continue to travel indefi-

nitely towards infinity? He devised a proficient geometric methodology to scrutinize 

such inquiries. The field of dynamics is commonly linked with nonlinear oscillators 

and their utilization in the domains of physics and engineering. Nonlinear oscil-

lators are crucial in the advancement of several technologies, such as radio, radar, 

phase-looked loops, and lasers. Nonlinear oscillators have the capability to model 

novel mathematical techniques from a theoretical standpoint. Prior to delving into 

the realm of nonlinear systems, it is imperative to get a comprehensive understand-

ing of the fundamental principles within this discipline. This chapter examines the 

fundamental principles involved in the qualitative analysis of nonlinear systems [1].

     3.2  PHASE PLANE

The visual display phase screen can be defined as the distinctive features exhibited 

by certain forms of differential equations. Phase plane is utilized in applied mathe-

matics, specifically in the domain of nonlinear systems analysis [1].

The differential equation regulating a nonlinear system is expressed in its generic 

form as follows:

  x f x x t+ ( )=, , 0 (3.1)

If the time (t) does not appear explicitly in the differential Equation (3.1), the system is 

referred to as autonomous. Autonomous systems, by definition, lack any form of input. 

Put simply, their equations do not explicitly include the independent variable of time.

  x f x x+ ( )=, 0  (3.2)

In order to represent the second-order differential equation in the state space, we 

shall define x x
1
=  and x x=

2
 as follows:

 



x x

x f x x

1 2

2 1 2

=

=− ( ),
 (3.3)

https://doi.org/10.1201/9781003470694-3
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It is noted that the second-order differential Equation (3.2) can be transformed into 

two first-order differential Equations (3.3). Similarly, by representing the differential 

equation in the state space, a general n order differential equation can be converted 

into n first-order differential equations.

Alternatively, when and x
2
 are plotted on a Cartesian coordinate system, the 

resulting graph is referred to as the phase plane. It represents the trajectory of x
1
 and 

x
2
, often known as the path line.

When x
2
 is equal to zero and f x x

1 2
,( ) is equal to zero, these points are referred to 

be singular points. This signifies the condition of balance or stability of the system. 

To determine fixed points, also known as fixed points, in a second-order differential 

equation, one only needs to substitute the differential Equation (3.2) into the state 

space Equation (3.3) and set it equal to zero:

 
x x

x x f x x

2 1

2 1 2

0

0

= =

= =− ( )=



 ,
 (3.4)

The solutions derived from solving the aforementioned algebraic equation will result 

in the attainment of fixed points.

In order to determine the fixed points of the n -th order differential equation, we 

must first input the equation into the state space and then transform it into n -th order 

differential equations. This will provide the following results:

 x  and, X=





































=








x

x

x

X

X

X
n n

1

2

1

2

 































 (3.5)

In summary:

 x X x= ( )  (3.6)

To determine the singularity locations, it suffices to evaluate the function at x= 0. 

Therefore, we will possess the following:

 X c for i n
i ( )= = …0 1 2, , ,  (3.7)

The symbol “c” denotes the collection of points that symbolize solitary points. Points 

that are not solitary are referred to as normal points. There are typically six types of 

fixed points, also known as singularity points:

   •  Stable node

  •  Unstable node

  •  Saddle point

  •  Stable focus
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  •  Unstable focus

• Central point

These will be thoroughly examined during the conversation.

     3.2.1  PHASE PLANE ANALYSIS 

Phase plane analysis is a graphical technique employed to examine the stability of 

second-order systems. According to this analysis:

 1. Generating trajectories matching to various initial conditions, andsubsequently 

analyzing the qualitative qualities and attributes of the resulting curves.

 2. We obtain valuable data on the system’s stability and other patterns of motion.

The analysis was initially presented by mathematician Henry Poincaré in the 19th century 

ad [1]. The significance of this study is in its ability to examine second-order systems.

• The resulting response lines may be graphically shown as curves, which 

offer a straightforward means of comprehending the qualitative behavior of 

the system.

• The study of the behavior of nonlinear systems under various initial con-

ditions may be conducted by employing analytical solutions for nonlinear 

equations.

• This technique is applicable not just to nonlinear weakening but also to sys-

tems exhibiting strong and rigid nonlinearity.

• Several pragmatic and utilitarian systems can be modeled as second-order 

systems for the purpose of analyzing the phase plane.

However, the phase plane analysis approach has a limitation in that it can only be 

used to second-order systems. The investigation of higher-order systems using this 

method becomes computationally and geometrically intricate.

     3.2.2  TECHNIQUES FOR GENERATING PORTRAIT ON THE PHASE PLANE 

While the demand for phase drawing methods has diminished with the introduction 

of computers, the ability to create phase pictures remains valuable for regulating 

computer-generated outcomes. The techniques for applying a design onto the phase 

plane are as follows:

• Analytical method

• Isocline method

• Delta method

• Lienard method

• Pell method
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3.2.2.1  Isocline Method to Ascertain the Trajectory 
of Motion in the Phase Plane

The term “isocline” is of Greek origin and signifies “same inclination”. The isocline 

line approach involves determining the places on the x x
1 2

 plane where the slope 
dx

dx

2

1

 

is constant. These lines and curves are referred to as the slope and are used to plot the 

course of the two-order systems. Indeed, by picking an arbitrary point as the initial point 

on the x x
1 2

 plane, we may determine the trajectory by considering the multitude of lines 

present. Trajectories on the isoclines are tangent to the slopes of each identical isocline. 

Therefore, the isocline lines represent the set of points on the x x
1 2

 plane that have the 

same slope 
dx

dx

2

1

. Isocline lines can be either straight lanes or curved paths [2, 3].

By dividing Equation (3.3) by each other, we may deduce the following:

 
dx

dx

f x x

x
x x2

1

1 2

2

1 2
=−

( )
= ( )

,
,f  (3.8)

If x
2

0=  is equal to zero on the x
1
 axis and f x x

1 2
0,( )≠  is not equal to zero, then 

the slope of the trajectory, represented by the ratio of 
dx

dx

2

1

, is infinite. Therefore, the 

trajectory becomes perpendicular to the x
1
 axis.

Upon reevaluation, the slope of the trajectory line at Point x:

 S x
dx

dx

f x x

f x x
( )= =

( )

( )
2

1

2 1 2

1 1 2

,

,
 (3.9)

An isocline is characterized by a constant slope α, where the function S(x) is equal 

to ± ±S x( )=( ). All points on the curve f x x f x x
2 1 2 1 1 2

, ,( )= ( )a  have a tangent with 

a slope equal to α. Furthermore, it should be noted that the omission of time in 

this context implies that the replies x t
1
( ) and x t

2
( )cannot be immediately derived. 

Furthermore, it is only possible to examine qualitative aspects of behavior, such as 

stability or oscillatory response.

  3.2.2.2  The Procedure for Generating a Phase 
Portrait Utilizing Isocline Method

 1. Plot the α curve in the state space, also known as the phase plane, as shown 

in Figure 3.1.

  2. Create short lines with an α slope. It is important to observe that the orien-

tation of the line is determined by the positive or negative signs of f
1
  and f

2
  

at that specific position.

 3. Iterate the procedure for an enough quantity of α in order to populate the 

phase plane with a complete set of lines.

Example 3–1: Let’s examine the mass and spring system illustrated in Figure 3.2, 

which is described by the following differential equation:

 x+ =w2 0x  

Plot its trajectory in the phase plane.
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Response: The second-order differential equation is represented in the state space. 

Therefore, the following items will be included:

 



x x

x x

1 2

2

2

1

=

=−








 w

 

Next, we obtain the result by doing division on two equations:

 x dx x dx
2 2

2

1 1
=−w  

Which can be written:

 
dx

dx

x

x

2

1

2

1

2

=− =

ω

α  (a)

Based on the aforementioned correlation, it may be expressed as follows:

 x x
2

2

1
=−

ω

α

 (b)

FIGURE 3.1 Schematic of the lines with positive slope.

FIGURE 3.2 Amplitude diagram to time of a one-degree freedom system including mass 

and spring.
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The equation described earlier represents an equation with a slope of -
ω

α

2

, com-

monly referred to isoclines. By continuously varying α, it is possible to generate 

different lines.

Alternatively, it may be expressed based on the equation (a):

 
dx

dx

2

1

= a  (c)

Thus, based on the equations (b) and (c), it can be inferred that by choosing a certain value 

of α, a line can be constructed where all the lines of the trajectory have a same slope α.

Figure 3.3 demonstrates that joining lines with the same slope but different direc-

tions result in the creation of an oval curve along the line of those directions. If we 

desire to delineate the line of trajectory in an analytical manner, it may be expressed 

based on the equation (a) as follows:

 x dx x dx
2 2

2

1 1
=−w  

By doing integration on both sides, we will obtain the following:

 x x c
2

2 2

1

2 2
+ =w  

The equation earlier represents an oval and indicates that the locus of the garlic is 

the closed path of the oval. Figure 3.4 displays the plotted line of garlic for various 

values of c.

Example 3–2: Let’s examine a pendulum without friction, as shown in Figure 3.5. 

The dynamic equations that control the state space are as follows:

  x x x x
1 2 2 1
= =−, sin  

FIGURE 3.3  The isoclines of a simple harmonic oscillator.
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Which can be written:

 S x
dx

dx

x

x
c( )= =− =2

1

1

2

sin
 

Consequently, the relationship of the lines will also be equivalent to the following:

 x
c

x
2 1

1
=− sin  

One can achieve the task of drawing a line by utilizing the aforementioned equation 

and seeking assistance from specific slopes on the isoclines. Given the initial point 

x
0

2
0=











p
, , the solution is depicted in Figure 3.6.

FIGURE 3.4  Drawing the trajectory for different values of c.

FIGURE 3.5 Schematic of the frictionless simple pendulum.
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Example 3–3: Let’s examine a pendulum with friction, where its dynamic behav-

ior may be described by the relationship between its state variables as follows:

  x x x x x
1 2 2 2 1

0 5= =− −, . sin  

Which can be written as follows:

 S x
x x

x
c( )=

− −
=

0 5
2 1

2

. sin
 

Response: The relationship between the lines may be expressed by the slope of the 

given relationship.

 x
c

x
2 1

1

0 5
=−

+.
sin  

By choosing the initial point x
0

2
0=











p
, , it can be noticed that its trajectory is con-

tracting and converging, like the behavior of a spring moving towards the origin. By 

varying the value of c, it is possible to design lines with varied slopes. Conversely, 

the value of the gradient on each line or curve, represented by 
dx

dx

2

1

, is constant and 

equal to “c”. This constant serves as a reliable reference for accurately drawing a line 

in the phase plane. Figure 3.7 depicts the procedure described earlier, which resulted 

in the creation of the trajectory.

The subsequent statement is a theorem that establishes the presence and unifor-

mity principles utilized in qualitative analysis, which relies on the depiction of a 

sequential line.

FIGURE 3.6 Geometric structure of the phase plane of the frictionless pendulum equation 

using the isoclines approach
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     3.3  THE INVESTIGATION OF EXISTENCE 
AND UNIQUENESS THEOREM

The theorem of existence and uniqueness implies that lines with distinct orientations do 

not intercept. If two lines of trajectory collide, there will be two solutions that originate 

from a same point, which coincides with the collision point, so contradicting the singular-

ity aspect of the theorem. Put simply, a trajectory line is unable to travel in the other way.

Due to the nonintersecting nature of the trajectory lines, the fuzzy pictures con-

sistently exhibit a tidy look in relation to them. Alternatively, they might deteriorate 

into a complex network of intersecting curves (Figure 3.8). Indeed, the presence of 

existence and uniqueness acts as a barrier to this occurrence.

In other words, the aforementioned can be said as follows:

Assuming that:

 ɺ
� � �
x f x x R= ( ) ∈ 2 

If f is a smooth vector function and ¢f f,  are continuous, then there exists a solution 

for 

x t( ), and it is unique for every initial condition. Thus, it can be concluded that 

the vector function f, being a uniform function, ensures that there is no interference 

based on the initial condition while sketching the trajectory.

     3.4  STABLE SYSTEMS

Stable vibration systems are characterized by the preservation of energy inside the 

system, without any dissipation. The equation for these sorts of systems is as follows:

 x+ ( )=f x 0 (3.10)

FIGURE 3.7 Geometric structure of the phase plane of the pendulum equation with friction, 

obtained using the method of isoclines.
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Now, we substitute the variable x  with the value of 


x
dx

dx
, results in:

  x
dx

dx
f x+ ( )= 0 (3.11)

Or

  xdx f x dx+ ( ) = 0 (3.12)

The generic form of equations for stable systems may be obtained by integration as 

follows:

 
x

f x dx E constant

x2

0
2
+ ( ) = =∫  (3.13)

Based on the equation provided, it is noted that in stable systems, the total energy, 

which is the sum of kinetic energy and potential energy, remains constant. We will ana-

lyze the behavior of stable systems using graphical representations and phase planes.

Example 3–4: Examine the simple pendulum depicted in Figure 2.19.

Based on the preceding section, it can be readily demonstrated that the equation 

governing the motion of the pendulum is as follows:

 q q+ =
g

l
sin 0  

Or

 θ+ = =ω θ ω
2 20sin ,

g

l
 (3.14)

Assuming x
1
= q  and x

2
= q , we apply Equation (3.9) to the state variables, yielding 

the following outcome:

 






x x

x x

x x

x x

1 2

2

2

1

1 2

2

2

1
0

=

+ =

=

=−
⇒

w wsin sin
 

FIGURE 3.8  An illustration of trajectory lines.
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Dividing earlier equations will result:

 
dx

dx

x

x

2

1

2 1

2

= w
sin

 (3.15)

We will multiply the sides.

 x dx x dx
2 2

2

1 1
0+ =w sin  

Through the process of integration, it reaches a final determination:

 
1

2
1

2

2 2

1
x x E constant+ −( )= =w cos  (3.16)

Regarding the Equation (3.16), E is a fixed quantity that is directly related to the 

overall energy of the system. An alternative method can also be used to establish the 

Equation (3.16). To fulfill this objective, it may be expressed as follows:

Kinetic energy T ml=
1

2

2 2q

Potential energy U mgl= −( )1 cos q

Thus, the total energy of the system will be equivalent to the following:

 T U ml mgl+ = + −( )
1

2
12 2q qcos  

The results are obtained by dividing the parties by ml2 .

 
1

2
12

2
q q+ −( )= =

g

l

Total energy

ml
Ecos  (3.17)

Based on the Equation (3.13), the motion equation of a single degree of freedom 

(x+ =f x( ) )0  may be expressed in the generic form:

1

2

2x F x h+ ( )=

FIGURE 3.9  Simple pendulum with mass m.
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In a continuous system, the terms 
1

2

2x  and F x( ) represent the kinetic energy and 

potential, respectively. These quantities are regarded as constant and are equal to h.

The subsequent are the classifications of fixed points that we meet in the qualitative 

examination of the behavior of dynamic systems. In order to achieve this objective, we 

examine the potential function F x( ) and the constant value h , as seen in Figure 3.10. 

The graph of Figure 3.10 may be generated by plotting the function 
1

2

2x F x h+ ( )= .

Figure  3.10 demonstrates a clear correspondence between the route of the 

line marked with T
n( ) and the energy level h

n( ). The points labeled as S( ) rep-

resent the saddle points, whereas the one labeled as C( ) represents the center 

point. Fixed points, also known as central points, correspond to extreme poten-

tial energy. Figure 3.10 shows a clear correlation between the saddle points and 

the highest energy level, whereas the centers C( ) are associated with the lowest 

energy level.

Paths that intersect at the highest point in the saddle points T and T
3 5( )  

(Figure 3.10) are referred to as separatrics. The particle’s trajectory near Point S( ) is 

considered unstable in the vicinity of saddle Point S( ) because small displacements 

around Point S( ) do not result in a closed path. The point that corresponds to the 

highest potential energy is referred to as the unstable fixed point. Conversely, in 

the central area of the neighborhood, the trajectories are not open, resulting in peri-

odic answers. The particle’s movement and its associated trajectory near the center 

are steady. The stable fixed point is the fixed point that corresponds to the minimal 

potential energy, as shown in Figure 3.11.

To gain a deeper comprehension of the notion of a stable and unstable fixed 

point, let us examine the pendulum depicted in Figure 3.12. The pendulum depicted 

in Figure 3.11 (a) exhibits a state of stable balance when it is positioned at its lowest 

point. By displacing the mass from its state of static equilibrium, it will undergo 

oscillations around its equilibrium position, which is located at the center (c). The 

trajectory of the mass in the phase plane will be curved. However, in the pendu-

lum seen in Figure 3.11 (b), referred to as the reverse pendulum, the fixed point is 

located at its maximum height and belongs to the category of unstable fixed points. 

Therefore, even a small departure from the fixed point, known as the saddle point, 

will cause the mass to be displaced and prevent it from returning to its original 

position.

Analysis of the enclosed trajectory in Figure  3.10 reveals that the duration of 

rotation is dependent on the extent of movement. In nonlinear systems, the period 

of rotation or frequency is contingent upon the initial conditions. Typically, the tra-

jectory on the left and right sides of the center is asymmetrical. As a result, the 

midpoint of the trajectory is shifted and moved away from the center of the stable 

equilibrium denoted by C( ) by increasing the range of motion. This phenomenon is 

commonly referred to as a steady streaming or drift from the original trajectory. It 

is important to observe that when the amplitude of T
2
 (Figure 3.10) increases, the 

trajectory, which encompasses the closed path of the oval, will move in a bigger 

oval shape. The center of this oval will be located distant from the center of static 

equilibrium.
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FIGURE 3.10  Phase plane for a conservative system having a single degree of freedom [4].

FIGURE 3.11  Simple pendulum in a (a) stable equilibrium and (b) unstable equilibrium.
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     3.5  ANALYSIS OF THE QUALITATIVE BEHAVIOR 
OF SECOND-ORDER NONLINEAR DYNAMIC 
SYSTEMS USING THE LINEARIZATION 
APPROACH AROUND THE FIXED POINT

Prior to delving into the specifics of qualitative behavior analysis for second-order 

nonlinear dynamic systems using the linearization approach around the fixed point, 

it is crucial to take into account the following two key considerations [4]:

• The study of phase planes in nonlinear systems relies on the analysis of 

phase planes in linear systems, as nonlinear systems exhibit behavior that is 

almost identical to linear systems in the vicinity of the fixed point.

  •  Nonlinear systems have distinct features, such as multiple fixed points and 

limit cycles, which give rise to intricate patterns. 

Initially, through the process of linearizing the differential equations that regulate a 

nonlinear system at the point of equilibrium, we want to conduct an analysis using 

a linear model. Given a second-order nonlinear differential equation in state space 

form, we possess the following:

 

dx

dt
f x x

dx

dt
f x x

dx

dx

f x x

f x x

1

1 1 2

2

2 1 2

2

1

2 1 2

1 1 2

= ( )

= ( )
⇒ =

( )

(

,

,

,

, ))
 (3.18)

We have to get balance points:

  x x f x x f x x
1 2 1 1 2 2 1 2

0 0= = ⇒ ( )= ( )=, ,  (3.19)

FIGURE 3.12  Stable node, (a) α > 1, (b) α < 1.
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 f x x f x x
1 01 02 2 01 02

0, ,( )= ( )=  (3.20)

The fixed point is located at x x
01 02

,( ). To simplify the issue without sacrificing its 

generic nature, we will suppose that the fixed point is located at the origin, namely, 

at (0,0). Therefore:

 

x x x
x

t

x

t

y x x
x

t

x

t

= − ⇒
∂

∂
=
∂

∂

= − ⇒
∂

∂
=
∂

∂

1 01

1

2 02

2

 (3.21)

The new fixed point is determined by the alteration of the aforementioned variable, 

resulting in the origin (0,0) remaining unchanged. Given two functions, f
1
 and f

2
,  

which are functions of two variables, their Maclaurin expansion around the fixed 

point (0,0) is as follows:

 




x f x y f a x a y Higher order sentences

y f x

= ( )= ( )+ + +

=

1 1 11 12

2

0 0, ,

, yy f a x a y Higher order sentences( )= ( )+ + +
2 21 22

0 0,
 (3.22)

In which:

a
f

x
a

f

y
a

f

x
a

f

y
11

1

0 0

12

1

0 0

21

2

0 0

22

2

0 0

=
∂

∂
=
∂

∂
=
∂

∂
=
∂

∂( ) ( ) ( ) (, , , ,

, , ,

))

 (3.23)

The utilization of linear expressions in the Maclaurin expansion and the omission 

of higher-order terms is justified by the insignificance of x  and y  fluctuations in 

the vicinity of (0,0). The Jacobian matrix is defined as the matrix resulting from 

the expansion coefficients based on the given Equation (3.23). In the vicinity of the 

fixed point, the trajectories of a nonlinear system have a behavior that closely resem-

bles the linear trajectories of the system in that region. Presently, we possess the 

following:

 


x

y

a a

a a

x

y










=


























11 12

21 22

 (3.24)

Based on the response, we have the following format:

 
x

y

X

Y
e t



















=


















l  (3.25)

By substituting the given solution into the Equation (3.24), we obtain the following:

 l le
X

Y

a a

a a

X

Y
et

















=






























11 12

21 22

ll ll
l

t t
a a

a a

X

Y
e⇒

−

−































=
11 12

21 22

0 
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 A
a a

a a
=

−

−















11 12

21 22

l
l

 

We have a problem with getting eigenvalues:

 det A
a a

a a
= ⇒

−

−














=0 0

11 12

21 22

l
l

 (3.26)

Therefore, the eigenvalues of the problem will be equal to the following:

l l
1 2

2

11 22 11 22 21 12

1

2
4, , , ,= ±∆( ) ∆= − = + = −p p q p a a q a a a a  (3.27)

If 
X

Y

1

1



















 and 
X

Y

2

2



















 are eigenvectors associated with eigenvalues l l
2 1
,( ), respectively, 

and assuming they are l
1

0≠( ) and l
2

0≠( ) as well as l l
1 2
≠( ), the answer can be 

written as follows: (where c
1
 and c

2
 are arbitrary constants).

 
x

y
c

X

Y
e c

X

Y

t














=
















+












1

1

1

2

2

2

1l 





e
tl2  (3.28)

In the upcoming discussion, we will see that the qualitative dynamics of the system 

may be characterized by describing the distinct values. To solve the Equation (3.24), 

a straightforward approach involves decoupling and utilizing the T -transformation 

matrix in the following manner:

 
x

y

X X

Y Y

u

u
T

u

u












=

























= [ ]1 2

1 2

1

2

1

22












 (3.29)

Matrix T represents the modal matrix, which contains eigenvectors. The general-

ized coordinates are denoted by 
u

u

1

2



















. The governing differential equation may be 

expressed as follows:

 
X X

Y Y

X X

Y Y

u

u

X X
1 2

1 2

1

1 2

1 2

1
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
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
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
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







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










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− 

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1 2

1

11 12

21 22
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1
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Y Y
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Y Y

u

u
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











































−
















 (3.30)

Based on the theorem of linear algebra, specifically the algebra of matrices, the fol-

lowing is established:

 
X X

Y Y

a a

a a

X X

Y Y

1 2

1 2

1

11 12

21 22

1 2

1 2

1
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
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
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
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


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−

l
00

2
l














 (3.31)
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So we will have the following:

 



u

u

u

u

u1

2

1

2

1

2

1
0

0












=

























⇒

=l
l

ll
l

l

l
1 1 1 10

2 2 2 2 20

1

2

u u t u e

u u u t u e

t

t

→ ( )=
= → ( )=

 (3.32)

Both u
10

 and u
20

 are constant. It is noted that two equations are distinct and may be 

readily solved using the aforementioned method. By eliminating the variable t from 

the aforementioned two equations, we obtain the following:

 u t u
u

u
2 20

1

10

2

1

( )=











=

α

α
λ

λ
;  (3.33)

If u
10

0= , the half-trajectory corresponds to the axis u
2
 (Figure 3.13).

Considering the aforementioned information, it can be concluded that by com-

puting the eigenvalues of the coefficient matrix in the Equation (3.24), it becomes 

convenient to express the solution of the differential equation in terms of the Equa-

tion (3.32) rather than Equation (3.28). This approach facilitates the analysis of the 

qualitative characteristics of the equation. Based on the values of l
1
 and l

2
, the fixed 

points may be categorized as follows.

 1. l
1
 and l

2
 are real and uneven values, i.e., p q2 4> .

   Next, given that l
1
 and l

2
 have the same or opposite sign, we specify the 

type of movement.

a) if l
1
 and l

2
 have same symbols q>( )0 , the fixed point is called  

the node.

    a-1)  if l l
1 2

0 0, < → <p  , as a result, the fixed point, a node, will be 

stable as Figure 3.12 .   

  a-2)  if l l
1 2

0 0, > → >p , as a result, the fixed point, a node, will be 

unstable as Figure 3.13.

  The behavior of the trajectory going through the origin is contingent 

upon the sign a. If a is a positive value (l
1
 and l

2
 have the same sym-

bols), the origin is called a node or nodal point (as seen in Figure 3.12 

and Figure 3.13). When the value of α is greater than 1 a>( )1 , the tra-

jectory intersects the axis u
1( ) tangentially, as shown in Figure 3.12 a 

and Figure 3.13 a. Conversely, when α is less than 1 a<( )1 , the trajec-

tory intersects the axis u
2( ) tangentially, as shown in Figure 3.14 b and 

Figure 3.13 b. Figure 3.12 depicts a stable node, indicating that both l
1
 

and l
2
 are negative. Conversely, when l

1
 and l

2
 are positive, it signifies 

that as t grows, the point is diverging from the origin, which is referred to 

as an unstable node (Figure 3.13).

 b) If both l
1
 and l

2
 are real and equal, then the equation p q2 4=  holds. In 

this scenario, the trajectory will consist of straight lines that intersect the 

origin. If l< 0, the fixed point (origin) will be stable, and if l< 0, the 

fixed point will be unstable (Figures 3.14 a and b).
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    For instance, we examine the scenario in which the roots possess the character-

istics of being both real and equal. There are two potential modes in this case:  

 B[ ]=












l
l
0

0
 

  Or

 B[ ]=












l
l
1

0
 

  We’ll have [B] for the first case:

  u u u u
1 1 2 2
= =l l,  (3.34)

  So:

 u u exp t u u exp t
u

u

u

u
1 10 2 20

1

2

10

20

= ( ) = ( ) =l l, ,  (3.35)

    The point of origin is referred to as a node. The stability of the node’s origin is 

determined by the sign of λ. If l< 0 , the origin of the node is stable (Figure 

3.14 a). Conversely, if l> 0 , the origin of the node is unstable (Figure 3.14  b). 

 l l< = <0 0
1 2

  l l
1 2

0= >

  Regarding the second scenario, we will have [B]:

  u u u u u
1 1 2 2 2
= + =l l,  (3.36)

FIGURE 3.13  Unstable node, (a) α > 1, (b) α < 1.
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    So: 

 u u u t exp t u u exp t
1 10 20 2 20
= +( ) ( ) = ( )l l,  (3.37)

    Furthermore, in this particular scenario, the point of origin is referred to as 

a node. If l> 0  (Figure 3.15  a), the origin of the node is stable. Conversely, 

if l< 0  (Figure 3.15  b), the origin of the node is unstable. 

            The semicircle represents the point where u
20

0=   equals zero on the u
1
  axis. 

Regarding the Equation (3.37), the following information is available: 

 
u

u

u

u u t t
as t2

1

20

10 20

1
=

+
→ →¥  (3.38)

    Which is for u
20

0¹   mode.

   Based on the Equation (3.37), it is determined that u
2
  is unable to undergo 

a change in sign. Consequently, every trajectory line must be positioned 

either in the top half or the bottom half of the plate. Furthermore, when t 

approaches infinity, the values of u
1
  and u

2
  converge, and the ratio u u

2 1
/   

tends towards zero. Thus, all the lines of the trajectory pattern converge 

towards the origin in the lower half of the plane, exhibiting a horizontal 

slope and originating from the left side. All the lines of the trajectory con-

verge towards the origin in the upper half of the plate, originating from the 

right side and with a gradient of zero (Figure 3.15 ).

  2. If l
1
  and l

2
  are real but opposite to the sign q<( )0   and the sign p  is not 

important.

  In this scenario, one of the solutions converges towards the origin, while 

the other diverges towards infinity. In this particular situation, the origin 

represents the saddle point and corresponds to an unstable equilibrium. 

FIGURE 3.14 Stable node when the eigenvalues are equal and the Jacobin matrix is diagonal.
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FIGURE 3.15  a) Stable node, b) unstable node.

Figure 3.16 displays the structure of the trajectory line. The axes u
1
 and u

2
 

are unequivocally integral curves.

 l l
2 1

0 0< >,   l l
2 1

0 0> <,

In mathematics, an integral curve is a parametric curve that provides a unique 

solution of an ordinary differential equation and/or system of equations. If the dif-

ferential equation is represented as a vector field or slope field, then the associated 

integral curves are tangential to the field at every point.

If l
1
 and l

2
 are complex conjugate( )p q

2 4< .

 
λ θ θ

λ θ θ

λ θ θ

1 1 2 1 10 1 10

2 1 2

1 1 2= + → ( )= → ( )= ( )

= −

i u t u e u t u e e

i

t t i t

→→ ( )= → ( )= ( ) −u t u e u t u e e
t t i t

2 20 2 20
2 1 2λ θ θ

 

The equations depicted earlier illustrate the motion of a logarithmic spiral. In this 

scenario, the point of equilibrium is referred to as the focus point or spiral point or 

focal point. If q
1
 is negative ( )q

1
0< , both the asymptotic stable motion and the focus 

point will be stable. The expression p<( )0  and q>( )0  is equal to the condition 

shown in Figure 3.17.

If q
1

0> , the focal point will be unstable. This is equivalent to p>( )0  and q>( )0  

(Figure 3.18).

It is important to understand that the q
2
 sign just denotes the direction of rotation. 

If q
2
 is greater than zero (q

2
0> ), the motion is in the counterclockwise direction. 

Conversely, if q
2
 is less than zero (q

2
0< ), the motion is in the clockwise direction. 
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 FIGURE 3.16   Saddle curve a) l
1
 > 0, l

2
 < 0, b) l

1
 < 0, l

2
 > 0.

If q
1
 equals zero (q

1
0= ), meaning that p equals zero p=( )0 , then the mixed radial 

vector will have a constant value. Consequently, the phase plane is introduced as 

a circle with the center being the fixed point. There has been sporadic movement, 

resulting in stability. The fixed point in this instance is located in the center or vertex 

point (as seen in Figure 3.19).

FIGURE 3.17  Stable focal point.
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FIGURE 3.18  Unstable focal point.

FIGURE 3.19  Vertex or center point.

              3.6  REVIEW OF A FEW POINTS

 1. The nature of the fixed point is determined by the polarity of the eigenvalues.

    An instability arises when the real component of the eigenvalues is posi-

tive, while the system remains stable when the real part of the eigenvalues is 

negative.

  2. All the characteristics of linear systems are widely recognized.

 3. The characteristics of nonlinear systems are only established within a lim-

ited region.

Figure 3.20 depicts the various states of the poles and the names of the fixed points 

associated with each condition.
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FIGURE 3.20 Different types of poles according to their eigenvalues and corresponding 

fixed points.
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Example 3–5: Find the solution to the initial value issue given by the equations 

x x y= +  and y x y= −4 2  using the initial conditions x y
0 0

2 3, ,( )= −( ) .
Answer: the corresponding matrix is equal to the following:

 


x

y

x

y










=

−























1 1

4 2
 

Firstly, we determine the unique values of matrix A. The equation can be described 

as a characteristic equation: λ λ
∧
2 + - 6 = 0 . Therefore:

 l l
1 2

2 3= =,  

Next, we acquire distinct vectors V = ( )v v
1 2
,  that correspond to certain values in 

such a way that:

 
1 1

4 2

0

0

1

2

−

− −






















=










l
l
v

v
 

Given l
1

2= , we may deduce that the matrix 
−

−























=










1 1

4 4

0

0

1

2

v

v
 multiplied by 

the vector ( , )v v
1 2

 equals the zero vector 1 1,( ) v v
1 2

1 1, ,( )= ( ) . This equation has a 

trivial solution v v
1 2

1 1, ,( )= ( )  or any scalar multiple of it. (Certainly, every scalar 

multiple of a unique vector will always provide another unique vector, with an 

inclination towards selecting the most straightforward option, but all possibilities 

will be valid.) Similarly, when l
2
 is equal to −3, the equation takes on a eigen-

value 
−

−























=










1 1

4 4

0

0

1

2

v

v
. The equation v v

1 2
1 4, ,( )= −( ) has a trivial solution 

v v
1 2

1 4, ,( )= −( ). To summarize:

 V V
1 2

1

1

1

4
=










=
−











,  

A generic response can be expressed as a linear mixture of specific replies. Thus, the 

answer will be applicable in all cases.

 X t c e c et t( )=









+

−










−

1

2

2

3
1

1

1

4
 

To get the initial condition x y
0 0

2 3, ,( )= −( )  in the final state, we compute the coef-

ficients c
1
 and c

2
. At time t = 0, we will possess the following:
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1
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FIGURE 3.21  Phase plane image.

Which is equivalent to the following algebraic equations:

 
2

3 4
1 1

1 2

1 2

1 2

= +

− = −
→ = =

c c

c c
c c

,

.
,  

With a fixed date, the public response results:

 
x t e e

y t e e

t t

t t

( )= +

( )= −

−

−

2 3

2 34
 

Which is solving the initial value problem.

Fortunately, it is not necessary to do all of these processes in order to create a 

phase picture of a linear system. Our sole requirement is to get knowledge of the 

distinctive values and their matching distinctive vectors.

Given that the system’s eigenvalues are l
1

2=  and l
2

3= , let’s draw phase shape. 

The initial unique answer experiences exponential growth, whereas the subsequent 

unique solution diminishes and eventually vanishes. This is the genesis of a zenith 

point. The manifold is defined by the line created by the vector V
2

1 4= −( ), , which 

corresponds to the specific solution that is decreasing in magnitude. Likewise, there 

are a small number of unstable branches, such as the line formed by vector V
1

1 1= ( ), .  

Similar to the Zen dots, a single line of garlic moves towards several unstable 

branches, causing the need for t→∞ (as seen in Figure 3.21).

              3.7  CLASSIFICATION OF FIXED POINTS

By now, you are likely fatigued from the numerous instances and eager for a straight-

forward category. Fortunately, this category exists. The associated equilibrium and sta-

bility point type may be visually shown in a straightforward diagram (Figure 3.22) [2].
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FIGURE 3.22  The fixed points classification of a linear system on the page (p, q).

The second-order differential equation in the state space is defined based on the 

linear conditions surrounding the fixed point in the following manner:
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 (3.39)

Based on the response, we may observe the following structure:
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By substituting the previous solution into the Equation (3.39), we obtain the following:
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Therefore, we have a eigenvalues for solving the problem:

 det A
a a

a a
p p q= →

−

−














= → = ± −( )0 0

1

2
4

11 12

21 22

1 2

2
l

l
l l,  

 p a a q a a a a= + = −
11 22 11 22 21 12

,  

In Figure 3.22, the p-axis, Trace, and the q-axis are the determinants of matrix A. 

The schematic information is derived from the subsequent relationships.
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FIGURE 3.23  Phase plane corresponding to one of the eigenvalues of zero.

 l l l l l
1 2

2

1 2 1 2

1

2
4

,
, ,= ±( ) = − = = +p p q q p   (3.41)

The second and third expressions in Equation (3.41) can be obtained by writing the 

characteristic equation in the form l l l l l l−( ) −( )= − + =
1 2

2 0p q .

According to Figure 3.22, the following is observed:

If q is < 0, the eigenvalues are real and have the opposite sign. So the fixed point 

is a saddle point.

If q is greater than zero (q> 0), the eigenvalues exhibit characteristics that resem-

ble either sign (nodes) or complex conjugates of spirals and centers. It should be 

noted that the nodes exhibit a p q2 4 0− >  correlation, whereas the spirals adhere to 

a p q2 4 0− <  correlation. The equation p q2 4 0− =  represents the border separating 

nodes from spirals. This share includes both the star nodes and the degenerate nodes. 

p determines the stability of nodes and spirals. When the value of p is less than 

zero ( p< 0), the real components of both eigenvalues are negative. Consequently, 

the fixed point is deemed stable nodes, and spirals that are unstable have a positive 

p value ( p> 0). Stable centers are naturally positioned on the boundary line where 

p= 0, resulting in a combination of exceptional values.

If q equals zero (q= 0), then at least one of the eigenvalues is also zero. There-

fore, center, a balancing point, does not exist in isolation. Under these circum-

stances, there are stationary points throughout the whole length of a line (as seen in  

Figure 3.23). Alternatively, if A= 0 , a stationary points plate will be present.

Upon reexamination and with a more extensive analysis, it is evident that  

Figure 3.22 may be regarded as Figure 3.24. The primary components of the fixed 

points in this form are saddle points, nodes, and spirals. They are present in signifi-

cant portions of spots on the plate q p,( ). The centers and nodes of the star, as well as 

the equivalent and non-isolated fixed points, correspond to the boundary line curves 

on the plate defined by the coordinates q p,( ). Among these borderline instances, 

centers have much more importance. They often arise in frictionless mechanical sys-

tems with steady energy.

It is emphasized that the parabolic curve with the equation p q2 4 0− = in  

Figure 3.24 is a boundary line that consists of border nodes, star nodes, line p= 0 

centers, and line q= 0 and is known as non-isolated fixed points. Among them, the 
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FIGURE 3.24  The fixed points classification for a linear system on the page (p, q).

centers have particular significance. Due to even the tiniest variation, the system may 

encounter either stable or unstable situations.

     3.7.1  TIP 

The trajectories of a nonlinear system are located in a neighborhood surrounding the 

fixed point, which is close to its linear trajectories.

If the equation originates from a linear state, a stable node, a stable focal point, 

or a saddle point, then in a limited vicinity of the fixed point, the trajectory of a 

nonlinear system will exhibit behavior similar to that of a stable node, a stable focal 

point, or a saddle point, respectively. If the linearized state equation originates from 

an unstable node, an unstable focal point, or a saddle point, then the behavior of the 

course line of a nonlinear system in a small neighborhood of the fixed point will 

resemble that of an unstable node, an unstable focal point, or a saddle point, respec-

tively [4].

It is important to mention that the phrase mentioned earlier does not apply to 

boundary lines, such as central, equivalent, star nodes, and non-isolated fixed points. 

Undoubtedly, the center and non-isolated fixed points are quite sensitive within the 

boundary lines. By making a modest adjustment, such as including a damper, the 

central point of the system will tend to move towards either a stable or unstable spi-

ral. This scenario is true for non-isolated fixed points. However, the stability criteria 

for equivalent and star nodes remain unchanged with minimum modifications. For 

example, unstable spirals transform into unstable nodes, yet their instability persists.
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     3.7.2  HYPERBOLIC FIXED POINTS, TOPOLOGICAL 
EQUIVALENCE, AND STRUCTURAL STABILITY 

In a second-order system, if both eigenvalues Re l( )≠ 0 are not equal to zero, the 

fixed point is referred to as hyperbolic. The hyperbolic fixed points exhibit robustness 

and their stability type is unaltered by minor nonlinear perturbations. Conversely, 

fixed points that are not characterized by delusions are feeble and easily broken.

The Hartmann-Grobman theorem states that the local phase image closely approx-

imates a hyperbolic fixed point, with a topological coefficient that aligns with the 

linearization phase image. The stability of the fixed point is specifically determined 

by linearization. Topological alignment refers to the process of achieving topological 

homeomorphism or mapping topology through continuous deformation and inver-

sion. This involves drawing the image of the local phase onto another, ensuring that 

the line of the trajectories aligns with the line of other trajectories and the direction of 

time (path of vectors) is preserved. An illustrative instance of hyperbolic fixed points 

can be referred to as the saddle point, whereas for non-hyperbolic fixed point, as the 

center point. The Hartmann-Grobman theorem addresses the matter of stability of 

points in the phase plane when there is a little change or deviation from the equilib-

rium state, using eigenvalues.

     3.8  QUALITATIVE BEHAVIOR OF N -ORDER NONLINEAR 
DYNAMIC SYSTEMS BY USING THE LINEARIZATION 
APPROACH AROUND THE FIXED POINT

Let’s consider the differential equation that governs a system in state space with n 

dimensions. This equation is a first-order differential equation.

 
�ɺ
� � �

x F x x Rn= ( ) e , (3.42)

Or

 x F x x x x i n
i i n
= …( ) = …

1 2 3
1 2, , , , , , ,  (3.43)

F  is a uniform function with a real value.

The function 
 
F x( ) can generally exhibit nonlinearity. We need to compute the 

fixed points.

 
�ɺ

� �
x F x= → ( )=0 0* ; (3.44)

Given the desire to shift the fixed point to the origin, we may do this by modifying 

the variable as follows:

 
 
y t x t x( )= ( )− *; 

(3.45)
 

�ɺ �ɺy t x t( )= ( ); 
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Assume that by substituting the variable change mentioned earlier into the Equation 

(3.43) and expanding the function F y y y y
i n1 2 3

, , , ,…( )  around the origin, the resulting 

relationship is as follows:

 
�ɺ �
y t Ay t( )= ( ); (3.46)

Where the Jacobian matrix is defined as follows:
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Where the initial conditions are as follows:

 
 
y t y t( )= =

0
0at  (3.48)

Let’s define the vector 

y t( ) as 

 
y t Tu t( )= ( ), where T  is the modal matrix (a matrix 

holding eigenvectors) and u
i
 is are generalized coordinates. With this definition, the 

governing differential equation may be expressed as follows:

 Tu t ATu t u t T ATu t
�ɺ �ɺ� �
( )= ( ) → ( )= ( )−1  (3.49)

Where, J T AT=
−1  is referred to as the standard form of Jordan.
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Based on the theorem of linear algebra, the following is known:
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So the J matrix is a diagonal matrix of eigenvalues.
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In which:
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And 

u

0
 is obtained as follows according to the initial conditions of 


y

0
.

 
     
y Tu u T y u t t T y

0 0 0

1

0

1

0
= → = → ( )= ( )− −Λ  (3.54)

As previously stated, the presence of the trajectories on the phase plane is indica-

tive of second-order differential equations. Put simply, it is not feasible to depict an 

exceedingly intricate and unattainable curve by elevating the degree of the differen-

tial equation.

     3.9  ANALYSIS OF NONLINEAR SYSTEMS USING A PHASE PLANE

When discussing phase plate analysis in nonlinear systems, it is crucial to take into 

account aspects related to limit cycles.

According to the Van der Pol oscillator system, besides the fixed points, the sys-

tem also exhibits a closed curve. All the trajectories entering and exiting this curve 

will be inclined towards it. If the trajectory follows the curve, it will proceed along it 

and oscillate about the origin, eventually leaving the curve [4]. Figure 3.25 is a curve 

that exemplifies the occurrence of limit cycles in some nonlinear systems.

In the phase plane, a partial cycle is referred to as an independent closed curve. 

The closed phase route of this curve signifies the rotational character of its move-

ment, while the discrete nature denotes the short duration of the cycle. Consequently, 

the nearby pathways either incline towards it or diverge from it. It is important to 

highlight that in the case of a mass or a satellite, the presence of several closed curves 

prevents these curves from being limit cycles. These cycles are interconnected. Limit 

cycles may be classified into three distinct types:

 1. Stable limit cycles: have a characteristic where all trajectories surrounding 

them get increasingly directed towards the cycles as time progresses.

  2. Unstable limit cycles: in these cycles, all the trajectories surrounding them 

are eliminated as time progresses.

 3. Semi-stable limit cycles: some pathways around these cycles tend to 

approach them as time passes, while other paths move away from them.

Example 3–6: The system that follows is assumed:

 

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FIGURE 3.25  Types of limit cycles: a) stable, b) unstable, and c) semi-stable.

By establishing the polar coordinates using the following definition:
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Now, derivative of Equation (3.56) based on time, we have the following:
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Conversely, in regard to θ, we have the following:
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In the unit circle with a radius of 1 r =( )1 , the Equation (3.57) and (3.58) are repre-

sented as follows:

 
dr

dt
r r=− −( )=2 1 0 (3.59)

 
d

dt
t

q
q q=− ⇒ = −1

0
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FIGURE 3.26  Stable limit cycle.

If the value of r is less than 1 r <( )1 , then the derivative of r is positive. Conse-

quently, the trajectories within the unit circle converge towards the circumference. 

If the value of r is greater than 1 r>( )1 , then the derivative of r will be negative. In 

other words, the trajectories outside the unit circle converge towards the circle. In this 

scenario, the limit cycle is stable, as seen in Figure 3.26.

Other examples later show that their limit cycles are, respectively, unstable and 

semi-stable:
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The earlier relationships represent an unstable limit cycle, the diagram of which is 

shown in Figure 3.27.

FIGURE 3.27  Unstable limit cycle.
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FIGURE 3.28  Semi-stable limit cycle.

The connections later depict a set of equations that pertain to a semi-stable limit 

cycle. The associated graph may be seen in Figure 3.28.
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              3.10  CASES OF THE EXISTENCE OF LIMIT CYCLES

In the discussion of the existence of limit cycles in nonlinear systems, three important 

theorems can be mentioned:

     3.10.1  POINCARÉ THEOREM 

If an autonomous second-order system (without input) exhibits a limit cycle, then 

the number of limit cycles is equal to the sum of the number of stable fixed points and 

one (N S= +1). Let N  be the total count of nodes, centers, and centers enclosed by 

the limit cycle. S represents the count of saddle points encompassed by the limit cycle. 

The Poincaré theorem is sometimes referred to as the index theorem. An immediate 

consequence of this is that the limit cycle must encompass at least one fixed point 

(because the absence of a saddle point would leave us N =1).

As we have seen, in previous examples, each limit cycle encloses at least one fixed 

point.

     3.10.2  THE POINCARÉ-BENDIXON THEOREM 

If a path of the automated system of order two (3.56) remains in the finite area Ω, then 

one of the following three statements is true:

 1. The path leads to a point of equilibrium.

  2. The path leads to a stable limit cycle.

 3. The path itself is a limit cycle.
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
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,

,
 (3.60)

     3.10.3  BENDIXON’S THEOREM 

In the context of an autonomous nonlinear system, the presence of a limit cycle in 

the Ω area of the phase plane is impossible if the Equation (3.61) remains unchanged 

and non-zero in that region.
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Example 3–12: The following nonlinear system is assumed:
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According to Bendixon’s theorem, it can be written as follows:
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Given that the equation mentioned earlier is positive at all points except the origin, it 

may be concluded that the system does not have a border phase plane at any location.

It is important to mention that the aforementioned situations are specifically appli-

cable to second-order systems and do not apply to high-order systems. In higher-order 

systems, it is possible for complicated lateral behaviors to emerge, in addition to fixed 

points and limit cycles.

Example 3–7: Plot the amplitude of the changes in variable x with time t for the 

Van der Pol oscillator, given the initial conditions (−1,1) and (−3,3).

Answer: To plot a graph illustrating the variation of x with respect to t, we may 

utilize the Van der Pol oscillator based on the derived relationships from the preced-

ing example.
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Therefore, by calculating the equations mentioned earlier, one may graph the ampli-

tude of variations in the Van der Pol oscillator over time for various initial conditions 

as Figure 3.29.
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FIGURE 3.29 Amplitude diagram of changes x by time t for the Van der Pol oscillator for dif-

ferent initial conditions (a) with initial conditions (−3,3) and (b) with initial conditions (−1,1).
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FIGURE 3.30  Displaying a vector field.

               3.11  A GEOMETRIC INTERPRETING A DIFFERENTIAL EQUATION

Graphical analysis can be more advantageous and less complex than mathematical 

formulas when qualitatively analyzing the behavior of nonlinear systems in certain 

scenarios [1].

In the following, we will propose a technique that utilizes vector fields to analyze 

certain behaviors of differential equations, which we will subsequently explain.

In order to introduce this methodology, we begin with a straightforward illustra-

tion. Let us examine the subsequent nonlinear differential equation:

 x x= ( )sin  (3.64)

The solution to this equation, obtained by the process of isolating and then integrat-

ing, can be expressed in closed form as follows:

 t
csc x x

x x
=

+

+
ln

cot

csc cot

0 0  (3.65)

The previous response, albeit correct, had an intricate and perplexing explanation.

Now, the question at hand is whether it is feasible to respond to the subsequent 

question using the aforementioned answer:

Given the initial knowledge of x at time t = 0, it is feasible to ascertain the position 

of x at any specified time t> 0. However, what happens when t approaches infinity?

Contrary to the previous question, there exists a straightforward graphical analy-

sis method that can provide a qualitative answer by depicting the vector field of the 

differential equation (60–3) in the form (Figure 3.30).

Prior to elucidating this approach, we shall initially establish the concept of fixed points.

Fixed points are positions where the derivative of x with respect to time is zero, 

indicating that the particle is not in motion.

At these specific locations, the velocity is precisely zero, indicating a complete 

absence of flow.

Fixed points can be categorized according to their stability as follows:

 1. Stable fixed points, also known as attractors or sinks, are points in a system 

where a particle, when slightly moved, would travel back towards the fixed 

point. These locations are commonly referred to as “sinks” due to their abil-

ity to attract the flow.
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 2. Unstable fixed points, often known as repellers or sources. In the case of an 

unstable fixed point, a particle will move away from the fixed point if it is 

even slightly displaced. These spots are sometimes referred to as “sources” 

due to their ability to reject the flow.

The concept of sinks and sources refers to the flow of substances or energy into or 

out of a system. A sink is a location or component that absorbs or removes substances 

or energy from the system, while a source is a location or component that adds or 

supplies substances or energy to the system.

Sinks are stable fixed sites towards which the flow is directed from both sides. 

Particles in close proximity to these locations will experience an attractive force and 

ultimately settle at the sink.

On the contrary, sources are unstable reference points from which the flow 

diverges. Particles in close proximity to these spots will experience repulsion and 

disperse away from the source.

Based on the definition provided earlier, we will proceed to explain the methodology.

In this context, t represents time, x represents the position of a hypothetical par-

ticle moving down a straight line, and x  represents the velocity of that particle. The 

differential equation x x= ( )sin  defines a vector field on the line, where it determines 

the velocity vector x  at each x. In order to depict the vector field, it is advantageous 

to graph the derivative of x with respect to time ( x) against x and subsequently rep-

resent the velocity vector at each x by drawing arrows along the x-axis. The arrows 

indicate a rightward direction when the derivative of x is greater than zero, and a 

leftward direction when the derivative of x is less than zero.

Here’s a more tangible perspective on the vector field: envision a continuous flow 

of fluid along the x-axis, where the velocity varies at different locations based on the 

rule x x= ( )sin . As depicted in Figure 3.30, the direction of the flow is towards the 

right when the derivative of x is greater than zero ( x> 0) and towards the left when 

the derivative of x is less than zero ( x< 0). When the derivative of x with respect to 

time is equal to zero, there is no movement, and these points are referred to as fixed 

points. In Figure 3.30, there are two types of fixed points: stable fixed points, rep-

resented by solid black dots, and unstable fixed points, represented by open circles. 

Stable fixed points are typically referred to as attractors or sinks because the flow 

moves towards them, while unstable fixed points are known as repellers or sources.

     3.12  THE THEORY OF THE BIFURCATION

In general, any qualitative change in the structure of the field vector or the same 

phase image (number of fixed points and/or stability of fixed points) in which fixed 

points are created, lost, or their type of stability changes is called bifurcation, and 

any places where these parametric changes occur are called bifurcation points [1].

The significance of bifurcation theory is in its capacity to identify the emer-

gence of transient and unstable models inside a system as certain control parameters 

undergo changes. Take, for instance, the buckling of a beam. If a little weight is 

placed on the beam, as seen in Figure 3.31, the beam is capable of enduring the load 

and maintaining its upright posture. However, when the force is substantial, the ver-

tical orientation of the beam becomes unsteady, perhaps causing the beam to buckle. 
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In this context, the weight acts as a control parameter that affects the upward 

movement of the beam from its vertical position. It serves as the dynamic variable x.  

Now, we will examine the many kinds of bifurcations.

     3.12.1  SADDLE-NODE BIFURCATION 

A saddle-node bifurcation refers to a process where the formation and destruction 

of fixed points occur due to the alteration of a parameter. Indeed, within this bifur-

cation, one may see a transition in the system’s condition from a state of stability to 

instability, or vice versa. Consequently, when a parameter undergoes a change, the 

two fixed points shift closer to one another, collide, and then vanish [1, 5–7].

An illustrative instance of a tangled obstruction in a system of primary order may 

be demonstrated as follows:

 x r x= +
2  (3.66)

The parameter “r” can take on positive, negative, or zero values. When the value of 

r  is negative, there will be two fixed points, one of which is stable and the other is 

unstable (as shown in Figure 3.32 (a)).

When r  approaches zero from the bottom, the quota moves upward, and the two 

fixed points move towards each other. When r = 0, the fixed points at x* = 0 become 

one at a semi-stable fixed point (Figure 3.32 (b)). This type of fixed point is very 

sensitive, and as soon as r> 0 , it disappears, and in this case, there is no fixed point 

(Figure 3.32 (c)).

In this example, because the vector fields for r> 0 and r < 0 are qualitatively 

different, it is said that a bifurcation happened at r = 0.

     3.12.2  GRAPHIC CONTRACTS 

The most common way to describe a bifurcation is to reverse the axes of Figure 3.33 

so that it is horizontally plotted in the role of an independent variable. It is logical 

FIGURE 3.31  Beam a) in a stable state and b) in a buckled (unstable).
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FIGURE 3.32  Fixed point in different situations.

that r , playing the role of an independent variable, should be plotted horizontally 

(Figure 3.34). The disadvantage is that now, the x-axis has to be plotted vertically, 

which at first looks a little strange. Figure 3.34 is called a bifurcation diagram for a 

saddle-node bifurcation. The display of arrows, according to Figure 3.33, is some-

times and not always shown in some forms.

                      3.12.3  TRANSCRITICAL BIFURCATION 

In some scientific issues, there are certain situations where there was a fixed point for 

all values of a parameter, and it does not go away. For example, in the logical equa-

tion and other simple models for the growth of a particular species type, regardless of 

the amount of its growth rate, there is a point of equilibrium in the zero population. 

Such a fixed point, however, may change its stability by changing the parameter, but 

there remains a fixed point. Transcritical bifurcation is a standard mechanism for 

FIGURE 3.33  Saddle-node bifurcation (horizontal).
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FIGURE 3.34  Saddle-node bifurcation (vertical).

FIGURE 3.35  Fixed point behavior for different values of r .

such changes in sustainability. The conventional form for a transcritical bifurcation 

is as follows:

 x rx x= −
2 (3.67)

The Equation (3.67) seems to be a logical equation, but now, we allow r  and x to be 

able to have both negative and positive values. In Figure 3.35, we can see the field 

vector in exchange for the change r . Note that there is a fixed point in x* = 0 for all 

r  values. So that by changing the values of r , this fixed point does not disappear. 

As can be seen in Figure 3.35, for r < 0, there is an unstable fixed point at x r* =  

and a stable fixed point at x* = 0 (Figure 3.35 a). As r  increases, the unstable fixed 

point approaches the origin and becomes one with it, i.e., when r = 0 (Figure 3.35 b). 

Finally, when r> 0, the origin has become unstable, and now, x r* =  is stable (Fig-

ure 3.35 c). Here, a shift in sustainability is said to have taken place, between the two 

fixed points.
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Pay attention to the difference between the saddle-node and transcritical bifurca-

tions. In a critical state, two fixed points, after a bifurcation, do not disappear. But 

only their stability changes.

In Figure 3.36, the bifurcation diagram for the transcritical bifurcation is shown. 

So that the parameter r is considered an independent variable, and the fixed points 

x* = 0 and x r* =  are represented as dependent variables.

              3.12.4  PITCHFORK BIFURCATION 

Now, we are examining the third type of bifurcation, which is called pitchfork bifur-

cation. This bifurcation is common in physical issues that are symmetrical. In many 

issues, for example, there is a partial left-right symmetry. In such cases, fixed points 

tend to appear and disappear as symmetrical couples. In the example of the buck-

ling beam (Figure 3.31) if the load is small, the beam is stable in the vertical posi-

tion. In this case, there is a corresponding fixed point with zero deflection. But if the 

load exceeds the tolerance threshold, the beam may buckle left and/or right. In these 

conditions, the vertical position becomes unstable, and two new symmetrical fixed 

points, corresponding to the shape in the left or right arc, are born. There are two very 

different types of pitchfork bifurcation. The simplest variant of these bifurcations is 

called supercritical bifurcation, which will be discussed at the beginning [1, 5–7].

3.12.4.1  Supercritical Pitchfork Bifurcation

The conventional shape of the supercritical pitchfork bifurcation is as follows:

 x rx x= −
3 (3.68)

Note that the Equation (3.68), under the variable x x→− , is immutable. This means 

that if we paste x with −x and then remove the resulting negative sign on both sides 

of the equation, we return to the Equation (3.68). This immutability is the mathemat-

ical definition of left and right symmetry, which was mentioned earlier. Figure 3.37 

illustrates the relation-related field vector (3.68) for different values of r.

FIGURE 3.36  Transcritical bifurcation.
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The reason for using the phrase “pitchfork” becomes more apparent when we 

draw the bifurcation diagram of Figure 3.38. In fact, the phrase “three-pronged fork” 

could have been a better phrase.

3.12.4.2  Subcritical Pitchfork Bifurcation

In the supercritical state, in which the relation x rx x= −
3 was discussed, its third-order 

sentence is the system stabilizer such that it acts as a return force that pushes x t( ) 
back towards x= 0. Now instead of the third-order phrase, the unstable form is as 

follows:

 x rx x= +
3 (3.69)

We will have a subcritical pitchfork bifurcation, the diagram of which is shown in 

Figure 3.39.

Compared to Figure 3.39, the fork is inverted. Non-zero fixed points x r*
=± −  

are unstable and exist only under the bifurcation r < 0  from which the subcritical 

expression is derived. More importantly, that, the origin is stable for r < 0 , and 

unstable for r> 0 , as it was in the supercritical state. But now, the instability for 

FIGURE 3.37  Field vector for different values of r .

FIGURE 3.38  Supercritical pitchfork bifurcation diagram.
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FIGURE 3.39  Diagram of the subcritical pitchfork bifurcation.

FIGURE 3.40  Symmetrical bifurcation relative to the x-axis.

r> 0 , with the third-order expression, is not contradicted. In fact, the third-order 

sentence helps to move the line of trajectory towards infinity.

In real physical systems, the so-called explosive instability is in contrast to the 

sustainability effect of high order expressions. Suppose that the system is symmetri-

cal relative to the x-axis (Figure 3.40). The first sustainability expression should be 

x5. Thus, the standard example of a system with a subcritical pitchfork bifurcation 

is as follows:

 x rx x x= + −
3 5 (3.70)

Figure  3.40 illustrates a bifurcation diagram for the Equation (3.70). For small x 

values, the situation is the same as in Figure 3.39. The origin is stable for r < 0 , and 

the branches bent backward make unstable fixed points, creating a bifurcation in 

r = 0. A new feature caused by the expression x5 is that unstable branches return and 

become stable at r r
s

=  (where r
s
< 0). For all values of r r

s
> , these stable branches 

of the large domain exist.
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Other points to be made about Figure 3.40 are as follows:

 1. In the r r
s
< < 0  range, there are two different qualitatively stable states, 

which are the origin and fixed points of the large domain. The initial condi-

tion x
0
 determines which fixed point is approached in exchange for t→∞. 

One result is that the origin is stable in small disturbances, and this sustain-

ability is a local one and not a general one.

  2. Different stability modes make it possible to create jumping and hysteresis phe-

nomena by changing r  . Suppose the system is in state x* = 0  and we increase 

the parameter r   slowly (Figure 3.41 ). It remains stable until the value r = 0 . 

At point r = 0 , we see a jump to the large domain branch. As r   increases fur-

ther, the situation moves along the branch of the large amplitude. Even when 

r is reduced to less than zero, we need to reduce r to less than r
s
  to get back to 

origin from jump mode. This irreversible defect is known as hysteresis.

 3. Bifurcation in r
s
 is a saddle-node bifurcation in which stable and unstable 

fixed points are born.

               3.12.5  TECHNICAL TERMS IN THE BIFURCATION 

Typically, in the theory of bifurcation, various other names are used. Supercritical 

bifurcation is sometimes called forward bifurcation and is dependent on continu-

ity or second-order phase passage in statistical mechanics. Subcritical bifurcation 

is sometimes called upside-down or backward bifurcation. Subcritical bifurcation is 

linked to discontinuity and first-order phase transitions. In engineering texts, super-

critical bifurcation is sometimes called soft and safe because non-zero fixed points 

are born on a small range. In contrast, subcritical bifurcation is difficult and danger-

ous because we see zero bounces to the large range.
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Solution Methods

     4.1 INTRODUCTION

Nonlinear systems exhibit a broad spectrum of phenomena that are not observed in 

linear systems. The intricate nature of nonlinear systems results in intricate equa-

tions, which in turn makes it challenging to find precise solutions for these nonlinear 

equations [1]. This chapter provides a comprehensive quantitative analysis of meth-

ods used to solve nonlinear equations. When precise solutions are not available, the 

analysis of nonlinear systems is conducted using approximate and numerical solving 

methods [2].

This chapter is divided into two main sections. In the first sub-chapter, we analyze 

solutions in the time domain. One widely recognized and highly effective method is 

the perturbation method, which is further explored through various types of pertur-

bation methods for solving nonlinear equations [3, 4].

In the second sub-chapter, we analyze solutions in the space domain. One of the 

methods that is widely used in the space domain is the solution of governing differ-

ential equations based on the weighted residual method [5, 6].

     4.2  DIFFERENT WAYS OF SOLVING PROBLEMS 
USING THE PERTURBATION METHOD

 1. Straight forward expansion method

  2. Lindstedt-Poincaré method

  3. Multiple time scales method

  4. Averaging method

 5. Harmonic balance method

Prior to delving into various ways of disruption, we will initially familiarize our-

selves with the disruption method. It will become evident that the disruption method 

is an exceedingly effective tool for quantitatively analyzing nonlinear systems.

     4.2.1 INTRODUCTION TO PERTURBATION METHOD 

Some engineering issues have a parameter that is tiny in magnitude. Typically, the 

differential equation, or more correctly, the function involved, is analytical. In the 

context of disturbance problems, it is common to come across a small parameter, 

denoted as σ. This parameter enables us to express the function x t( ), which solves the 

differential equation [7], as a series of powers that either increase or decrease in value.

 x t x x xt t t( , ) ( ) ( ) ( )e e e= + + +…
0 1

2

2
 (4.1)

       4  
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Next, we substitute the series (4.1) into the main equation and equate the coefficients, 

such as ek . Thus, we arrive at a system of equations derived from the solution of the 

variables x t
i
( ). Regarding the convergence of the series (4.1), the Poincaré theorem 

demonstrates that this series converges in the vicinity of e= 0. Therefore, using this 

approach, an accurate approximation may be obtained. We’re going to look at the 

different types of the perturbation method.

     4.2.2 STRAIGHTFORWARD EXPANSION METHOD 

Direct techniques are the fundamental and uncomplicated forms of the perturbation 

method. However, because to the requirement of several words to obtain the correct 

response, it typically yields limited success. For a comprehensive description of the 

technique, please refer to the citation [6].

     4.2.3 LINDSTEDT-POINCARÉ METHOD 

This approach is typically employed when seeking harmonic and quasi-harmonic 

solutions. Typically, a concise and effective response may be achieved with a limited 

amount of phrases. This approach will involve a limit cycle. To obtain further details, 

we shall employ the Lindstedt-Poincaré technique to solve the Duffing equation.

Examine the subsequent differential equation:

 
d x

dt
x x

2

2

3 0 0+ + = >εα ε,  (4.2)

The system in question is known as the Duffing oscillator, which is a model that 

incorporates nonlinear reinforcements such as springs.

The Lindstedt method is a straightforward technique used to analyze the rela-

tionship between the rotation period and scope in the Duffing Equation (4.2). The 

method involves expanding time to construct an approximate solution for the alter-

nating domain-period relationship.

 τ ω= t, (4.3)

In which:

 ω ε ε= + + +…1
1 2

2k k  (4.4)

That unknown k
i
 coefficients are obtained in the solving process. We have a substi-

tution connection between Equation (4.3) and Equation (4.2).

 ω

τ

εα
2

2

2

3 0
d x

d
x x+ + =  (4.5)

Now, we expand the variable x as a series of powers in e .

 x x x x( ) ( ) ( ) ( )τ τ ε τ ε τ= + + +…
0 1

2

2
 (4.6)
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Given the expansion of the power series in Equation (4.3) and Equation (4.6), the 

results obtained using the Lindstedt method are only expected to be valid for small 

values. By substituting Equation (4.6) into Equation (4.5) and setting it equal to zero, 

we can determine the coefficients corresponding to en .

 ε

τ

0

2

0

2 0
0:

d x

d
x+ =  (4.7)

 ε

τ τ

α
1

2

1

2 1 1

2

0

2 0

32:
d x

d
x k

d x

d
x+ =− −  (4.8)

 ε

τ τ τ

α
2

2

2

2 2 1

2

0

2 2 1

2

2

0

2 0

2

1
2 2 3:

d x

d
x k

d x

d
k k

d x

d
x x+ =− − +( ) −  (4.9)

The solution to Equation (4.8) is as follows:

 x A
0
( ) cost t=  (4.10)

In this context, A  represents the extent of movement, and we have selected the phase 

in a subjective manner. This is permissible due to the autonomous character of Equa-

tion (4.2), which lacks any dependence on the independent variable t . By substituting 

Equation (4.7) into Equation (4.8), we obtain the following:

 
d x

d
x Ak A

2

1

2 1 1

3 32
τ

τ α τ+ = −cos cos  (4.11)

By simplifying the phrase cos3 t , we have the following:

 
d x

d
x Ak

A A
2

1

2 1 1

3 3

2
3

4 4
3

τ

α

τ

α

τ+ = −










−cos cos  (4.12)

To obtain a response that is periodic, we require the coefficients of the cost  on the 

right side of Equation (4.12) be zero. This crucial step is referred to as eliminating 

exacerbated or secular sentences. So:

 2
3

4
0

1

3

Ak
A

− =

a
, (4.13)

Which results:

 k A
1

23

8
= a  (4.14)

By achieving this outcome in Equation (4.3), we get the approximate correlation 

between amplitude and frequency as follows:

 ω ε ε α ε ε= + + ( )= + + ( )1 1
3

8
1

2 2 2k O A O  (4.15)
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The rotation period, denoted as T , may be expressed T = 2π ω/ .

 T

A O

A O= =

+ + ( )
= − + ( )











2 2

1
3

8

2 1
3

82 2

2 2π

ω

π

α ε ε

π α ε ε  (4.16)

We can proceed to acquire approximations of higher order. By replacing Equation 

(4.14) with Equation (4.12), we may determine the solution for x
1
( )t  as follows:

 x
A

1

3

32
3( ) (cos cos )τ

α

τ τ= −  (4.17)

In this case, the amplitude of vibrations, denoted as A , is chosen such that in the 

complementary response (4.6), the initial displacement x
0
 is equal to A . By solving 

Equation (4.17) for x
2
, we may eliminate secular expressions and derive an expres-

sion for k
2
. This process has the potential to continue endlessly.

To comprehend the dynamics of the Duffing Equation (4.2), we initiate the pro-

cess by expressing it as a first-order system:

 
dx

dt
y

dy

dt
x x= =− −, εα

3  (4.18)

Equation (4.18) describes a trajectory on the x y-  phase plane, representing the move-

ment of a point over time, given the initial condition x y( ), ( )0 0( ). The trajectory of the 

integral curve passing through that location is defined by the following equation:

 
dy

dx

dy

dt
dx

dt

x x

y
= =

− −εα
3

 (4.19)

Equation (4.19) represents a straightforward integral that yields:

 
y x x

constant
2 2 2

2 2 4
+ + =εα  (4.20)

Equation (4.20) represents the fundamental concept of energy stability. Given that 

a is a positive value, Equation (4.20) exhibits a continuous arrangement of closed 

curves surrounding the origin. Each object exhibits a periodic motion described by 

Equation (4.2) that changes direction over time. Given that a is negative, any move-

ments that start at the origin will be alternating, as depicted in Figure 4.1. In this 

particular scenario, Equation (3.14) exhibits two extra equilibrium points apart from 

the origin, namely, x y=± − =1 0/ εα , . The integral curves passing through these 

locations delineate alternating movements between restricted and unconstrained 

growth, referred to as separatrix, so to speak (single: separatrix).

By performing numerical integration using Equation (4.2), we can observe that 

the period of oscillation in alternating motions is contingent upon the closed curves 
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present in the phase plane we were initially situated in. This phenomenon is a form 

of nonlinear vibration that is connected in the period based on the amplitude. In the 

upcoming episode, we will employ a perturbation technique to investigate it.

     4.2.4 MULTIPLE TIME SCALE METHOD 

This approach is applicable to nearly any problem and, similar to the Poincaré 

method, provides a reasonably accurate solution using only a limited amount of 

phrases. The primary challenge associated with this approach is in the difficulty of 

converting it into a structured set of instructions in the form of programmed code. 

Put simply, it is extremely difficult to computerize.

To acquaint this technique, please examine the following differential equation:

 ɺɺ ɺ ≪x x x+ + =2 0 1e e,  (4.21)

With intial conditions as follows:

 x x( ) , ( )0 0 0 1= =  (4.22)

We will employ the direct expansion technique to solve Equation (4.21), resulting in 

a non-uniform response. In order to address the issue, the concept of employing the 

multiple scale method will be proposed. By utilizing this approach, the challenges 

associated with the straightforward expansion method can be resolved efficiently, 

with minimal effort yielding positive outcomes. Hence, the overall response of the 

straightforward expansion method will be as follows:

 x t x x xt t t( , ) ( ) ( ) ( )e e e= + + +
0 1

2

2
  (4.23)

Let us evaluate the solution to the equation in the following manner:

 x t x t x t Oe e e,( )= ( )+ ( )+ ( )0 1

2  (4.24)

By substituting Equation (4.24) into Equation (4.21), we obtain the following:

    x x x x x x
0 1 0 1 0 1

2 0+ + + + + =e e e e( )  (4.25)

FIGURE 4.1 Phase plane for the Duffing equation.
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By substituting the initial condition (4.22) into the assumed answer (4.25), we obtain 

the following:

 
x x x

x x x

x x( ) ( ) ( )

( ) ( ) ( )

( ) (0 0 0 0 0

0 1 0 0 1

0 0
0 1

0 1

0 1
= → + =

= → + =

=
⇒

e
e  

))

( ) ; ( )

=

= =









0

0 1 0 0
0 1
 x x

 (4.26)

To obtain the result, we set the coefficients of en  to zero.

 
e

e

0

0 0 0 1 2 0

1

0: sin cos sin

:

( )
. .





x x x c t c t x t

x

t+ = → = + =⇒

Applying I C

11 0 1 1 1
2 0 2+ + = → + =− x x x x tcos

 (4.27)

Based on the discussions on differential equations, it is established that the response 

x t
1
( ) can be derived in the following manner:

 x c t c t tt

Homogeneous response

1 3 4
( ) sin cos sin= + −

� ������� �������

tt

Particular response
� ��� ���

 (4.28)

By substituting the initial conditions stated in Equation (4.26) into Equation (4.28), 

we obtain the following:

 
x

x
x t tt

c c1

1

0

1

0

0

0

0
3 4

( )

( )
( ) sin

=

=

= →
= =


 (4.29)

Therefore, the solution for x t( ) can be expressed as follows:

 x t x t x t t t t( ) ( ) ( ) sin sin= + = −
0 1

e e  (4.30)

The expression ( sin )e t t  in equation (4.30) is referred to as secular, and it induces a 

non-uniform reaction in the system, as seen in Figure 4.2.

Figure 4.2 illustrates that for small time intervals, the answer obtained via the 

straightforward expansion method closely matches the expected response. However, 

for big-time intervals, the presence of variable t  causes the response to deviate and 

demonstrate the extent of the increasing and growing process. Put simply, the sys-

tem’s response becomes faulty as the value of et  approaches 1 1( )et® . According 

to the statement, the expansion fractures. Conversely, we are aware that the precise 

reaction of the system is as follows:

 x t e tt( ) sin= −( ) −( )














−1 12
1

2 2
1

2e ee  (4.31)

The amplitude of the answer can be expressed as follows:

 A e t= −( ) = − +










∗

−1 1
1

2

2
1

2 2e ee
� ��� ��� �

⋯

� �**

expansion of *

������ ������

⋯
� �������� ��������
1 2 2− + +( )e et t

expansion of **

 (4.32)
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The amplitude of answer A  can be delineated as follows:

 A t O= − + ( )1 2e e  (4.33)

The answer in this instance will be as follows:

 x t t t( ) ( ) sin= −1 ε ω  (4.34)

In which:

 ω ε= −1
1

2

2  (4.35)

Upon comparing Equation (4.30) and Equation (4.34), it is evident that when e  is 

small, the precise solution and the solution derived through the straightforward tech-

nique are identical.

Subsequently, the problem of expansion interruption is addressed by employing 

the multiple time scale method. This method is utilized to resolve the non-uniform 

response that arises from the straightforward expansion method. Thus, the answer in 

the direct technique can be rectified in the following manner:

 x t x T T T( , ) ( , , , )e ®
0 1 2

  (4.36)

 FIGURE 4.2  Non-uniform response to the system resulting from the straightforward 

 expansion method.
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The time scale T n
n

( , , , )= 0 1 2  is defined as follows:

 T t
n

n= e  (4.37)

Typically, the following interpretation of time scales is employed:

 

T t
0
= → fast(sec)

Which denotes swift fluctuations or consistennt lengthy strides

slow (min)

It indicates a gradual t

T t
1
= →e

rransformation or incremental progress

too slow(hr)

.

T t
2

2
= →e

WWhat denotes subtle alterations or minute increments.

 (4.38)

To rephrase the nonlinear differential Equation (4.21) and subsequently solve it using 

the method of multiple scales:

 x t x T T T x T T T x T T T( , ) , , , , , ,e e e≃ ⋯
0 0 1 2 1 0 1 2

2

2 0 1 2( )+ ( )+ ( )+  (4.39)

By assigning values to variables x and x, we obtain the following:

 





x
dx

dt

x

T

dT

dt

x

T

dT

dt

x

T

dT

dt

x
d x

dt

d

dt

d

= =
∂

∂
× +

∂

∂
× +

∂

∂
×

= =

0

0

1

1

2

2

2

2

xx

dt

d

dt

x

T

dT

dt

x

T

dT

dt

x

T

dT

dt










=

∂

∂
× +

∂

∂
× +

∂

∂
×






0

0

1

1

2

2









 (4.40)

By establishing the D
n
 operator, the following may be deduced:

 D
T

n

n

=
∂

∂
 (4.41)

In which:

 

d

dt
D D D

d

dt
D D D D D D

= + +

= + + +( )

0 1

2

2

2

2 0

2

0 1

2

1

2

0 2
2 2

e e

e e
 (4.42)

The values of x and x will be as follows:

 




x D x D x D x

D x D D x D x D D xx

= + +

= + + +( )
0 1

2

2

0

2

0 1

2

1

2

0 2
2 2

e e

e e
 (4.43)

By substituting Equation (4.39) into Equation (4.43) and arranging the terms in 

ascending order of en , we obtain the following:

 




x D x D x D x D x D x D x

D x D x Dx

= + +( )+ + +( )

= + +

0 0 1 0 0 1

2

2 0 1 1 0 2

0

2

0 0

2

1
2

e e

e
00 1 0

2

0

2

2 0 1 1 1

2

0 0 1 0
2 2D x D x D D x D x D D x( )+ + + +( )e

 (4.44)
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By substituting Equation (4.44) into Equation (4.21) and setting the coefficients cor-

responding to en  to zero, we obtain the following:

 

ε φ0

0

2

0 0 0 0 1 2 1 2 0 1 2

1

0: , , , cos ,

,

D x x x T T T a T T T T T

A T

+ = → ( )= ( ) + ( )





= TT e A T T e A T T e CC

D x x D D x

iT iT iT

2 1 2 1 2

1

0

2

1 1 0 1

0 0 0

2

( ) + ( ) = ( ) +

+ =−

−
, ,

:ε
00 0 0

2

0

2

2 2 0 1 1 0 2 0 1

2

0 1 0 0 1

2

2 2 2 2

−

+ =− − − − −

D x

D x x D D x D D x D x D x D xε :

 (4.45)

That CC is complex conjugate. The answer can be expressed in both triangle and 

polar formats, commonly employed to streamline the polar state. Therefore, it is 

feasible to write the following:

 x t Ae Aeit it( )= +
−  (4.46)

Given the equation A aei=
1

2

f, the following result may be obtained:

 x t ae e ae e a e e ai it i it i t i t
( ) cos(= + = +




=− − +( ) − +( )1

2

1

2

1

2

f f f f
tt+f) (4.47)

Now we have:

 D x x iAe iD Ae CC i D A A e
iT iT iT

secular term

0

2

1 1 1 1
2 2 20 0 0+ =− − + =− +( )

� ��������� ��������

+CC  (4.48)

It is crucial to emphasize that the first differential equation, which involves x and its 

derivatives, has a solution consisting of the sum of the homogeneous response and 

the particular response. This combined solution is known as the general solution to 

the differential equation. Subsequent differential equations will have a homogeneous 

response that includes x
1
, x

2
, and so on. Furthermore, their derivatives are required. 

Put simply, in equations starting with x
1
, only the particular response is considered.

Next, we must eliminate the secular terms in the resulting equation, which can be 

done by writing the following:

 D A A A T T B T e
T

1 1 2 2
0 1+ = → ( )= ( ) −,  (4.49)

Given that we only consider the particular response as the answer in question, it can 

be concluded that the left-hand expression in Equation (4.48) is a secular expression 

and is set equal to zero, resulting in x
1

0=( ). By substituting the solution of Equation 

(4.49) into the variable x
0( ) in Equation (4.45), we obtain the following:

 x T T T B T e e CC
iT T

0 0 1 2 2
0 1, ,( )= ( ) +−

 (4.50)

To answer the third relationship, we will use Equation (4.45), which represents x
2
:

 D x x D D x D x D x
0

2

2 2 0 2 0 1

2

0 1 0
2 2+ =− − −  (4.51)
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Since x
1

0=( ), the remaining expressions are excluded. By substituting Equation 

(4.50) into Equation (4.51), we obtain the following:

 D x x iD B B e e CC
T iT

0

2

2 2 2
2 1 0+ = − +( ) +−

secular term

� �������� ��������

 (4.52)

The response to the secular expression would be the following:

 2 0
2 2

2
2

D B iB B T ce
i
T

+ = → ( )=
−

 (4.53)

In the absence of constraints on problem-solving, considering the equation c aei=
1

2

f, 

the following result will be obtained:

 B T ae
i

T

2

21

2

2

( )=
−










f

 (4.54)

It is important to acknowledge that when we take into account the solution in a com-

bined manner, all the constants are likewise combined. The answer x
0( ) can now be 

expressed as follows:

 x T T T ae e e CC
i

T

iT T

0 0 1 2

21

2

2

0 1, ,( )= +
−








 −

f

 (4.55)

By substituting the values T T T
0 1 2
, ,( ) into Equation (4.38) and carrying out mathe-

matical calculations, we obtain the following:

 x ae t tt

0

21

2
= − +















−ε
ε φcos  (4.56)

By substituting Equation (4.56) into Equation (4.39), the solution of Equation (4.21) 

using the multiple time scale method can be derived as follows:

 x t x ae t tt( , ) cosε ε φε
0

21

2
= − +















−  (4.57)

In order to determine the precise solution of Equation (4.21) using the second- order 

differential equations with constant coefficients, the following expression will be 

obtained:

 s s s i2 22 1 0 1+ + = → =− ± −e e e  (4.58)

To streamline the precise solution to the equation, one must perform the following steps:

 x t ae tt( )= −










+

















−ε ε
φcos 1

2

2

 (4.59)
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The final response utilized the following extension.

 ( )1 1
1

2

2

1

2 2
− = − +e e  (4.60)

Upon comparing the answers, Equation (4.57) and Equation (4.58), it becomes evi-

dent that the two solutions are the same, and the limitation of the small-time values 

are eliminated using the multiple time scales method. It is important to reiterate that 

when solving differential equations, if trigonometric functions are employed, they 

are considered to be constant throughout. In the complex number method, all the 

constants are complex, as noticed during the solution process.

It is important to note that assuming the initial conditions x( )0 0=  and x( )0 1= , 

which resulted in the solution (4.31) using the straightforward expansion method, we 

can assume φ
π

=
2

 by applying it to the solution (4.59) and considering the expansion 

(4.60). This will yield the same solution (4.31) as obtained through the straightfor-

ward expansion method.

Now, we will attempt to solve the Duffing differential problem, which is a type of 

weak nonlinear differential equation. For this purpose, we initially solve the equa-

tion using a straightforward approach, which reveals the emergence of non-uniform 

response circumstances. Subsequently, we will finalize the answer using the multiple 

time scale method. The Duffing equation is widely recognized as the most renowned 

nonlinear differential equation, defined as follows:

 ɺɺ ≪x x x+ + =e e3 0 1,  (4.61)

Equation (4.61) demonstrates that the presence of the nonlinear spring gives rise to 

the third-order nonlinear expression. Initially, we will attempt to solve the differen-

tial Equation (4.61) using analytical methods. Therefore, the following items will be 

available:

 x f x= ( ) (4.62)

And:

 

  



x dx f x dx x dx f x dx h x

x
h x x g x

dx

g x

= → ∫ = ∫ =

= → = → ∫ =

( ) ( ) ( )

( ) ( )
( )

2

2
∫∫ dt

 (4.63)

By acquiring knowledge about g x( ) and solving the integral mentioned earlier, one 

can determine x t( ). However, the analytical solution of the integral is quite intricate, 

necessitating the employment of numerical methods.

To solve the Duffing Equation (4.61) using the straightforward technique, we ini-

tially analyze the solution as follows:

 x x xt t= + +
0 1
( ) ( )e   (4.64)
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By following the instructions for solving the problem using the straightforward 

technique, we may substitute the answer (4.64) into the Duffing Equation (4.61) and 

include the appropriate coefficients en . This will get the following result:

 
ε φ

ε

0

0 0 0

1

1 0

3

1

3

1 1

0

0

: 

 

x x x a t

x x x x x a

t+ = → = +

+ + = → + =−

( ) cos( )

: coss ( )3 t+φ
 (4.65)

Applying the trigonometric relationship cos cos cos3 1

4
3

3

4
t t t= +










, we obtain the 

following:

 x a t ta tt
1

3 31

32
3 3

3

8
( ) cos sin( )= +( )− +f f  (4.66)

Since the statement 
3

8

3ta tsin +( )










f  is a secular expression and is multiplied by t ,  

the final result of the equation obtained via the straightforward method is 

non-uniform. Now, employing the various time scale technique, we will once again 

solve Equation (4.61). Let us analyze the solution to Equation (4.61) in the following 

manner:

 x t x T T x T T( , ) , ,e e= ( )+ ( )+0 0 1 1 0 1
 (4.67)

By substituting Equation (4.67) into Equation (4.61) and subsequently isolating the 

coefficients e0  and e1 and setting them to zero, we obtain the following:

 
e

e

0

0

2

0 0

1

0

2

1 1 0 1 0 0

3

0

2

:

:

D x x

D x x D D x x

+ =

+ =− −

 (4.68)

For this instance, we will utilize trigonometric functions instead of mixed ones, 

which will naturally result in a little lengthier process. The solution to the first equa-

tion in Equation (4.68) is as follows:

 x a T T Tt
0 1 0 1
( ) cos= ( ) + ( )



f  (4.69)

By substituting the value of Equation (4.69) into Equation (4.68), we obtain the 

following:

 

D x x a T a T a T

a T

0

2

1 1 0 0

3 3

0

0

2 2

2

+ = +( )+ +( )− +( )

= +

′ ′

′

sin cos cos

sin

f f f f

ff f f( )+ −










+( )′2

3

4

3

0
a

a
Tcos

secular term

� �������������������� �������������������

− +( )

−

1

4
3 33

0
a Tcos f

non secular teerm

� �������� ��������

 (4.70)
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In order to eliminate secular expressions, we employ the following procedure:

 

′

′ ′

= → = = ≠

= → = → = +

a a a

a a a a T

0 0

3

8

3

8

3

8

0

3

0

2

0

2

1 0

Constant

f f f f , f
0
=















Constant
 (4.71)

The equations derived in Equation (4.71) are referred to as frequency equations. The 

solution of Equation (4.61) can be expressed as follows:

 x t a t a t x( ) cos= + +













+

0 0

2

0 1

3

8
ε φ ε  (4.72)

By calculating the differential Equation (4.70) using the non-secular expression as the 

only non-homogeneous term, the general solution of the equation may be obtained. 

This will yield the expression x T T
1 0 1

,( ).

 x T T a T
1 0 1 0

3

0

1

32
3 3, cos( )= +( )f  (4.73)

By substituting the value of Equation (4.73) into Equation (4.72), the final solution can 

be expressed as follows:

 
x t a t a t

x

( ) cos= + +











+

0 0

2

0

3

8

1

32

0

ε φ ε

� ���������� ����������

aa t O t

a t a

x

0

3 2

0 0

2

3 3

3

8

1

cos

cos

+( )+ ( )

= +

φ ε

ε

ε
� ��������� ���������

tt a t a t O t+











+ + +












+ ( )φ ε ε φ ε

0 0

3

0

2

0

21

32
3

9

8
3cos

 (4.74)

It is important to mention that in Equation (4.74), the error is represented as O te2( ). 

Typically, the error in the multiple time scales method is denoted as O tne( ), which is 

also equivalent to O T
n( ).

Another instance involves solving the Duffing problem by making a little 

modification, employing the technique of Multiple time scale, and presenting 

the solution based on the algebra of mixed numbers. Examine the subsequent 

correlation:

 ɺɺ ≪x x x+ + =ω εα ε
0

2 3 0 1,  (4.75)

In the modified form of the Duffing Equation (4.75), it is important to mention that 

the a parameter is regarded as a coefficient for a nonlinear expression. This coef-

ficient can be assigned positive or negative values based on certain conditions. The 

value w
0

2  reflects the natural frequency of the linear differential equation. The solu-

tion to Equation (4.75) can be analyzed in the following manner:

 x t x T T x T T( , ) , ,e e= ( )+ ( )0 0 1 1 0 1
 (4.76)
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By adding the Equation (4.76) into the Equation (4.75) and then separating the coef-

ficients e0  and e1, we will have the following:

 
ε ω

ε ω α

0

0

2

0 0

2

0

1

0

2

1 0

2

1 0 1 0 0

3

0

2

:

:

D x x

D x x D D x x

+ =

+ =− −

 (4.77)

Based on Equation (4.77), the x
0
 response can be represented as follows:

 x T T A T e CC
i T

0 0 1 1
0 0,( )= ( ) +w

 (4.78)

By substituting the value of Equation (4.78) into Equation (4.77), we obtain the following:

 D x x i A A A e CC NST
i T

0

2

1 0

2

1 0

22 3 0 0+ = − −( ) + +′ω ω α
ω

 (4.79)

The NST phrase in Equation (4.79) denotes the non-secular terms in equation. In 

order to exclude non-secular terms in Equation (4.79), we formulate it as follows:

 2 3 0
0

2i A A Aω α′+ =  (4.80)

The expression ¢A  is ′ =A
dA

dT
1

. Given the response A  and its complex-conjugate a, 

the following can be deduced:

 

A a T e

A a T e

i T

i T

= ( )

= ( )











( )

− ( )

1

2

1

2

1

1

1

1

f

f

 (4.81)

If A  is partially heterogeneous, then both a and f  will be functions with real values. 

In respect to Equation (4.81), the coefficient of 
1

2
 is used solely to establish pro-

portionality in the final outcome. By substituting the values of Equation (4.81) into 

Equation (4.80), we arrive to the following assertion:

 

i a e a e a e i a a ai i iω ω φ α ω ω φ αφ φ φ

0 0

3

0 0

33

8
0

3

8
′ ′ ′ ′− + = → − +










=

→ − + =′ ′
≠

e

i a a a

i

ei

φ

φ

ω ω φ α

0

3

8
0

0

0 0

3

 (4.82)

Given that the final Equation (4.82) is a combination of several terms, it is necessary 

to arrange its real and imaginary forms in a manner that both have a value of zero:

 

′

′ ′

= → = = ≠

= → = → = +

a a a

a a a a T

0 0

3

8

3

8

3

8

0

0

3

0

0

2

0

0

2

1

Constant

φ
α

ω
φ

α

ω
φ

α

ω
φ00















 (4.83)
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Hence, based on the outcomes derived from Equation (4.83), the response x
0
 can be 

expressed in the following manner:

 

x T T ae e CC a ei i T
i T a T

0 0 1 0

3

81

2

1

2
0 0

0 0
0

0
2

1 0

,( )= + =
+ +









φ ω
ω

α

ω
φ

+

= +











+

















CC

a a t
0 0

0

0

2

0

3

8
cos ω

α

ω
ε φ

 (4.84)

Hence, the value of x, as determined by trigonometric functions, can be expressed 

in the following manner:

 x t a t( ) cos= +[ ]0 0
ω φ  (4.85)

In Equation (4.85), w is defined as follows:

 ω ω

α

ω

ε= +










0

0

2 0

21
3

8
a  (4.86)

During the examination of the frequency response (4.86) from a physical standpoint, 

several observations can be made:

 1. The frequency w, which is not linear, depends on the domain a
0
.

  2. The expression 
3

8
0

2 0

2α

ω

εa











  represents a change in the linear frequency w

0
 .

 3. For a>1, the spring exhibits hardening behavior, while for a<1, it exhibits 

softening behavior, both of which have an impact on the frequency values.

     4.2.5 AVERAGING METHOD 

The method of averaging can be categorized into various techniques, such as 

 Krylov-Bogoliubov method, the Krylov-Bogoliubov-Mitropolsky technique, the 

generalized method of averaging, averaging using focal variables, averaging using 

series and lie conversions, and averaging using Lagrangian. The subsequent approach 

employed is the as Krylov-Bogoliubov method. To obtain a more thorough analysis 

of the various methods of averaging, please consult the fifth chapter of Nayfeh’s [7] 

book and the references [8–10].

To elucidate the Krylov-Bogoliubov approach, let us examine the generic struc-

ture of the subsequent weak, nonlinear second-order differential equation:

 ɺɺ ɺ ≪u u f u u+ = ( )ω ε ε
0

2 1, ,  (4.87)

In Equation (4.87), f u u, ( ) is a nonlinear function. When the value of e  is equal to zero 

( )e= 0 , the solution of Equation (4.87) can be expressed in the following manner:

 u a t= +cos( )ω β
0

 (4.88)
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Both a and b  are constant variables that undergo gradual changes, in contrast to t , 

which experiences quick fluctuations. In order to achieve an approximate solution 

when e¹ 0 and has a small value, Krylov and Bogoliubov made the assumption that 

the solution could still be expressed in terms of Equation (4.88) and be subject to the 

following condition, involving time-dependent variables a and b :

 u a t=− +( )ω ω β
0 0

sin , (4.89)

By taking the derivative of Equation (4.88) with respect to t , we obtain the following:

   u a t a t a t=− +( )+ +( )− +( )ω ω β ω β β ω β
0 0 0 0

sin cos sin , (4.90)

So:

  a t a tcos( ) sin( )ω β β ω β
0 0

0+ − + =  (4.91)

The expression is regarded equivalent to zero because the variations in the variables 

a and b  are significantly slower than the time variable. Specifically, a O= ( )e  and 
β ε=O( ) imply that they can be treated as almost constant in comparison. Once 

again, we shall do a derivation from Equation (4.89) with respect to t .

   u a t a t a t=− +( )− +( )− +( )ω ω β ω ω β ω β ω β
0

2

0 0 0 0 0
cos sin cos  (4.92)

By substituting Equation (4.92) into Equation (4.87) and utilizing the solution from 

Equation (4.88), the following are the results:

 
ω ω β ω β ω β

ε ω β ω ω β

0 0 0 0

0 0 0

 a t a t

f a t a t

sin cos

cos , sin

+( )+ +( )

=− +( ) − +(( )





 (4.93)

Equations (4.91) and (4.93) can now be employed to express a and b :

 





a f a t a t t

a
f

=− +( ) − +( )



 +( )

=

ε

ω
ω β ω ω β ω β

β
ε

ω

0

0 0 0 0

0

cos , sin sin

aa t a t tcos , sin cosω β ω ω β ω β
0 0 0 0
+( ) − +( )



 +( )











 (4.94)

It is important to note that when we calculate the average of a slow variable such 

as a and b  over a short period of time, these variables will converge to their mean 

value. This is the fundamental principle behind the averaging method. An illustrative 

instance is the process of calculating the mean value of a gradual variable, such as the 

alteration in human height, within a brief temporal interval, such as an hour. Indeed, 

the variable (height) and its average will be equivalent within the span of one hour.

By incorporating the parties involved in the initial Equation (4.94) into the time 

interval 0 2, p( ), we will obtain the following:

 
0

2

0

2

0 0 0 0

π π

ε ω β ω ω β ω β∫ ∫= +( ) − +( )



 +( )a dt f a t a t tcos , sin sin ddt  (4.95)
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When we integrate across a slow time scale, denoted by a, with respect to a rapid 

variable, t , we assume that a is a constant value because there is no change in the 

time frame 0 2, p( ) . Hence, we can extract it from the integral and record it explicitly:

 a f a t a t t dt= +( ) − +( )



 +( )∫

ε

πω
ω β ω ω β ω β

π

2
0

0

2

0 0 0 0
cos , sin sin  (4.96)

By substituting the variable f  with ω β
0
t+  ( )φ ω β= +

0
t , we obtain d dt dtφ ω β= +

0
 , 

and we can neglect b  due to its small magnitude (as indicated by the order e ).

 a f a a d= −[ ]∫
ε

πω
φ ω φ φ φ

π

2
0

0

2

0
cos , sin sin  (4.97)

 a f a a dβ ε

πω
φ ω φ φ φ

π

= −[ ]∫2
0

0

2

0
cos , sin cos  (4.98)

The computable value can be derived from Equations (4.97) and (4.98) of domain a 

and phase b .

Example 4–1: Let’s examine the subsequent Duffing equation:

 u u u+ + =ω εα
0

2 3 0  

Determine the frequency equations of the system using the method of averaging.

Answer: Considering that f u u u, ( )= a 3 and taking into account the Equations (4.97) 

and (4.98), it is possible to express the following:

 
u a

u a

=

=−










cos

sin

φ

ω φ
0

 

By substituting “u” and “ u” into Equations (4.97) and (4.98), respectively, we obtain 

the following:

 





a a d

a a d

= =

= =

∫

∫

εα

πω
φ φ φ

β
εα

πω
φ φ φ

α

π

π

2
0

2

3

0
0

2
3 3

0
0

2
3 3

cos sin

cos cos
εε

ω
β

αε

ω8

3

8
0

3

0

2a a⇒ =
 

The system’s frequency equations will ultimately be the following:

 





a a a

a a T

= ⇒ = =

= ⇒ = +

0

3

8

3

8

0

0

2

0

0

2

1 0

Constant

β
αε

ω
β

α

ω
β

 

The expected outcome for us, in the context of the Duffing equation, is that the 

domain “a” remains constant while the b -phase becomes a function of the normal 

frequency w
0
.
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     4.2.6 THE HARMONIC BALANCE METHOD 

Harmonic balance is a technique employed to determine the stable state response of 

nonlinear differential equations, typically applied in the context of nonlinear elec-

trical circuits. Harmonic balance is a frequency domain technique used to compute 

a stable state response, distinguishing it from other time domain methods for stable 

state analysis. The term “harmonic balance” originates from the technique that origi-

nated with Kirchhoff’s current law in the frequency domain. When a sinusoidal signal 

is applied to the nonlinear component of a system, it generates harmonics at multiples 

of the fundamental frequency. This allows us to represent the system’s response as a 

linear combination of sinusoidal functions. By ensuring that the current and voltage 

sinusoids are balanced, we may meet Kirchhoff’s law. Additionally, this technique is 

frequently employed in the simulation of circuits containing nonlinear components 

and is also extensively utilized in feedback systems that exhibit limit cycles.

The harmonic balance method is utilized to achieve stable state responses when 

addressing nonlinear vibration problems. Indeed, this approach fails to provide us 

with the system’s temporary answers. Furthermore, it should be noted that this strat-

egy assumes that the system response is periodic.

To further elucidate the harmonic equilibrium method, let us once again examine 

the Duffing equation:

 u u u+ + =ω α
0

2 3 0 (4.99)

Given that our solution is periodic, we express the answer to the problem as a har-

monic series in the following manner:

 
u A m t m

A A t A t

m

M

m
= +( )

= + +( )+ +( )+…
=

∑
0

0

0 1 0 2 0
2 2

cos

cos cos

ω β

ω β ω β

 (4.100)

Given the assumption that φ ω β= +t
0
, the following equation holds:

 u A A A= + + +…
0 1 2

2cos cosf f  (4.101)

For the sake of facilitating calculations, we introduce the term “deviation sentence” or 

“drift” to refer to A
0
. When there is a second-order nonlinear expression in the equa-

tion, this statement will indicate a value that is not zero. Because the Duffing equation 

does not contain a second-order nonlinear term, the equation can be simplified to 

A
0

0= . The solution of Equation (4.99) can be succinctly described as follows:

 u A=
1
cosf  (4.102)

By substituting the value of Equation (4.102) into Equation (4.99), we get the 

following:

 − + + =A A A
1

2

0

2

1 1

3 3 0ω φ ω φ α φcos cos cos  (4.103)
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Using the trigonometric relationship of cos cos cos3 1

4
3

3

4
f f f= + , we have the 

following:

 − −( ) + + =ω ω φ α φ α φ2

0

2

1 1

3

1

31

4
3

3

4
0A A Acos cos cos  (4.104)

Given that our approximation is limited to the term cosf , we can omit the term 

1

4
3

1

3α φA cos  in Equation (4.104). Next, the system’s frequency response will be 

acquired in the following manner:

 cosφ ω ω α ω ω
α

ω
≠ ⇒− −( ) + = ⇒ = +












≠

0
3

4
0 1

3

4

2

0

2

1 1

3
0

0

0

2 1

2
1

A A A
A



1

2

 (4.105)

The solution to Equation (4.99) is as follows:

 u A t= +( )1 0
cos ω β  (4.106)

The values of A
1
 and b

0
 are derived from the provided initial conditions.

The natural frequency Equation (4.105) is determined by the A
1
 domain resulting 

from the initial conditions, which is a characteristic of nonlinear systems.

Example 4–2: Let us examine the equation of a simple pendulum:

 u u+ =sin 0  

Or,

 u u u+ − =
1

6
03  

Considering the system response as u A=
1
cosf , we may conclude the following:

 − + − =A A A
1

2

1 1

3 31

6
0ω φ φ φcos cos cos  

By following the procedure outlined in the preceding section and taking into account 

that the solution solely comprises the terms cosf , it can be expressed as follows:

 cosφ ω ω≠ ⇒ −( )−











= ⇒ = − ⇒

≠

0 1
1

8
0 1

1

8
1

2

1

2
0

2

1

2
1 1

A A A
A A is small

ωω = −1
1

16
1

2A  

     4.2.7 EXAMINATION OF NONLINEAR VIBRATIONS IN THE DAMPER 

For certain vibration problems with nonlinear damping, the paths of motion converge 

towards a closed curve. This closed curve represents a periodic solution of the 

system, regardless of whether the paths approach or move away from the origin. 
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FIGURE 4.3 Flow circuit diagram for the Van der Pol oscillator.

This implies that any solution to the system, as the variable t  approaches infinity 

( )t→∞ , is compelled towards an intermittent solution. The closed curve is referred 

to as the limit cycle.

To provide a more comprehensive clarification, we will analyze the Van der Pol 

equation [8] as follows:

  x x x x− −( ) + = >a a1 0 02 ,  (4.107)

The Van der Pol equation, introduced in 1922, describes a linear oscillator with 

nonlinear damping, as shown in Figure  4.3. Consult reference [8] for a compre-

hensive explanation of the process for deriving Equation (4.107) as illustrated in 

Figure 4.3. Let’s examine the Van der Pol oscillator equation:

  x x x x+ + −( ) =ω ε
2 2 1 0 (4.108)

Later, we shall observe that solving this equation results in the emergence of a limit 

cycle, which is a characteristic of nonlinear systems. In order to solve the equation 

earlier, we will employ the Lindstedt-Poincaré approach. When the value of ε is equal 

to zero ( )e= 0 , we obtain a simple harmonic oscillator that exhibits a set of periodic 

responses, which are characterized by the parameter w. We observe the proliferation 

of chaos as a recurring dominant pattern. Let’s start by considering Equation (4.108). 

This relationship will hold true when e  is much smaller than 1 ( )e1 . Expanding 

turbulence to encompass a wider range of frequencies enables it to effectively accom-

modate nonlinear behavior through the introduction of the created time variable. For 

this particular situation, we compose the following:

 τ ω= t  (4.109)

The frequency of the response, denoted by w, is expressed as a series of capabilities 

based on the variable e .

 ω ε ε= + + +1
1 2

2k k  (4.110)

In Equation (4.110), w
0

1=  represents the frequency of the basic harmonic oscilla-

tor. To determine the constant k i
i

( ), ,=1 2 , further calculations are required. This 
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incentive provides ample flexibility to ensure the elimination of secular expressions 

at every stage of the expansion of turbulence. The Van der Pol Equation (4.108) can 

be derived by employing variable change (4.109).

 ω

τ

ε ω

τ

2
2

2

2 1 0
d x

d
x x

dx

d
+ + −( ) =  (4.111)

By substituting the series expansions for x( )t  and w, we obtain the following:

 

1 2 2
1 1

2

2

2 3
2

2 0 1

2

2
+ + +( ) + ( )( ) + + +( )











k k k O

d

d
x x xε ε ε

τ

ε ε 

++ + + +( )+ + + +( )+ −( )

+ +

x x x x x x x x x

k k

0 1

2

2 0

2

0 1

2

1

2

0 1

1

2

2 2 1

1

ε ε ε ε ε

ε ε

 

22 0 1

2

2
0+( ) + + +( )= d

d
x x x

τ

ε ε

 (4.112)

We have a category for each order of the associated coefficients e  that is equal to 

zero.

 

O x x

O x x x x k x

O x x x

e

e

e

0

0 0

1

1 1 0 0

2

1 0

2

2 2

0

1 2

( ) + =

( ) + = −( )−

( ) + =

:

:

:

″

″ ″

″

′

11 0

2

0 1 0 1 1

2 1

2

0 1 0

2

0

1 2 2

2 1

′ ′

′

″

″

−( )− −

− +( ) + −( )

x x x x k x

k k x k x x

 (4.113)

The equation O( )e0  represents the response of x B
0 0
( ) cost t= . In order to eliminate 

secular terms in O e1( ), it is necessary to know the value of B
0
. By employing the 

solution of x
0

t( ) for O e1( ), the following result is obtained:

 x x B k B
1 1 0 0

2 2

1 0
1 2″

+ =− − +β τ τ τsin ( )cos cos  (4.114)

The general solution of Equation (4.114) can be expressed as follows:

 x
B

B
B

k B
1

0

3

0

0

3

1 0
4 2 32

3 2( ) cos sin cot
t

t t= −












 −









− + ss cos sint t t+ +B A

1 1
 (4.115)

The constants A
1
 and B

1
 are arbitrary. It is important to observe that the function 

“t tcos ” produces an endless output when evaluated at t t→∞. Indeed, the solution 

can be written in the following order:

 
x B

B
B

B
( ) cos cos sinτ τ

τ

τ τ= + −












 −









−

+

0

0

3

0

0

3

4 2 32
3

2kk B B A
1 0 1 1

cos cos sinτ ε τ ε τ+ +

 (4.116)
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Thus, if t  is in order of O 1 e( ), and each phrase in the sequence is smaller than 

the one before it, this will disrupt the expansion of the disorder. The divergence of 

the response induced by the secular expression occurs when there is limitless and 

unbounded growth. Given our search for periodic solutions, it is necessary to exclude 

secular statements. If we select B
0

2= , this secular phrase will be non-negative at 

the minimum at this level of approximation.

Following the resolution process, the final outcome will be denoted as x
1
( )t :

 x B
1 1

1

4
3

3

4
( ) cos sin sint t t t= − +  (4.117)

The result is obtained by placing x
0
( )t  and x

1
( )t  on the right side of the relation 

O e2( ).

 

x x x x x x x k x

x x B

2 2 1 0

2

0 1 0 2 0

2 2 1

1 2 2

1

4
2

3

2

″ ″

″

′ ′+ = −( )− −

⇒ + = + −cos sint t ccos

sin cos cos

cos s

3

3 3
5

4
5 4

4
1

4
2

1 2

2 1

t

t t t

t

+ + +

= +










+

B k

k B iin cos sin cost t t t− + +
3

2
3 3 3

5

4
5

1
B

 (4.118)

By choosing k
2

1

16
=− , and B

1
0= , the secular expressions are excluded. The frequency 

O e2( )( ) will now be represented as follows:

 ω

ε

= −1
16

2

 (4.119)

Equation (4.119) demonstrates that the presence of a nonlinear expression leads to a 

decrease in the frequency of oscillation, resulting in an increase in the period. The 

magnitude of the oscillation is determined by the following equation:

 

x x x x( ) ( ) ( ) ( ) cos
sin sin

cos

τ τ ε τ ε τ τ ε

τ τ

ε

τ

= + + = −
−[ ]

−
−

0 1

2

2

2

2
3 3

4

5 5 188 3 12

96

cos cosτ τ+[ ]
 (4.120)

Figure 4.4 showcases a captivating aspect of the response. Irrespective of their 

starting conditions, all trajectory lines are eventually approached by a closed curve 

called the limit cycle. This curve depicts a non-harmonic oscillation of the stable state. 

This phenomenon is exclusive to specific nonlinear vibration problems and does not 

occur in any other concerns. If the starting point is located within the limit cycle, the 

resulting response manifests as outwardly expanding spiral arcs. Conversely, if the 

starting point is located beyond the limit cycle, the resulting behavior will be inward 
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spiraling curves. As previously mentioned, the limit cycle in both stages results in a 

specific closed curve. A notable attribute of the limit cycle is that the greatest value 

of x, irrespective of the value of a as determined by Equation (4.107), consistently 

approximates 2. The value B
0

2=  after solving the Van der Pol oscillator equation, 

which is the range of values for the answer template (4.120).

Allow me to provide an additional illustration of a mechanical system that exhib-

its negative damping. Examine Figure 4.5, which depicts a block with mass m placed 

on a rough belt that is traveling at a constant speed of x
0
. A mass m is connected to a 

spring that is attached to a rigid object. Let x represent the displacement of the block 

from the equilibrium position of the spring [8, 11].

 mx kx f x x  + − −( )=0
0 (4.121)

FIGURE 4.4 Schematic of trajectories and limit cycle for the Van der Pol oscillator equation.

FIGURE 4.5 Mechanical system to perform self-regulating oscillations.



113Solution Methods

The variable “ f ” represents the friction force acting between the block and the 

belt in Coulomb’s experiment. Let us now add the new variable u , which is defined 

as follows:

 u x k f x= − −( )−1

0
  (4.122)

By variable change of (4.122), Equation (4.121) will be as follows:

  u u F u+ + =w
0

2 0( )  (4.123)

Where w
0

2 = k m/  and,

 F u m f x f u x( )   = −( )− −( )





−1

0 0
 (4.124)

If the value of x
0
 is not excessively big, the function F u( )  will exhibit a level of cur-

vature similar to that depicted in the diagram of Figure 4.5. It should be noted that 

if  x x
m0

< , then the slope of F u( )  at the origin is negative. If the value of x
0
 at the 

origin is quite big, then the derivative of F u( )  at the origin will be positive. Therefore, 

negative damping only happens when the value of  x x
m0

< .

It is important to observe that dry friction can be employed to demonstrate neg-

ative damping in various other mechanical systems. Rayleigh had employed the 

same reasoning to elucidate the creation of vibrations in the violin wire resulting 

from the action of drawing the bow across its width. Dry friction induces self-ex-

cited oscillations in a pendulum attached to a rotating shaft, resulting in the shaft 

exhibiting an unsteady motion within a loosely supported bearing. Dry friction can 

be employed to elucidate the collision between the brake shoes and train wheels 

during braking.

Example 4–3: It is preferable to address the issue of the Van der Pol oscillator by 

employing the technique of multiple time scales and illustrating its phase diagram to 

depict the occurrence of the limit cycle.

Response: Please examine the subsequent connection:

   x x x x x a x− −( ) + = = = 2

0
1 0 0 0 0; ( ) , ( ) , 

By substituting the solution as a series expansion x x x
0 1

2

2
+ + +…( )   into the 

given relation, we obtain the following:

∂
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∂ ∂
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 
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∂

∂
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0 1
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Through re-separation in each order  , the following relationships are established:

 

O Lx

O Lx
x

T T
x

x

T

O Lx







0

0

1

1
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0
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In which:
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The solution to the problem O  0( )( ) will be as follows:

 x A T T e A T T e
iT iT

0 1 2 1 2
0 0= ( ) + ( ) −, ,  

By substituting this expression for x
0
 into x

1
, we obtain the following:
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In order to avoid secular phrases with a time complexity of O  1( ), the condition 

2
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2∂

∂
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A

T
A A A is imperative to establish. To explicitly solve for A  by substituting 

A
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, we derive distinct equations for the amplitude and phase A .

 
∂

∂
= −

R

T

R R

1

3

2 8
 

 
∂

∂
=

q
T

1

0, 

It is indicated that q T
1( ) remains constant, and we choose q T

1
0( )=  as well.
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FIGURE 4.6 Phase plane of the Van der Pol oscillator.

The given initial conditions x a( )0
0

=  and x( )0 0=  indicate that R a( )0
0

= . Therefore:
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It has been observed that while considering the first sentence as an extension 

response, the oscillator limit cycle of the Van der Pol remains stable. The initial 

conditions of this response are exponentially absorbed, resulting in a somewhat poor 

approximation for the limit cycle. If we advance the procedure once more, we will 

regain the frequency correction of the Lindstedt-Poincaré approach. This matter can 

be investigated as a practical exercise.

We will create a phase plane of the Van der Pol oscillator to visualize the limit 

cycle behavior.
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Figure 4.6 displays the phase plane of the Van der Pol oscillator, illustrating the com-

plete cycle of the stable limit. Consult Refs. [8, 12] for a more comprehensive analysis 

and comprehension of the image produced by the phase plane.
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               4.3 GENERALIZE DIFFERENTIAL QUADRATURE METHOD

     4.3.1 INTRODUCTION 

In the second section of this chapter, we study the finite element method. The finite 

element method (FEM) is a versatile technique utilized in engineering to solve a 

broad spectrum of equations, typically expressed as partial differential equations. 

Over the past few decades, various solution techniques have been introduced to 

address the governing equations of diverse problems. The physical formulation of 

a problem can be transformed using three methods: the direct method, the varia-

tion method (also known as Rayleigh-Ritz), and the weighted residual method. This 

sub-chapter will explore the various methods for solving the problem such as GDQ 

and perturbation methods. Analytical methods in solving engineering problems are 

always considered due to their high accuracy and are the first option in solving a 

problem. But in many cases, these methods face limitations, including the complex-

ity of the governing equations, or the geometry of the problem, or the existence of 

discontinuity in the problem-solving range. This issue has led to the emergence and 

growth of numerical methods so that nowadays, various numerical methods have 

been presented to solve engineering problems, among which we can refer to the finite 

difference method, the boundary element method, the differential transform method, 

the Ritz method, Galerkin Method, and so on.

     4.3.2 HISTORY 

The DQ approach, introduced by Belman in the 1970s, offers a superior alternative 

to finite difference, finite element, and boundary element techniques for solving 

initial value and boundary value problems in the fields of physics and engineering. 

This method had an edge over earlier strategies in terms of its faster calculations 

and utilization of fewer nodes. The DQ approach estimates the partial derivatives of 

a function at a specific location by calculating a linear combination of the function’s 

values at all points in the domain. This is in contrast to prior methods like finite 

difference. This assumption was made since there was an improvement in accuracy 

and a notable decrease in the amount of calculations required. Nevertheless, this 

approach was hindered by constraints such as challenges in dividing the domain 

into discrete sections and accurately determining the weight coefficients of each 

domain point. The GDQ technique was introduced in the early 1990s by Shu and 

Richards as an adaptation of the DQ method [13]. It was developed to address the 

limitations of the DQ approach in solving two-dimensional Navier-Stokes equa-

tions. Since then, the GDQ method has been widely applied in solving elasticity 

issues for sheets and shells. Calculating the weighted coefficients of the derivatives 

in this method is more straightforward than the DQ method and can accommodate a 

greater number of points without being restricted by point selection limitations. This 

approach approximates the derivative at each place by combining the nodal values 

at other points. Consequently, by utilizing this approach, the equations that control 

the problem are transformed into algebraic equations, which can either be linear 

or nonlinear depending on the nature of the problem. This method possesses the 

capability to solve a wide range of equations, encompassing equations with variable 
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coefficients, nonlinear equations, and eigenvalue equations. The GDQ approach has 

been employed in numerous studies to address vibration issues and stress analysis 

of rectangular sheets and cylindrical shells.

     4.3.3 PRINCIPLES 

The general principle in the method of DQ is to divide the problem-solving interval 

into a network of points and solve the differential equation in this discrete network 

of points. In this method, the goal is to estimate the derivatives of the function of 

different orders in each of the problem-solving points according to the value of the 

function in all points. In order to achieve this goal, consider a number of points like 

x f f x f
N N1 1 2

2, , , , , ,( ) ( )… ( ) . To fit a unique polynomial for these points, Lagrange pro-

vided the following relation [14]:

 f x L x f L x f L x f L x f
N N j

N

j j
( ) ( ) ( ) ( ) ( )= + +…+ =

=∑1 1 2 2 1
 (4.125)

In which L x
j
( ) are the Lagrange coefficients that:
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In other words, the following relationship is established at point x x
j

= :

 L L L L L L L L
j j j N N
= = = =…= = =…= = =

− + −
1 0

1 2 3 1 1 1
 (4.127)

In order to calculate the derivatives of the function with r times of derivation from 

both sides, Equation (4.125) can be written as follows [15, 16]:
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Therefore, to calculate the derivative of the function, it is enough to calculate the 

derivative of the Lagrange coefficients. Many functions can be defined that satisfy 

Equation (4.128), but the simplest function that can be considered is a polynomial 

function that has the following general form:

L
x x x x x x x x x x

x x x x x
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 (4.129)

In this relation, P  is the operator of successive multiplication of several expressions. 

For ease of derivation, we can express the Equation (4.129) using the mathematical 

operator Ln and its properties as follows:

 Ln L Ln x x Ln x xx
j k

k j

N

k k

k j

N

j k
( ) ( ) ( )



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=
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∑ ∑1 1  (4.130)
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By deriving both sides of the equation, Equation (4.130) can be written as follows:
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And according to the Equation (4.129), the following relationship can be expressed:
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The Equation (4.128) can be rewritten as follows for the value of the first derivative 

(r = 1) at an arbitrary point such as x x
i

= .
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In this regard, according to the Equation (4.132), the following relation can be presented.
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The Equation (4.133) can be expressed in the form of the following matrix.
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It should be noted that the superscript (1) in the relationship A( )1[ ], indicates the esti-

mation of the first derivative of the function.

According to Equation (4.133), it can be concluded that in expression A
ij

( )1 , the first 

subscript indicates the point where the value of the first derivative is estimated, and 

the second subscript indicates the point where this value is the corresponding coeffi-

cient in the estimation of the first derivative.

By expanding Equation (4.134), it can be shown that all sentences will be equal 

to zero, except for one sentence that will be ambiguously 
0

0
, which can be shown by 

disambiguating as:
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To estimate the second derivative, consider the following equation:
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which is expressed as follows using the Equation (4.135)
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As a result, the value of the second derivative can be estimated as follows:
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in which,

 A A A( ) ( ) ( )2 1 1[ ]= [ ][ ] (4.140)

As a result, in general, the following relationship can be expressed to estimate the 

derivative r of a function.
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In which,

 A A Ar r( ) ( ) ( ) , ,[ ]= [ ][ ] =−1 1 2 3r  (4.142)

It should be noted that with the aim of creating ease in notation in this booklet, the fol-

lowing convention is used to show the corresponding matrixes for different derivatives.

 A A B A C A D A= = = = …
( ) ( ) ( ) ( ), ,, ,1 2 3 4  (4.143)

As a result, the following relationship can be expressed:
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in which,

 B A A C A B D A C[ ]= [ ][ ] [ ]= [ ][ ] [ ]= [ ][ ], , , (4.145)

It should be noted that matrixes A B C[ ] [ ] [ ], , , are known as weight coefficients 

matrixes. Considering that the derivatives of the function are considered only in 

certain points of the problem solving domain, it is obvious that with the increase of 
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the number of points considered in the problem-solving domain, the accuracy of the 

obtained answers increases, and finally, in a certain number of convergence points, 

it will converge. In addition to the number of points that are considered, how the 

points are distributed in the domain of problem-solving is also very important. The 

simplest explanation that comes to mind in the first step is the uniform distribution 

of points along the interval. If this type of explanation is used, the convergence 

of the problem will be created for a very high number of points because with the 

increase in the order of the derivative, the approximation error will grow at a high 

rate compared to the increase in the order of the derivative. The best type of point 

distribution that has been considered so far is the cosine explanation known as Che-

byshev-Gauss-Lobatto distribution. The characteristic of this type of distribution is 

that the density of points considered in this type of distribution is higher near the 

border points than the middle points. This distribution is calculated for the interval 

a b,[ ] from the following equation.
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Example: Using the DQM, we solve the given differential equation under the corre-

sponding boundary conditions.

 ′′ ′+ − = −f f f x x2 4 4 2( ) (4.147)

 B.C : ( ) ( )f f0 1 0= =  (4.148)

Using Equation (4.144), Equation (4.147) can be expressed in the form of the follow-

ing matrix:

 B f A f f q[ ]{ }+ [ ]{ }− { }= { }2 4  (4.149)

In which:

 q x x
i i i
= −( )4 2  (4.150)

The Equation (4.149) can be expressed as follows:

 K f q[ ]{ }= { } (4.151)

In which:

 K B A I[ ]= + −[ ] [ ]2 4  (4.152)

And in this relation, I  is identity matrix of order N. The given boundary conditions 

for the vector f  at the beginning and end points of the interval is equal to zero 

( )f f
N1

0= = .
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As a result, in order to satisfy the boundary conditions, the first and last row of the 

vectors f{ } and q{ }, as well as the first and last row and columns of the matrix K[ ], 
can be removed, and the Equation (4.151) can be expressed as follows:

 K f q* * *[ ]{ }= { } (4.153)

In which:
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 (4.154)

To solve the system of equations obtained in Equation (4.153), we can write the 

following:

 f K q* * *{ }= [ ] { }
−1

 (4.155)

And as a result, the vector of unknowns f{ } according to the boundary conditions 

of the problem will be obtained as follows:

 f f *{ }= { }








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
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 (4.156)

It can be shown that the exact solution of Equation (4.148) is as follows:

 f x x
exact
= −

2  (4.157)

In Figure  4.7, the numerical solution of Equation (4.147) is drawn by the method 

of square differences for different values of N, along with the exact solution of this 

equation. These figures show well the convergence and high accuracy of the DQM.

               4.4 WEIGHTED RESIDUAL METHOD

     4.4.1 INTRODUCTION 

The finite element method is a versatile approach used to solve various equations 

in the realm of engineering, particularly those that manifest as partial differen-

tial equations. Over the past few decades, numerous techniques for resolving the 

equations that govern various issues have been suggested. There are three methods 

for converting the physical formulation of the problem: the direct method, the vari-

ational method (also known as Rayleigh-Ritz), and the weighted residual method 

[17]. The challenge of determining the eigenvalue of Rayleigh and Rayleigh-Ritz 

can be solved using methods that rely on the preservation of the Rayleigh residual 
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FIGURE 4.7 Comparison of the exact and numerical solution.

method. These methods can be classified as variation methods due to the associ-

ation of Rayleigh residual with variation methods. Weighted residual approaches, 

which belong to a distinct category, are employed for solving vibrational problems. 

Galerkin method, collocation method, subdomain collocation, and the least squares 

method are all classified as weighted residual methods. Weighted residual methods 

directly address the governing differential equation and the boundary conditions of 

a problem [18]. There are two distinct approaches to utilizing the weighted resid-

ual method. The first approach involves partitioning the geometry of the issue into 

numerous small elements and employing the governing differential equation in con-

junction with the required shape function for each of these constituents. It is unnec-

essary to establish boundary requirements for these components. Ultimately, the 

integration of the components results in the attainment of a fully formed geometry. 

This technique is employed in the widely utilized finite element method. However, 

in the second approach, a test function is used to make an educated approximation 

for the entire object’s response. This chapter will examine the fundamentals of the 

second weighted residual approach, specifically focusing on the utilization of the test 

function.

     4.4.2 PRINCIPLES 

In general, the weighted residual approach is a highly powerful method for obtain-

ing approximation answers to ordinary differential equations or partial differential 

equations [18].

Let us examine the given partial differential equation:

 Ω ( )A u f− = 0 (4.158)
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In domain:

 x x x x x x
n

( )= ( )1 2 3 4
, , , ......,  (4.159)

Which A is differential operator. The given boundary condition is as follows:

 G u g( ) @= G  (4.160)

The differential operator G is used to represent the boundary condition.

Many engineering issues stated as ordinary differential equations and partial dif-

ferential equation can be solved by the following approximation:
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Let i n=1 2, ,...,  and let f
i
x( ) represent test functions that must satisfy the following 

two conditions:

1. The boundary conditions have been implemented.

2. Match the physics of the problem.

By substituting U(x) in Equations (7.158) and (7.160), we obtain the following:

 
A U f

G U g

( )

( )

− ≠

− ≠

0

0
 (4.162)

The R
s
 and R

b
 residues for the given differential equation within the problem’s 

domain and subject to the boundary conditions can be expressed as follows:

 
R A U f

R G U g

s

b

= ( )−

= ( )−
 (4.163)

If the precise solution of the differential Equation (7.158) is available, the residues R
s
 

and R
b
 will be equal to zero. Nevertheless, in numerous real-world scenarios, the pre-

cise solution is unattainable, resulting in non-zero values for R
s
 and R

b
. To minimize 

the residues mentioned earlier, we can set the integral to zero by equating the weighted 

integrals of the residues to zero, with the appropriate determination of the coefficients 

W
i
 and W

j
. Consequently, it can be expressed as follows:
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 (4.164)

Let W
i
 and W

j
, where i j n, , ,...,=( )1 2  represent a collection of weight functions 

for R
s
 and R

b
 residues, respectively. If the selected form’s functions meet the 
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boundary criteria, the value of R
b
 becomes zero and the equation earlier is trans-

formed accordingly:

 
W∫ =WR d

i s
W 0  (4.165)

When expressing the remainder of R
s
 in the general case using R , the outcome is as 

follows:

 
W∫ =WRd

i
W 0  (4.166)

The expression earlier reflects the weight residual approach, which is commonly 

employed in numerical formulations like the finite element method. By substituting 

the Equation (7.163) into the Equation (7.165), we will obtain the following:

 
W∫ ( )− =[ ]W A U f d

i
W 0  (4.167)

The equation U x C x
N i ii

n
() ( )=

=∑ f
1

 represents a set of equations for i n=1 2, ,...,  that 

can be expressed as follows:

 

Ω

Ω

φ

φ

∫ ∑

∫ ∑

=

=









−











 =W A C f d

W A C

x
i

n

i i

i

n

i

1

1

2

1

0( ) Ω

ii

n

i

n

i i

x

x

f d

W A C

( )

( )

.

.

.









−











 =




∫ ∑
=

Ω 0

1
Ω

φ



−











 =










f dΩ 0

 (4.168)

The set of equations mentioned earlier represents the n equation, which is used to 

find the unknown n coefficients c
i
.

The selection of a weight function in residual weight methods has a substantial 

influence on the method’s performance. The primary distinction among various 

weight techniques lies in the selection of weight functions.

The remaining weight methods that were previously stated are as follows:

 1. The Ritz method

  2. Point collocation method

  3. Sub-point collocation method

  4. Least squares method

 5. Galerkin method
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4.4.2.1 Ritz Method

In this method, we have w
i
=1, so:

 
Ω Ω

Ω Ω∫ ∫= =WRd Rd
i

0 (4.169)

4.4.2.2 Point Collocation Method

In this method, we have W x x
i i
= −( )d  or W x x x x x x x x

n
= − − − … −( )d

1 2 3
, , , , , 

so:

 
Ω Ω

Ω Ω∫ ∫= −( ) =WRd x x Rd
i i

d 0 (4.170)

4.4.2.3 Sub-point Collocation Method

In this way, we have the following:

 W
for x in

for x is not in
x

i

i

i

( )=









1

0

Ω

Ω
 (4.171)

4.4.2.4 Least Squares Method

The initial step of this approach involves the definition of a function in the following 

manner:

 J c R Rd
i

( ) .= ∫ Ω Ω (4.172)

We’re going to have a derivative of J:

 
∂

∂
=

∂

∂∫
J

c

R R

c
d

i i
Ω

Ω
( . )

 (4.173)

In accordance with the principle of the weighted residual method, the weight func-

tion in the least squares method is chosen as follows:

 W
c

i

i

=
∂

∂

R
 (4.174)

We’ll have a result:

 
Ω Ω

Ω
R

∫ ∫=
∂

∂
=WRd

c
Rd

i

i

Ω 0 (4.175)

4.4.2.5 Galerkin Method

In this procedure, we will have W x
i i
=f ( ) as a result:

 
Ω Ω

Ω∫ ∫= =WRd Rd
i i
Ω φ 0  (4.176)
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Example 4–1: To effectively disperse the temperature in a one-dimensional blade, 

find the differential equation of heat transmission. The blade has a length of L =1.

 
d T

dx
x T T L

2

2

21000 0 0 0 0+ = = ( )=, ( ) ,  

The precise solution is given by the equation T x x x( )= −( )250

3
1 3 .

Solution: Initially, we hypothesize the test function.

 
d T

dx
x T T L

2

2

21000 0 0 0 0+ = ( )= ( )=, ,  

When i=1, we successfully solve the issue and obtain a result.

 T c x x R
d T

dx
x c x xx

1 1

2

1

2

1

2

2

1

21 1000 6 1000( )= −( )⇒ = = + = − +( )R  

Ritz method:

 
Ω

Ω∫ ∫= × − + = ⇒ =W Rd c x x dx c
l

1
0

1

2

1
1 6 1000 0

1000

9
( )  

 T x xx
1

21000

9
1( )= −( ) 

Point collocation method:

The approximate solution can be expressed by choosing the point x
L

= =
2

0 5. :

 
Ω

Ω∫ ∫= −






 − +( ) = ⇒ =W Rd x c x x dx c

1
0

1

1

2

1

1

2
6 1000 0

250

3
d  

 T x xx
1

2250

3
1( )= −( ) 

Least squares method:

 W
c

x x c x x dx c
i

i

=
∂
∂
=− ⇒ − − +( ) = ⇒ =∫

R
6 6 6 1000 0 125

0

1

1

2

1
( )  

 T x x x xx
1

2 2125 1
250

2
1( )= −( )= −( ) 

Galerkin method:

 

T c

x x

W

x x

x x

x

x

1 1 1

1

2

1 1

0

1
21 1 6

( ) ( )

( )

( )

=

= −( )

=










⇒ −( ) −∫
Φ

Φ
φ

cc x x dx c
1

2

1
1000 0

625

6
+( ) = ⇒ =  
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 T x xx
1

2625

6
1( )= −( ) 

Figure 4.8 displays the comparison of the obtained responses.

Example 4–2: Let’s examine a basic component of an element structural system. 

As depicted in Figure 4.9, this element is a solid with high formability, characterized 

by one dimension that is significantly greater than the other two dimensions. The force 

is applied just in the x-direction, which aligns with the member’s direction. The axial 

displacement, denoted as u , is determined by solving the equilibrium equation that 

governs this system.

 EA
d u

dx
b x

2

2
0+ =( )  

The letter E  represents the young module, A  is the cross-sectional area, and b x( ) 

represents the external axial load applied along the length of the element. Given the 

boundary conditions u x( )= =0 0 and u x L( )= = 0, where L  represents the length 

of the element and assuming L b x x A E= = = =1 12 1 12, ( ) , , . Determine the axial 

displacement of this structural component.

FIGURE 4.8 Temperature distribution response along the blade for precise method compared 

to different methods.

FIGURE 4.9 Simple structure under a distributed longitudinal load.
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Response: The precise solution is u x x
exact
=− +

4 , given that the estimated solu-

tion is as follows:

 u
i i

ix c x x x L( )= −( )−1  

The unknown coefficients are represented by c
i
, and the test functions are denoted by 

∅
i
( )x x x x Li= −( )−1 . By substituting the relation u x( ) into the differential equation 

of the truss member, the resulting function is as follows:

 R x
d u x

dx
b x( )

( )
( )= +

2

2
 

When i=1, the estimated solution for u x( ) can be expressed as follows:

 u x c x x L
1 1
( )= −( ) 

The residue corresponding to it is denoted as R x( ) when it is placed in the given relation:

 R R
d u

dx
b R R c xx

x
x x= = + ⇒ = = +

1

2

1

2 1 1

22 12( )
( )

( ) ( )  

When i= 2, the approximate answer can be expressed as follows:

 u c x x L c x x Lx
2 1 2

2( ) ( )= −( )+ −  

The residue corresponding to it is denoted as R x( ) through its placement in the 

relation:

 R R
d u

dx
b R R c c x xx

x
x x= = + ⇒ = = + − +

2

2

2

2 2 1 2

22 6 2 12( )
( )

( ) ( ) ( )  

The Ritz method:

Given the assumption that i=1, the following is true:

 Ω Ω
Ω Ω∫ ∫ ∫= = ⇒ +( ) = + =

⇒ =−

W Rd Rd c x dx c

c

1
0

1

1

2

1

1

0 2 12 2 4 0

2

 

And

 u x xx
1

2 1( )=− −( ) 

The Ritz approach is employed just for i=1, whereas for i= 2  and higher, the result-

ing equations will be the same.

Point collocation method:

Given the assumption that i=1 and the selection of the location x
L

= =
2

0 5. , the 

approximate solution can be expressed as follows:

Ω
Ω Ω∫ ∫ ∫= −( ) = ⇒ −( ) +( ) = ⇒ =−W Rd x Rd x c x dx c

1
0

1

0

1

1

2

1
0 5 0 0 5 2 12 0

3
d d. .

22
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Where:

u x xx
1

3

2
1( )=− −( )

Given that i= 2 and choosing two points on the truss member, we may determine 

that x
L

= =
3

1

3
 and x

L
= =

2

3

2

3
.

 
Ω

Ω∫ ∫= ⇒ −






 + − +( ) =WRd x c c x x dx

i
0

1

3
2 6 2 12 0

0

1

1 2

2d ( )  

Also:

 
0

1

1 2

22

3
2 6 2 12 0∫ −







 + −( )+( ) =d x c c x x dx  

The values of c
1
 and c

2
 are determined by solving the integrals mentioned earlier. 

Specifically, c
1

2

3
=−  and c

2
2=− . Therefore, the following can be concluded:

 u x x x xx
2

22

3
1 2 1( ) ( ) ( )=− − − −  

Sub-point collocation method:

We assume that i=1.

 
Ω Ω

Ω Ω∫ ∫ ∫= = ⇒ +( ) = + = ⇒ =−W Rd Rd c x dx c c
1

0

1

1

2

1 1
0 2 12 2 4 0 2  

So:

 u x xx
1

2 1( )=− −( ) 

Given that i= 2  and splitting the domain into two subdomains as described, we 

obtain the following:

 
Ω

Ω

1 1

2 2

1 0 0 5

1 0 5 1

: , .

: , .

W

W

= ≤ ≤

= ≤ ≤







x

x
 

 
Ω

Ω∫ ∫

∫

= ⇒ + −( )+( ) =

+ −( )

WRd c c x x dx

c c x

i
0 2 6 2 12 0

2 6 2

0

0 5

1 2

2

0 5

1

1 2

.

.
++( ) =12 02x dx

 

By evaluating the integrals mentioned before, we get that c
1

1=−  and c
2

2=− . 

Therefore:

 u x x x xx
2

21 2 1( )=− −( )− −( ) 
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Least squares method:

Assuming that the i=1:

 W
c

1

1

2=
∂

∂
=

R
 

 
Ω Ω

Ω
R

∫ ∫ ∫=
∂
∂

= +( ) = ⇒ =−W Rd
c
Rd c x dx c

1

1
0

1

1

2

1
2 2 12 0 2W  

 u x xx
1

2 1( ) ( )=− −  

Given the assumption that i= 2, we can conclude:

 

W
c

W
c

x

1

1

2

2

2

6 2

=
∂

∂
=

=
∂

∂
= −



















R

R
 

 
Ω Ω Ω

Ω Ω
R R

∫ ∫ ∫= ⇒
∂

∂
=

∂

∂
=WRd

c
Rd

c
Rd

i
Ω 0 0 0

1 2

,  

 ⇒ + −( )+( ) =∫
0

1

1 2

22 2 6 2 12 0c c x x dx  

 x
0

1

1 2

26 2 2 6 2 12 0∫ −( ) + −( )+( ) =c c x x dx  

By evaluating the integrals mentioned before, we get that c
1

1=−  and c
2

2=− . 

Therefore:

 u x x x xx
2

21 2 1( ) ( )( )=− − − −  

Galerkin method:

Considering the function u
i i

ix c x x x L( )= −( )−1  and the function U x c x
N i i

() ( )= f , 

where ∅
i

ix x x L= −
−1 ( ), we may conclude that for i=1:

 ∅
1
= −x x L( ) 

 
Ω Ω

Ω Ω∫ ∫ ∫= = ⇒ −( ) +( ) =W Rd Rd x x L c x d
1 1

0

1

1

20 2 12 0Ω f  

The value of c
1

1 8=− .  is determined by calculating the integral mentioned earlier.

 u x x x
1

1 8 1( ) . ( )=− −  
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For i= 2

 ∅
2

2= −( )x x L  

 
Ω Ω

Ω∫ ∫= =WRd Rd
i i
Ω f 0 

 ⇒ −( ) + −( )+( ) =∫
0

1

1 2

22 6 2 12 0x x L c c x x dx  

 
0

1
2

1 2

22 6 2 12 0∫ −( ) + −( )+( )=x x L c c x x  

By evaluating the integrals mentioned earlier, we see that c
1

0 8=− .  and c
2

2=− . 

Therefore: u x x x xx
2

20 8 1 2 1( ) ( ). ( )=− − − −

The answers to the problem are compared in mode i=1 in Figure 4.11 and in 

mode i= 2 in Figure 4.10.

Based on the diagrams, the Galerkin response is more accurate compared to the 

precise answer due to its reliance on the minimum energy approach. The Galerkin 

response is consistent with the Rayleigh-Ritz variation method due to its shared reli-

ance on energy minimization.

Example 4–3: Take into account the beam that is simply supported, with the 

torque M
0
 applied at both ends.

The differential equation that governs the behavior of this beam, along with its 

corresponding boundary conditions, can be described as follows:

 
EI

d y

dx
M x L

y y L

2

2 0
0 0

0 0 0

− = ∈

= =

[ , ]

( ) , ( )

 

FIGURE 4.10 Diagram of the bar longitudinal displacement, comparing the results of 

numerical methods with exact response in state i = 1.
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The precise solution to the differential equation governing the motion of the beam 

is as follows:

 y x
M

EI
x L x( )=− −( )0

2
 

Using the Galerkin method to solve the differential equation of the beam is preferable.

Solution: We hypothesize the test function in the following manner:

 u x Asin Bx( ) ( )=  

Where A  and B are fixed coefficients.

The boundary conditions are incorporated into the test function, as seen in Figure 4.12.

 u x Asin
x

L
C( )=










= ∅

p
1 1

 

 ∅
π

1
=











sin
x

L
 

FIGURE 4.11 Diagram of the bar longitudinal displacement, comparing the results of 

numerical methods with exact response in state i = 2.

FIGURE 4.12 Beam with simple supports exposed to bending torques.
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 R EI
d u

dx
M EI

A

L

x

L
M= − =−










−

2

2 0

2

2 0

p p
sin  

 
Ω
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
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0

2

2
0Rd sin

x

L
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A

L

x

L

L p p p
sin MM d

0
0










=x  

 
EI

L
A

M L
A

M L

EI

p
p p

2

0 0

2

32

2
0

4









+ = ⇒ =−  

 u x
M L

EI

x

L
( ) sin=−











4
0

2

3p
p

 

Figure 4.13 shows the beam’s bending obtained from the Galerkin method and the 

exact response.

It is important to highlight that the Galerkin approach is not exclusively restricted 

to the components method. The Galerkin approach predates the development of the 

finite element method. The primary distinction between the Galerkin technique and 

the finite element method lies in the fact that, unlike the Galerkin method, the finite 

element method does not specify the approximation function across the full physical 

domain. The approximation function is specifically designed for individual elements 

inside the physical domain. The Galerkin method is commonly employed in the finite 

element method standard to derive element equations [18, 19].

The admissible functions corresponding to the various boundary conditions of 

the plates are displayed. It is worth mentioning that as the beam can be viewed as a 

one-dimensional object, the authorized functions described in Ref. [20] can also be 

utilized for the beams.

The frequency w is determined by the values of K  and N  obtained from Ref. [20] 

for n = 0 25. , according to the following equation:

 ω
π

ρ

2
4

4
=

D

a

K

N
 (4.177)

By employing the weighted residual method described earlier, problems involving 

partial derivatives, such as those related to location and time variables, can be trans-

formed into ordinary differential equations that just depend on the time variable. 

These equations can then be solved using semi-analytical methods. The particular 

FIGURE 4.13 Comparison of the beam deflection obtained by Galerkin method with exact 

response.
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
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
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
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


 −








cos cos

p px

a

y

b

0 0514.
0 0071 0 024 0 0071

2 4

. . .+








 +











a

b

a

b

cos cos sin
3

2 2

p p px

a

x

a

y

b
−











0 50.
1 28 1 25 0 50

2 4

. . .+








 +











a

b

a

b

cos cos
3

2 2

p px

a

x

a

y

b
−











0 333.
0 853 0 190

2

. .+









a

b

cos cos
3

2 2

p px

a

x

a
-

1 00. 2 56.
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a
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
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




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b
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





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a
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
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
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b

1
2
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







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a

b

a

b
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px
a

y

b











0 1667.
0 1667 0 0760

2

. .+









a

b

sin
px
a

0 50. 0 50.

TABLE 4.1 (Continued)

Admissible Functions

Boundary Condition Mode Shape N K
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solution is determined based on the type of boundary condition and simplified uti-
lizing the deliberate circumstances of the problem. This results in the partial dif-
ferential equation being transformed into a linear or nonlinear ordinary differential 
equation with time variable [21]. The section on perturbation theory provided an 
explanation of the technique for solving ordinary linear and nonlinear differential 
equations [22].
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       5  Forced Vibrations of 

Nonlinear Systems 

     5.1  INTRODUCTION

Earlier sections explored the nonlinear free vibrations of a system with one degree of 

freedom. The study of the free vibration of the Duffing differential equation, which is 

a third-order nonlinear equation, focused on determining the natural frequency of the 

nonlinear system. Several techniques rooted in the idea of perturbation were investi-

gated in order to address the differential equation. An analysis was conducted on some 

phenomena, such as the limit cycle, that are characteristic of the nonlinear system. 

Subsequently, we will analyze the nonlinear forced oscillation of a system with one 

degree of freedom. This examination will reveal the occurrence of certain phenomena, 

such as jumping, under forced conditions, which will be thoroughly explored.

     5.2  FORCED HARMONIC VIBRATIONS IN NONLINEAR SYSTEMS

The initial focus will be on analyzing the stable response of a one-degree free-

dom system under nonlinear forced vibration. This analysis will be conducted in a 

straightforward manner. Additionally, the phenomena of jumping will be explored in 

both damped and undamped settings.

The equation governing a single-degree-of-freedom system with a nonlinear 

spring and a damper with a constant c, subjected to a harmonic excitation with 

amplitude F
0
, can be expressed as follows [1]:

 mx cx k x x F + + +( )=α ω
3

0
cos t  (5.1)

The expression x x+( )a 3  represents the force exerted by a nonlinear spring. If a is  

positive, the spring will exhibit hardening behavior, while if a is negative, the 

spring will exhibit softening behavior. In the context of Equation (5.1), it is note-

worthy that when the external force is represented as ε ωF t
0
 cos ( ), the term eF

0
 is 

referred to as soft excitation. Conversely, if simply F
0
 is utilized, it is referred to as 

hard excitation.

By employing the frequency response approach and considering the primary 

equation, the stable response may be expressed as follows:

 x t A t( )= −( )cos ω θ  (5.2)

https://doi.org/10.1201/9781003470694-5
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To simplify the analysis, it is advisable to incorporate the phase angle q into the input 

force statement. Equation (5.1) is reformulated in this instance:

 mx cx k x x F t + + +( )= +( )α ω θ
3

0
 cos  (5.3)

Evidently, in this instance, the equation undergoes alteration solely on the right side. 

By performing the operation of division on both sides of the Equation (5.3) with 

respect to the variable m, we will obtain the following:

  x x x hx F t F t
c s

+ + + = +2
0 0

2 3ξω ω ω ω  cos sin  (5.4)

Regarding the Equation (5.4), the forces F
c
 and F

s
 exerted on the unit of mass can be 

described as follows:

 F
F

m
F

F

m
c s
= =−

0 0
 cos  sin q q,  (5.5)

Also, h
k

m
=

a
, w

0

2 =
k

m
, and 2

0
ξω =

c

m
. The expression hx3  in Equation (5.4) is the 

nonlinear expression.

Next, the issue can be analyzed in two distinct components:

 1. An analysis of the resonant oscillations of a nonlinear system in the absence 

of damping.

  2. An analysis of the resonant oscillations of a nonlinear system, considering 

the influence of the damping effect. 

     5.2.1  AN ANALYSIS OF THE RESONANT OSCILLATIONS OF A 
NONLINEAR SYSTEM IN THE ABSENCE OF DAMPING 

Presently, we aim to examine the Equation (5.4) in a system without any dampening 

component. Thus, the differential equation for the system without a damper will be 

the following [1]:

 x x hx F t
c

+ + =w w
0

2 3
 cos  (5.6)

By hypothesizing the solution as x t A t( )= ( )cos w , we obtain the following:

 − +( ) + =A A t hA t F t
c

w w w w w2

0

2 3 3
 cos cos cos   (5.7)

It is important to observe that in the absence of a damper, the stable state reac-

tions, whether in phase q =( )0  or in opposition θ = °180  to the input force, exhibit a 

phase difference. Furthermore, during the phase difference stage, the amplitude A  
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undergoes a sign change. Based on the given explanation, only the term F t
c
 cos w  is 

chosen for study in Equation (5.7) from the Equation (5.6).

Given the trigonometric equation cos3 3

4

1

4
3w w wt t t= −











 cos  cos , it is important 

to note that the term cos 3wt  represents the third harmonic. However, since we are 

specifically focusing on the first harmonic, this term is disregarded. The equation is 

so reformulated as follows:

 − + + =A A hA F
c

w w2

0

2 33

4
 (5.8)

The third harmonic relationship and its accompanying reactions will be elucidated 

in the subsequent sections.

It is important to reiterate that if h> 0 in the context of Equation (5.8), we are 

dealing with a spring that exhibits hardening behavior. Conversely, if h< 0, the 

spring exhibits softening behavior.

Figure 5.1 depicts the frequency response of a system without a nonlinear damper. 

As the input frequency increases and approaches resonance, the amplitude of the 

system increases, leading to an addition of the spring constant. The continuous inclu-

sion of the spring results in an increase in the natural frequency of the system and 

causes the natural frequency to shift towards higher values. Put simply, in the linear 

system, the line F = 0 that represents the normal frequency maintains a consistent 

value  (Figure 5.1 a). Based on the information provided, in a nonlinear system with 

a stiffened spring, the spring constant and natural frequency both rise as the range 

expands. In the context of the spring season, if this represents the photograph, then as 

the distance expands, the typical frequency diminishes.

 FIGURE 5.1  Nonlinear frequency response curves in states: a)  linear h= 0( ) , b)  hardened 

spring (h> 0 ), and c)  softened spring h<( )0  .
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FIGURE 5.1 (Contiuned)

     5.2.2  ANALYSIS OF THE RESONANT OSCILLATIONS OF A NONLINEAR 
SYSTEM, INCLUDING THE INFLUENCE OF THE DAMPING EFFECT 

Considering the Equation (5.4) in conjunction with a damping mechanism, one may 

formulate the equation for the system [1]:

  x x x hx F t F t
c s

+ + + = +2
0

2 3β ω ω ω  cos sin  (5.9)

The equation β ξω=
0
 is true in Equation (5.9). By substituting the solution 

x t A t( )= cosw  into the differential equation, we obtain the following:

− − + + = +A t A t A t hA t F t F
c s

ω ω β ω ω ω ω ω ω2

0

2 3 32cos sin cos cos cos s   iin ωt (5.10)
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By utilizing trigonometric relations, we may express the equation as 

cos cos cos3 3

4

1

4
3w w wt t t= −










. Removing the term cos3wt  eliminates the third 

harmonic. Additionally, by introducing coefficients such as sin wt  and coswt , we can 

modify the equation as desired.

 
cos

sin

ω ω ω

ω β ω

t A A hA F

t A F

F Fc

s

s c

:

:

− + + =

− =















→ +

2

0

2 3

2 2

3

4

2

== F 2  (5.11)

However, by considering the Equation (5.9), it is noticed that F F F
s c

2 2 2
+ = . 

Therefore:

 ω ω β ω
0

2 2 3

2
2 23

4
2−( ) +












+( ) =A hA A F  (5.12)

To construct the amplitude graph by frequency, we will use the given Equation (5.12) 

with values F h= ( ) = =0 2 0 3 0 5 1 2 1
0

. , . , . , / ,w .

Figure 5.2 represents the frequency response curve, specifically for the hardening 

spring mode (as shown by the rightward departure of the graph). The softening spring 

mode also exhibits the same behavior, but its divergence will be towards the left. Non-

linear systems exhibit distinct behavior patterns. At specific points, the amplitude of 

oscillation experiences abrupt rises or drops. Based on the diagram in Figure 5.2, the 

FIGURE 5.2 Frequency response curve.
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jump phenomenon can be described as follows: when a constant force (F ) is applied, 

the amplitude of vibration increases gradually as the frequency of the excitation 

increases. However, at point 3 on the curve, instead of moving to point 6, the oscil-

lation amplitude jumps to point 4. Subsequently, it continues to increase along the 

specified path and reaches point 5. Similarly, as the frequency of excitation gradually 

decreases, the oscillation amplitude follows a specific curve passing through points 

5, 4, 6, 7, 2, and 1. It is noteworthy that when the frequency decreases, the amplitude  

at point 6 deviates from its expected path towards point 3 and instead jumps to point 7. 

This tendency is referred to as the phenomenon of jumping. As the fall persists, it 

transitions from point 7 to 2 and thereafter to 1. The jump track with dimensions of 

3-to-4 is commonly referred to as the jump down, while the track with dimensions of 

6-to-7 is known as the jump up. Point 3 and point 6 (Figure 5.2) are saddle bifurcation. 

The points mentioned represent the critical boundary between stability and instabil-

ity, as extensively explored in the part dedicated to the bifurcation theory.

The crucial aspect is that the trajectory from point 3 to 6, which is inherently unsta-

ble, is commonly depicted by a dash line. As depicted in Figure 5.3, there is no move-

ment in this particular direction. Furthermore, the diagram depicted in Figure 5.3 

illustrates the frequency response of a spring that exhibits softening behavior.

Figure 5.4 indicates the presence of two stable oscillation domains for a given 

excitation frequency. The region where oscillations are not sustained is referred to 

as the unstable conditions. Additionally, the path from 3 to 6 is considered unstable 

due to the absence of movement. In Figure 5.4, at a specific frequency, the diagram 

displays three distinct amplitude values denoted as a, b , and c. The domain of point 

b  is unstable, and it is not visible. In the two remaining domains that exhibit stability 

and correction, they are referred to as bistable stability; depending on the beginning 

conditions, one of them emerges. The line that connects the vertices of the charts in 

the term, as shown in Figure 5.5, is referred to as the backbone curve.

FIGURE 5.3 Frequency response curve for a softening spring.
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FIGURE 5.4 The phenomenon of jumping: a) hard spring and b) soft spring.

FIGURE 5.5 Backbone curve in the frequency response.

It is important to observe that the occurrence of jumping is characterized by the 

condition 
dA

dw
=∞ or 

d

dA

w2

0=  (as shown in Figure 5.5). To calculate 
d

dA

w2

 by deriv-

ing the Equation (5.12) and setting it equal to zero, we obtain the following:

 ω ω ω ω βω
0

2 2 2

0

2 2 2 23

4

3

4
2 0−( )+













−( )+











+( ) =hA hA  (5.13)
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By drawing the diagrams of Equations (5.12) and (5.13), one may identify jump points, 

which correspond to the intersection of the two jump point diagrams (Figure 5.6).

               5.3  FORCED VIBRATIONS OF SYSTEMS WITH 
ONE DEGREE OF FREEDOM

The preceding section analyzed the steady-state response of forced vibrations in 

a single- degree-of-freedom system using a straightforward approach. This section 

focuses on the analysis of forced vibration response using the principles of perturba-

tion theory. The underlying phenomena of this study will be thoroughly examined. 

In this part, we analyze a system with a single degree of freedom that is continuously 

influenced by an excitation. Typically, the types of excitations include the following [1]:

 1. An external excitation is a word used to describe a stimulus that appears as 

a non-homogenous expression in the equations regulating motion.

 2. A variable coefficient that appears in the governing equations and is depen-

dent on time is referred to as a parametric excitation.

In the following analysis, we investigate the nonlinear oscillations of a system with 

one degree of freedom, which are caused by an external input. To fulfill this objec-

tive, please examine the subsequent equation:

  u u f u u E+ = ( )+w
0

2  ,  (5.14)

Where e is a small parameter. f  is a nonlinear function that depends on the variables 

u , u , and E , which represent an external force applied as an excitation. At first, the 

excitation originates from an energy source that is presumed to be infinite or very 

big, allowing the stimulated system to have a minimal impact on it. Here, E E t= ( ). 

FIGURE 5.6 Jump points in the frequency response curve.
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This implies that E  is not dependent on u , u , or u . These sources are referred to as 

perfect sources of energy. In the second scenario, the excitation originates from a 

finite energy source, resulting in a sensible impact on the stimulated system. In this 

scenario, E E t u u u= ( ), , ,  . In other words, E  is dependent on the state of the system. 

A non-ideal energy source is the term used to refer to such a resource. Systems are 

categorized into ideal and non-ideal energy sources based on their respective sources 

of energy.

In this context, we are examining an ideal system where the system’s excitation is 

derived by the aggregate of N  harmonic sentences.

 E t K t
n

N

n n n( )= +( )
=

∑
1

 cos Ω θ  (5.15)

If the values of K
n
 (domains), W

n
 (frequencies), and q

n
 remain constant, the excitation 

is considered stationary. Otherwise, it is considered non-stationary. When domains 

and frequencies exhibit slow temporal changes, perturbation approaches resort to 

analyzing non-stationary systems.

     5.3.1  SYSTEMS EXHIBITING THIRD-ORDER NONLINEARITY 

Here, we analyze the forced vibrations of a mass that is coupled to a spring with 

nonlinear characteristics and is subject to viscous damping. The equation of motion 

for the system can be expressed as follows [2]:

  u u u u E t+ =− − + ( )ω µ α
0

2 32   (5.16)

μ is a positive value, while a might be either a positive constant (representing a hard 

spring) or a negative constant (representing a soft spring). As stated in the introduc-

tion, we make the following assumption:

 E t K t( )= cos W  (5.17)

5.3.1.1  Primary Resonance, Ω ω»
0

Instead of utilizing the excitation frequency W  as a parameter, we will introduce 

another parameter called the detuning parameter. This parameter quantitatively 

quantifies the proximity of W  to w
0
. By utilizing this parameter, we can effectively 

distinguish between secular sentences encountered previously and other semi- secular 

sentences inside the words of the governing equation for u
1
. Consequently, we put our 

thoughts into writing:

 Ω = +ω σ
0
  (5.18)

The value of s = ( )O 1  within the Equation (5.18). When the value of s  is equal 

to zero (s = 0), irrespective of the magnitude of the excitation, the nonlinear the-

ory will forecast vibrations of infinite magnitude. The presence of damping and 
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nonlinear effects in a real system restricts the magnitude of significant fluctuations. 

Hence, to provide a consistent and accurate approximation of this problem, it is nec-

essary to reorganize the irritants such that the presence of damping and nonlinearity 

is also accounted for. In order to accomplish this, we define a set as K k=  . This way 

of organizing expressions aligns with the previously discussed considerations regard-

ing the primary resonance. Under these circumstances, we anticipate that in a system 

exhibiting mild damping, when subjected to a low-amplitude excitation, a reaction of 

considerable magnitude will occur. A soft excitation is referred to as K k=   when 

considering the domain of the excitation.

The problem can be solved using several ways of perturbation, specifically the 

method of multiple time scales, to obtain an approximate answer. Consequently, we 

express the response in sentences that pertain to various temporal frames in the fol-

lowing manner:

 u t u T T u T T, , , ( )= ( )+ ( )+…0 0 1 1 0 1
 (5.19)

The values of T
0
 and T

1
 are defined as T t

0
=  and T t

1
=  , respectively. Furthermore, 

the expression of soft excitation in sentences including T
0
 and T

1
 is articulated in the 

following manner [3]:

 E t k T T( )= +( ) cos ω σ
0 0 1

 (5.20)

By substituting the Equations (5.19) and (5.20) into Equation (5.16) and setting the 

coefficients  0  and 1 equal on both sides, we derive the following:

  0

0

2

0 0

2

0
0: D u u+ =w  (5.21)

  1 0

2

1 0

2

1 0 1 0 0 0 0

3

0 0 12 2: D D D Du u u u u k T T+ =− − − + +ω µ α ω σcos ( )  (5.22)

It is important to mention that, thus, the process involves both organizing and con-

sidering soft excitation, excitation terms, dampening, and nonlinear sentences in 

Equation (5.22). The Equation (5.21) has a general solution that may be expressed as 

follows:

 u A T exp i T A T exp i T
0 1 0 0 1 0 0
= ( ) ( )+ ( ) −( )w w  (5.23)

The function A T
1( ) is an unknown function and will be derived by eliminating sec-

ular terms from u
1
. By establishing a connection between u

0
 and the Equation (5.22) 

and expressing cos ω σ
0 0 1
T T+( ) in a complex format, we obtain the following:

 

D u u i A A A A exp i T A exp i T
0

2

1 0

2

1 0

2

0 0

3

0
2 3 3+ =− +( )+



 ( )−′ω ω µ α ω α ω

00

0 0 1

1

2

( )

+ +( )



 +k exp i T T ccω σ

 (5.24)
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The term “cc” refers to the complex-conjugate of the preceding sentences. If we 

select response A  for the given relationship, any secular terms will be eliminated 

from the private response.

 2 3
1

2
0

0

2

1
i A A A A k exp i Tω µ α σ′+( )+ − ( )=  (5.25)

In order to solve the Equation (5.25), we represent A  in a diagonal manner:

 A a exp i= ( )
1

2
b  (5.26)

That, a, and b  are all real numbers. By decomposing the complex number into its 

real and imaginary components, we obtain the following:

 

′

′

=− + −( )

= − −( )

a a
k

T

a a
k

T

µ
ω

σ β

β
α

ω ω
σ β

1

2

3

8

1

2

0

1

0

3

0

1

sin

cos

 (5.27)

The Equation (5.26) can be substituted into Equation (5.23), and the resulting out-

come can be substituted into Equation (5.19) to obtain the solution, which can be 

expressed as follows:

 u a t O= +( )+ ( )cos ω β
0

  (5.28)

That, a, and b  are obtained using Equation (5.27). To turn Equation (5.27) into an 

autonomous system, one can insert the following:

 γ σ β= −T
1

 (5.29)

Which results:

 

′

′

=− +

= − +

a a
k

a a a
k

µ
ω

γ

γ σ
α

ω ω
γ

1

2

3

8

1

2

0

0

3

0

sin 

 cos 

 (5.30)

In order to obtain a response, it is necessary to initially determine the locations of 

the fixed points, followed by an examination of the motion within their surrounding 

areas. The system response is considered to be in a steady-state motion since the 

amplitude and phase remain constant at solitary points. The behavior of the trajec-

tory line in the vicinity of the singular points reveals whether a slight perturbation in 

the condition of the steady-state motion leads to a decrease or an increase in move-

ment. Indeed, they demonstrate the steadfastness of the steady-state mode’s motion.
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5.3.1.2  Steady-State Mode Movements

Steady-state motion occurs when ′ ′= =a g 0, which corresponds to the singular 

points of Equation (5.30). In other words, they are equivalent to the solution:

 

µ
ω

γ

σ
α

ω ω
γ

a
k

a a
k

=

− =−

1

2

3

8

1

2

0

0

3

0

sin

cos

 (5.31)

By combining and including these equations, we obtain the following:

 µ σ
α

ω ω

2

0

2

2

2
2

0

2

3

8 4
+ −



























=a a

k
 (5.32)

Equation (5.32) represents an implicit equation that relates the amplitude of response, 

denoted as a, to the detuning parameter s  (which represents the frequency of exci-

tation) and the amplitude of excitation, denoted as k . The equation is referred to as 

the frequency response in Equation (5.32).

The initial approximation for the equation answer to the steady-state answer is 

achieved by inserting the Equations (5.29) and (5.18) into Equation (5.28).

 u a t t O a t O= + −( )+ ( )= −( )+ ( )cos cos ω σ γ γ
0
  Ω  (5.33)

Constants such as a and g  are fixed values. Thus, the steady-state response aligns 

precisely with the frequency of excitation. The response phase is determined by the 

magnitude of the shift in the excitation phase -g . Graph a represents the frequency 

response curve, which varies with s, for the specified values of μ and k , as mentioned 

before. Each point on this curve corresponds to a fixed point on a different state 

plane. Indeed, there exists a mode screen that accommodates any possible combina-

tion of settings.

In order to plot the frequency response curve using the Equation (5.32), we can 

either solve the third-order equation for the a2 in terms of s  or solve s  based on a. 

The second mode is less complex and is expressed in the following manner:

 σ
α

ω ω
µ= ± −












3

8 40

2
2

0

2 2

2

1 2

a
k

a

/

 (5.34)

Figure  5.7 depicts a contrast between linear a=( )0  and nonlinear a>( )0  

response curves. Equation (5.34) demonstrates that the greatest range, denoted as 

a k
p
= ( )/ 2

0
ω µ , remains unaffected by the value of a. At this level of responsive-

ness, the linear outcomes exhibit symmetry. The response is concentrated within a 

narrow range centered around the resonance frequency (denoted as Ω= +ω σ
0
 ), 

resulting in an expanded frequency scale Ã in this region. The presence of nonlinear-

ity results in the bending of the amplitude curve and the distortion of the phase curve. 
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 FIGURE 5.7  Comparison of linear and nonlinear response curves: (a) linear domain,  

(b) linear phases, (c) nonlinear domain, and (d) nonlinear phases.
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Multi-quantitative zones are produced in both scenarios. We shall further explore 

how multi-quantitative zones contribute to the phenomenon of jumping. The arrows 

in Figures 5.7 (a) and (c) depict the jump.

Figure 5.8 (a) demonstrates that the presence of nonlinearity causes a deviation 

of the frequency response curve from the linear curve a=( )0 . This deviation is 

towards the right for hard springs a>( )0  and towards the left for soft springs a<( )0 .  

Figure 5.8 (b) illustrates the variation in frequency response curves as the excitation 

amplitude increases for a soft spring. As the intensity of the excitation rises, the fre-

quency response curves diverge from the s = 0 axis. The maximum domains are located 

geometrically according to the equation σ= ( )
3

8
0

2
α ω/ a , as seen in Figure 5.8 (b)  

with the fold line, commonly referred to as the backbone curve, as previously men-

tioned. It is observed that some frequency curves can have multiple values or only 

one value, depending on the value of k .

Figure 5.9 depicts the impact of the damping coefficient μ on the response curves. 

Without damping, the peak amplitude is unbounded, and the frequency response 

curve is composed of two branches on either side of its curve, with the equation 

σ= ( )
3

8
0

2
α ω/ a . In the reciprocal phase of 180° , where μ = 0 and γ = np, where n 

is an integer, the Equation (5.31) is given. Hence, the Equation (5.33) signifies that 

the response is either in phase or excitation. However, the existence of damping will 

restrict the maximum range of the peak. Furthermore, the initial Equation (5.31) 

demonstrates that γ µ ω= ( )−sin /1

0
2 a k . Consequently, the presence of damping in 

the response phase leads to displacement.

FIGURE 5.8 Frequency response curves for initial resonances of the Duffing equation: (a) 

nonlinear effect and (b) excitation domain effect.
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FIGURE 5.9 Damping effect in response of the Duffing equation to a primary resonance 

excitation.

FIGURE 5.8 (Continued )

Figure  5.10 depicts the variation in response amplitude as a function of exci-

tation amplitude for various values of s . The values a and μ are consistent across all 

curves. The curves are directly derived from the Equation (5.32). It should be noted 

that, based on the value of s , certain curves can be classified as polynomials, while 

others can be classified as monomials.
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                5.4  HARD EXCITATION WITHOUT RESONANCE

When the frequency of W is significantly different from w, the resulting excitation 

effect will be minimal, unless the amplitude of the W is high. In other words, the 

complexity of K  is constant, denoted as O 1( ). Thus, we delineate the excitation in 

this manner [1]:

 E t K T( )= cosW  (5.35)

We employ the method of multiple time scales to approximate the response based 

on the first resonance mode. In order to achieve that objective, we formulate the 

response in the following manner:

 u t u T T u T T, , , ( )= ( )+ ( )+…0 0 1 1 0 1
 (5.36)

By substituting the Equation (5.36) into the Equation (5.16), utilizing the Equation 

(5.35), and equating the coefficients of Îand Î1 on both sides of the equation, we 

obtain the following:

 D u u K T    
2 2
+ =ω cosΩ  (5.37)

 D u u D D u D u u      
2

1

2

1 1

32 2+ =− − −ω µ α  (5.38)

The Equation (5.37) has a general solution that can be expressed as follows:

 u A T i T i T cc   = ( ) + +
1

 exp exp ( ) ( )ω Λ Ω  (5.39)

Where Λ Ω= −
−

1

2

2 2 1K( )ω  is concluded by placing u0  in Equation (5.38).

FIGURE 5.10 Response amplitude as a function of the excitation amplitude for multi values 

of detunig parameter.
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[[ ] ( )2 3 62i A i T ccAµ α αΩ Λ Ω+ + +exp 

 (5.40)

Secular or semi-secular expressions (small derivation from secular terms), which devi-

ate just slightly from secular expressions exp ( )±i Tw  , may arise when Ω =O( )ε . 

In other words, for every given time, ω ω ≈ +( )m nΩ , where m and n are integers 

that satisfy the equation m n+ = 3. This phenomenon is known as superharmonic 

resonance when it occurs at a frequency of Ω »
1

3
ω  and as subharmonic resonance 

when it occurs at a frequency of Ω » 3ω . Hence, while eliminating phrases that 

produce secular expressions, it is necessary to differentiate between four modes:

 a) The distant o is excited at frequencies of 
1

3
w and 3wW.

   b)  The frequency of the excitation is about W »   .

   c)  The frequency of excitation is represented by the symbol W  , which is equiv-

alent to W » 1

3
w .

 d) The excitation frequency is approximately Ω » 3ω .

The following section will address the following:

Mode A) will discuss later.

Mode B) is offered, followed by an examination.

 Mode C) superharmonic resonance.

Mode D) subharmonic resonance.

Mode A)

In the state of non resonance, secular terms are excluded.

 2 6 32 2i A A A A Aω µ α α ′+( )+ + =Λ  (5.41)

Assuming the Equation (5.41), let A a exp i= ( )1 2/ b , where a and b  are real num-

bers. By decomposing the complex number into its real and imaginary components, 

we obtain the following:

 

′

′

=−

= +










a a

a a a

µ

ω β α 3
1

8

2 2Λ
 (5.42)

Thus, for the initial estimation:

 u a t K t O= +( )+ −( ) + ( )
−

cos cos ω β ω
0 0

2 2
1

Ω Ω   (5.43)
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The values of a and b  are derived from the Equation (5.42). The general response for 

a is given by the equation a a= −  exp ( µ T
1
) , where a  is a constant value. Conse-

quently, the free (homogeneous) vibration response decreases over time so that the 

steady-state response includes only forced (particular) response akin to the linear 

state. While the equation for free vibration is diminishing, its frequency is deter-

mined by the particular response domain.

The B mode will be assessed using the exercise structure provided later.

It is preferable to analyze the solution of the differential Equation (5.16) while 

considering the excitation force as Equation (5.35) with the assumption that the exci-

tation frequency is Ω= 0 .

Please be aware that Equations (5.39) and (5.40) are also applicable. Consult the 

Ref. [1] for additional guidance and research.

     5.4.1  SUPERHARMONIC RESONANCE Ω≈
1

3
w











In the case of mode C, we indicate the closeness to 
1

3
w by introducing the detuning 

parameter s  in the following manner:

 3
0

Ω = +ω σ  (5.44)

Furthermore, apart from the terms proportional to exp ( )±i Tw   mentioned in Equa-

tion (5.40), there exists an additional term that gives rise to a secular trend in the u
1
 

response. The expression is − ±αΛ Ω
3 3 exp ( )i T . In order to exclude secular terms, 

we represent the term 3WT  in terms of w T  as follows:

 3
0 0 0 0 0 0 0 0 1

ΩT T T T T T= +( ) = + = +ω σ ω σ ω σ   (5.45)

By applying the Equation (5.45), we determine that secular sentences are excluded 

in u
1
. If:

 2 6 3 0
0

2 2 3

1
i A A A A A exp i Tω µ α α σ′+( )+ + + ( )=Λ Λ  (5.46)

In the given Equation (5.46), let A a i=
1

2
exp ( )b , where a and b  are real numbers. 

By decomposing the complex number into its real and imaginary components, we 

obtain the following:
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3
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2 2
33 1

8
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 sin 

 

( )

ccos ( )σ βT
1
−

 (5.47)

Equation (5.47) can be transformed into an autonomous system, which is not reliant 

on time (t ), by incorporating:

 γ σ β= −T
1

 (5.48)
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Consequently, we obtain the following:
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 (5.49)

Thus, for the initial estimation, we may express it as follows:

 u a t K t O= −( )+ −( ) + ( )
−

cos cos3
0

2 2
1

Ω Ω Ωγ ω   (5.50)

The values of a and g  are derived from the Equation (5.49).

The movements of the steady state align with ′ ′= =a g 0. Indeed, they corre-

spond to the subsequent answers:
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 (5.51)

The frequency response equation is generated by squaring and adding earlier equa-

tions as follows:
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a a  (5.52)

By solving the Equation (5.52) for s  in terms of a, the conclusion is as follows:

 σ
α

ω

α

ω

α

ω
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1 2
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/

 (5.53)

Therefore, when W »
1

3
w , the expression representing the free vibration in response 

to the equation does not go towards zero, even in the presence of damping and in 

the comparison to the linear condition. Furthermore, the nonlinear system precisely 

controls the frequency of free vibration, which is exactly three times the frequency of 

excitation, resulting in an alternating response. The phenomenon of superharmonic 

occurs when the frequency of free vibration is three times higher than the frequency 

of excitation. The three curves in Figure 5.11 depict the formation of the response 

through the combination of the particular solution and free vibration, as described 

in Equation (5.50).

The various frequency response curves depicted in Figure  5.12. These graphs 

illustrate the impact of altering a, L , and m. The jumping phenomenon is caused 
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 FIGURE 5.11  Combination of the Duffing equation response to superharmonic excitation: 

(a) free vibration response, (b) particular response, and (c) real response.

by the bending of the frequency response curves, similar to the primary resonance 

condition. Furthermore, altering the sign a (as shown in Figure 5.12 a) results in the 

creation of a symmetry centered around the line s = 0. This symmetry is denoted 

by the Equation (5.53).
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 FIGURE 5.12  Superharmonic frequency response curves for the Duffing equation: (a) non-

linear effect, (b) excitation amplitude effect, and (c) damping effect.
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              5.4.2  SUBHARMONIC RESONANCE Ω≈ 3w( )

In order to examine subharmonic excitation for Equations (5.16) and (5.17) in State D, 

we establish the detuning parameter s  according to the following definition:

 Ω = +3
0
ω σ  (5.54)

Furthermore, the expression that corresponds to exp ( )±i Tw   and the terms cor-

responding to exp [ ]± −( )i TΩ 2ω   are considered secular terms in u
1
. The term 

Ω−( )2ω T  is written in accordance with the Equation (5.54) as follows:

 Ω−( ) = + = +2
0 0 0 0 0 0 0 1
ω ω σ ω σT T T T T  (5.55)

To eliminate these terms in the Equation (5.40) that result in secular terms in u
1
, we 

set the following:

 2 6 3 32 2 2

1
i A A A A i TA Aω µ α α α σ ′+( )+ + + =Λ Λ  exp ( )  (5.56)

FIGURE 5.12 (Continued )
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Let us establish a relationship between the complex number in Equation (5.56) and 

the expression A a i=
1

2
exp ( ),b  where a and b  are integers. By performing a process 

of isolating the real and imaginary components, we obtain the following:
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 (5.57)

In order to convert Equation (5.57) into an autonomous system, we establish the 

following definitions:

 γ σ β= −T
1

3  (5.58)

We shall possess the following:
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 (5.59)

Therefore, the system’s response will be determined by the initial approximation in 

the following manner:

 u a t K t O= −( )
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The values of a and g are derived from the Equation (5.59).

Steady-state mode movements are associated with the following responses:
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 (5.61)

The frequency response equation can be found by removing g from earlier equations.
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The Equation (5.62) suggests that either a=  and/or
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Which is the second order of a2. The solution is equivalent to the following:

 a p p q2 2 1 2
= ± −( ) /  (5.64)

Where:
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It is important to observe that q  is consistently positive, and as a result, the non-trivial 

amplitude of the system’s free vibration only happens when p>  and p q2 ³ . These 

conditions will be present in the following circumstances:

 Λ
Λ Λ2 0

2

0

2

0

24

27

63

8
2 0< −












− ≥

ω σ

α

α

ω
σ

α

ω
µ,  (5.66)

This necessitates that a and s  possess comparable marks. Furthermore, it can be 

deduced from the Equation (5.66) that, for a specific value L , non-trivial solutions 

can only arise under the following conditions:

 ασ
µ ω α

ω
≥ +

2 63

8

2

2

2 2



Λ

Λ
 (5.67)

Non-trivial responses can only occur when certain conditions are met, given a spe-

cific value of s .
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 (5.68)

The boundary in the plane Λ−( )s  where non-trivial responses can occur is deter-

mined by the following relation:
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2

2

1 2

α

ω µ

σ

µ

σ

µ

Λ
= ± −












/

 (5.69)

As depicted in Figure 5.13 for values of a> .
Under these circumstances, it is feasible for a system in this state to exhibit a 

response where the free vibration, despite the presence of damping, does not dimin-

ish to zero in comparison to the linear response. Furthermore, at a condition of equi-

librium, the nonlinear component is directly related to the frequency of autonomous 

oscillation, which is one-third of the frequency of external excitation, resulting in a 

periodic response. Subharmonic resonance refers to the occurrences where the fre-

quency of free vibration is one-third of the frequency of excitation.
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     5.5  PARAMETRIC EXCITATION

     5.5.1  INTRODUCTION 

This section focuses on analyzing motions that arise as a consequence of excitation 

that vary with time in the system. In prior episodes, we observed that excitation 

manifest as variations in the governing differential equations, leading to their inter-

pretation as external excitation. However, in this section, we familiarize ourselves 

with excitation that are expressed as coefficients in the governing differential equa-

tions. Mathematically, this form of excitation results in differential equations with 

coefficients that vary with time. In certain sections of mechanics, this phenomenon 

necessitates the resolution of partial differential equations with constant coefficients. 

These excitations are referred to as parametric excitation since they are represented 

as parameters in the governing equations, regardless of time. In contrast to external 

excitations, where a small excitation can only produce a large response if the fre-

quency of excitation is close to one of the natural frequencies of the system, a small 

parametric excitation can produce a large response when the frequency of excitation 

is close to twice that of one of the natural frequencies of the system. This is known 

as principle parametric resonance.

Faraday [4] was the initial observer of the phenomena known as parametric res-

onance. He observed that when a fluid-filled cylinder is vertically excited, surface 

waves exhibit double excitation periodicities. Although the subject of parametric 

excitation has not been extensively studied in the past, there is a considerable amount 

of literature and publications dedicated to the analysis and use of this sort of exci-

tation. One notable source is McLachlan [5], which focuses on the theory and prac-

tical use of Mathieu functions. Bondarenko [6], Magnus, and Winkler [7] examined 

the Hill’s equation and its relevance to engineering vibration problems in a separate 

FIGURE 5.13 Areas where the subharmonic responses exist.
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study. Furthermore, there are several works available that discuss parametric exci-

tation, namely, Nayfeh [8], Evan-Iwanowski [9], and Kononenko [10].

     5.5.2  PARAMETRIC EXCITATION IN A LINEAR SYSTEM 

The Mathieu equation is the most basic form of differential equations with alternat-

ing coefficients, defined as follows:

 u t u+ +( ) =δ ε2 2 0cos  (5.70)

Where d  and µ are constants, the values of which are within the Equation (5.70). 

Equation (5.70) serves as the principal equation for numerous physical systems sub-

jected to cosine excitation. Take note of the pendulum depicted in Figure 5.14, which 

is attached to the plate at Point O . The plate is vertically oscillating in a horizontal 

direction. The function cos2t  generates a parametric excitation in the system that 

varies with the variable t , representing time.

Let’s consider the Equation (5.70) with a minor modification as follows:

 u u t u+ + =ω εδ
0

2 0cos Ω  (5.71)

The solution to Equation (5.71) can be obtained using direct approaches, averaging 

techniques, or multiple time scales. However, in order to detect the system intensifi-

cations, we will employ a straightforward approach. Hence, the solution to Equation 

(5.71) can be expressed as follows:

 u t u t u t u t, e e e( )= ( )+ ( )+ ( )+…0 1

2

2
 (5.72)

FIGURE 5.14 Pendulum made of a uniform rod oscillating in two modes caused by the 

vertical harmonic movement of the horizontal plane.
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By substituting the solution (5.72) into the Equation (5.71) and thereafter simplifying 

and segregating the phrases based on the coefficients e0 , e1, and e2 , we will obtain 

three equations as stated:

 

ε ω ω β

ε ω

0

0 0

2

0 0 0

1

1 0

2

1
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:




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u u a t

u δδ

ε ω δ

u t

u u t

0

2

2 0

2

2 1

cos

u cos

Ω

Ω:  + =−

 (5.73)

By substituting the solution of the first Equation (5.73) into the second equation, we 

obtain the following:

 

u u a t t

a t

1 0

2

1 0

0

1

2

+ =− +( )

=− −( ) +
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ω δ ω β

δ ω β

cos cos
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Ω

Ω Ω ωω β
0( ) −



{ }t

 (5.74)

The particular response of u
1
 can be derived from the Equation (5.74) in the following 

manner:

 u a
t t

1
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0

0

0

1

2 2 2
=−
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Ω Ω

Ω

Ω Ω
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











 (5.75)

Now, by substituting the value of u
1
 from the Equation (5.75) into the third Equation 

(5.73), we obtain the following:

 

u u u t

a
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0
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ω δ
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0 0
4 2
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a
t t

+( )



{ }

−
+( )

−( ) −



 + +( )





β

δ

ω
ω β ω β

Ω Ω
Ωcos cos{{ }

 (5.76)

When W 2
0

w  in sentence Ω−( )2
0

w  in Equation (5.75), a phenomenon known as 

the primary parametric resonance takes place. Furthermore, if we consider the stated 

Equation (5.76), when the equation 2
0 0

Ω− =w w  holds true, a secondary resonance 

will occur. This implies that when Ω= w
0

, a secondary resonance will be observed. 

Secondary resonance can be achieved by expressing the particular solution to Equa-

tion (5.76).

     5.5.3  PRIMARY RESONANCE CAUSED BY HARMONIC 
EXCITATION IN THE LINEAR SYSTEM 

In the last section, we determined that during the primary resonance, we will have 

W 2
0

w . Next, we will examine the primary resonance by employing the averaging 

technique. Once again, we will rephrase the Equation (5.71) [11, 12]:
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 u u t u+ + =ω εδ
0

2 0cosΩ  (5.77)

Applying the aforementioned relations (Equations (4.94) to (4.98)) of the averaging 

approach, the following results will be obtained:

 a f a a d= −[ ]∫
ε

πω
φ ω φ φ φ

π

2
0

0

2

0
cos  , sin sin  (5.78)

 a f a a dβ ε

πω
φ ω φ φ φ

π

= −[ ]∫2
0

0

2

0
cos sin cos ,  (5.79)

Considering the supplied expressions f u u tu, cos( )= d Ω  and φ ω β= +( )2
0
t , we 

can substitute them into Equations (5.78) and (5.79) and then perform integration to 

obtain the following result:
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 (5.80)

Equation (5.80) has our frequency equations. Next, we aim to eliminate the tem-

poral dependence from Equation (5.80). By defining γ ω β= −( ) +2 2
0
Ω t  and 

 γ ω β= − +2 2
0
Ω , Equation (5.80) can be expressed as follows:
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sin 
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 (5.81)

The solution to Equation (5.77) is as follows:

 u a t t t a t t= ( ) + ( )



 = ( ) +













 cos  cosω β γ
0

1

2

1

2
Ω  (5.82)

The values of a and g  are derived from Equation (5.81).

In order to assess the stability of the system in linear mode, we deviate from the 

prior procedure by initially analyzing the non-trivial solutions a≠( )0  of the system, 

followed by an examination of the trivial solutions a=( )0 . Assuming that a≠( )0 , 

let’s divide both frequency Equations (5.81):

 
da

a

d
=

−( )+














δε γ γ

ω ω
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cos 4 2
2

0 0

0

Ω

 (5.83)

We will compute the integral of the aforementioned equation.

 ln ln cos lna c=− −( )+



 +

1

2
2 2

0 0
ω ω δε γΩ  (5.84)
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The domain “a” is formed from the Equation (5.84) as follows:

c
 a=  (5.85)

2 2ω ω0 0( )−Ω +δεcos γ

If:

2 2ω ω( )−
 cos γ = 0 0Ω

 (5.86)
δε

Subsequently, the occurrence of a→∞ triggers a strong need and thus leads to an 
unstable state of the system. If − ≤1 1cos g ≤ , then:

δε
 2 2ω ω0 0( )Ω Ω− =±δε → = 2ω0 ±  (5.87)

2ω0

To determine the stability or instability of the system, it is essential to create a graph 
that illustrates the relationship between the parametric excitation domain ( )d  and the 
excitation frequency ( )Ω .

FIGURE 5.15 Stability behavior of the system in exchange for different values of the para-
metric excitation domain ( )d .
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If we make the assumption that a=( )0 , then:
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sin 
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 (5.88)

In order to assess the stability of the trivial solutions, assuming a=( )0 , we examine 

the response as follows:

 
a a t

t

= + ( )
= + ( )








0
1

0 1
g g g

 (5.89)

Where a t
1 ( ) represents a value that is not equal to zero. Indeed, we generate a state 

of perturbation surrounding the origin. The value of g
0
 represents the stable state 

response of g , which may or may not be zero. Additionally, we generate a perturba-

tion g
1

t( )( ) in the vicinity of g
0
. By incorporating the Equation (5.89) into the Equa-

tion (5.88), a new relationship is derived based on a t
1 ( ) and g

1
t( ), which is equivalent 

to the procedure used to solve the preceding ection. Further information can be found 

in the Nayfeh and Mook [1].

     5.5.4  NONLINEAR EFFECTS ON PARAMETRIC EXCITATION 

In the previous section, we established that parametrically stimulated damper-free 

linear systems exhibit infinite growth in their responses over time. In practical sys-

tems, various degrees of damping can significantly influence the system’s stability 

behavior. If the system is linear, its magnitude will increase until the system ceases 

to exist. However, in most systems, there are varying degrees of nonlinearity. When 

the range of motion reaches a significant extent, this nonlinearity comes into play 

and alters the system’s response. Under certain circumstances, when the amplitude 

increases, the nonlinear impact constrains the expansion by forming a limit cycle.

In order to analyze the nonlinear effects in systems that are subjected to para-

metric excitation, we investigate a system that exhibits nonlinearity. Now, we will 

examine Equation (5.71) in conjunction with a nonlinear and damping statement as 

stated [13]:

  u u u u t u+ + + + =2 0
0

2 3εµ ω εα εδ cos Ω  (5.90)

Within the context of Equation (5.90), µ represents the damping coefficient and a 

represents the nonlinear coefficient. Given that the primary resonance is approxi-

mately equivalent to W 2
0

w , we will address the issue by employing the method 

of multiple time scales. To address this, we can express the solution in the following 

manner:

 u T T u T T u T T
0 1 0 0 1 1 0 1
, , ,( )= ( )+ ( )+…e  (5.91)
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Similarly, by substituting the value of Equation (5.91) into the Equation (5.90), we 

may separate the phrases based on the coefficients e0  and e1:

 
ε ω

ε ω

ω0
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2

0 0

2

0 0 1

1
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2
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µ α δD u u u− −  cos ΩΤ

 (5.92)

By substituting the solution of the first Equation (5.92) into the second equation, we 

obtain the following:

D u u i A e i Ae A e A Ae
i T i T i T i

0

2
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1 0 0

3 3 22 2 30 0 0 0 0 0+ =− − − −′ω ω µω α α
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1

2

T

i T i T i T i T

CC

e e Ae Ae
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δ

ω ωΩ Ω
 (5.93)

The expression cosΩ Ω Ω
T e e

i T i T

0

1

2
0 0= +( )−

 is true in Equation (5.93). Since W 2
0

w ,  

we can express the resonance conditions in a more thorough manner:

 Ω Ω 2 2
0 0
ω ω σε→ = +  (5.94)

The s  parameter is referred to as the detuning parameter in Equation (5.94). By 

including the Equation (5.94) into the Equation (5.93) and attempting to exclude sec-

ular terms in Equation (5.93), we can express it as follows:

 − − −



 − =′ −( )

2 2 3
1

2
0

0 0

2 0 0 0 0i A i A A A e Ae
i T i

ω µω α δ
ω ωΩ Τ

 (5.95)

Based on the earlier equations Ω= +2
0
ω σε  and T T

1 0
= e , and considering the sub-

stituting in the Equation (5.95), we may express this as follows:

 2 2 3
1

2
0

0 0

2 1i A i A A A Ae
i T

ω µω α δ
σ′+ + + =  (5.96)

Equation (5.96) is equivalent to the equation for the frequency response. Now we 

must determine a solution for A  expressed in polar form. To achieve this objective, 

we establish the definition A aei=
1

2

b , where a and b  are functions dependent on T
1
.  

The reason for utilizing the polar form of answer A  is that this response format is 

appropriate for obtaining non-trivial system solutions a≠( )0 . By considering the 

value A  in the context of the Equation (5.96), and decomposing it into its real and 

imaginary components, we obtain the following:
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 (5.97)
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By introducing the variables γ σ β= −( )T
1

2  and ′ ′= −( )γ σ β2 , Equation (5.97) can 

be expressed in a simplified form as follows:
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 (5.98)

In order to assess the stability of the trivial steady-state responses described by 

Equation (5.90) under parametric excitation, we will now employ the Cartesian form 

response A p iq e
i T= ±( )











1

2
1l

 instead of the polar form response. The Cartesian-type 

response is employed solely for the sake of simplifying the problem-solving process. 

As demonstrated later, this form of response aids in the examination of the stability 

condition of the system’s trivial response. It is worth mentioning that both p iq+( ) 
and p iq−( ) can be utilized interchangeably without impacting the solving proce-

dure. By substituting the solution of the Cartesian form into the frequency Equation 

(5.96) and resolving it, we obtain the following:

i p iq p iq i p iq p q ipq p iqω ω λ µω
α

δ

0 0 0

2 23

8
2

4

′ ′−( )− −( )+ −( )+ − −( ) +( )

+ pp iq e
i T

+( ) =
−( )σ λ2 1 0

 (5.99)

For the given values (5.99), p and q  are dependent on the variable T
1
. To eliminate the 

time dependence of the Equation (5.99), it is imperative to set λ
σ

=
2

. By substituting 

the value of l  with 
s
2

 in the Equation (5.99), we obtain the following:

i p iq p iq i p iq p q ip p iqω ω
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µω
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8
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4
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+ pp iq+( )= 0

 (5.100)

The frequency response equations are derived by segregating the real and imaginary 

components in Equation (5.100).
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 (5.101)

  5.5.4.1  Evaluating the Stability of the Trivial Solution 

to the Equation p q= =( )0
An analysis is conducted to assess the stability and instability of the system by study-

ing its steady-state responses, regardless of whether they are trivial or non-trivial. 
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In order to achieve this objective, we shall get the Jacobian matrix by linearizing 

Equation (5.101) around the point p q= = 0. The resulting matrix is as follows [14]:

 A=

− − −

− −
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2 4
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0

 (5.102)

Upon performing the computation of the determinant and the trace matrix of Equa-

tion (5.102), the following result will be obtained:
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Given that m > 0  and defining k =
δ

ω2
0

, when:
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The system is expected to exhibit instability. Furthermore:
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The system will maintain a state of stability. By plotting the equation 4 2 2 2
µ σ+ =( )k  

on a graph using k  and s  as variables, we obtain the following graphical representation.

Now, one can examine the system’s stability mode for trivial solutions. Based 

on the graph shown in Figure 5.16, it is evident that answers above the curve can be 

characterized as unstable, namely, when 4 2 2 2
µ σ+ = k . Conversely, responses below 

the curve can be considered stable. At s = 0, the value of the parametric excitation 

domain (k ) is precisely 2µ.

  5.5.4.2  The Stability of Non-trivial Steady-State Responses

In order to retrieve the non-trivial solutions of the system, we utilize the polar form 

solution that we already derived (Equation (5.98)). Once we write the frequency 

equations of the steady state explicitly, the solving process is completed [13, 14].
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Given that a¹ 0 (yielding non-trivial solutions), we proceed by dividing two Equation 

(5.106) by a and then by utilizing the trigonometric relationship sin cos2 2 1g g+ =( ), 
we arrive at the following relation:

 µ σ
α

ω

δ

ω

2

0

2

2
2

0

2

1

2

3

8 16
+ −











=a  (5.107)

The domain a( ) is obtained as the response of the real part of the complex form from 

the Equation (5.107). Therefore, we will have the following:

 a k= ± −









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3 4
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σ µ22
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


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





 (5.108)

The notable aspect of this topic is that, considering the circumstances and limita-

tions outlined in Equation (5.108) (including the presence of negative values within 

the square root), it can be asserted that non-trivial solutions are not always present. 

FIGURE 5.16 Behavior of the detuning parameter s  by parametric excitation domain k .



173Forced Vibrations of Nonlinear Systems

However, the trivial solution is always present. Thus, in order to verify the presence 

or absence of non-trivial solutions, we proceed as follows:

Given that a> 0 and the domain of a is a real value, it follows that the term under 

radical in question is always positive, as this condition necessitates. The value of 

k³ 2µ is greater than or equal to 2 ( k³ 2µ ).

1. If s< 0, then:

 σ µ< −k2 24  (a)

In this scenario, we are situated on the negative side of the curve depicted in Figure 5.17  

s<( )0 , where we can expect an unstable outcome. The unstable response is located 

at the apex of the curve 4 2 2 2
µ σ+ =( )k  and on the negative side of the graph s<( )0 ,  

shown by the label II  in Figure 5.23.

2. If s> 0, then:

 
1 4

2 4

2 2

2 2

( )→ > −

( )→ < −









σ µ

σ µ

k

k
 

There are two solutions in this scenario. Specifically, in this instance, we are posi-

tioned below the curve 4 2 2 2
µ σ+ =( )k  and above the line k = 2µ on the right side 

of the picture shown in Figure 5.23. This region is designated with the III. Further-

more, it should be noted that in region I, namely, below the line where k = 2µ and 

to the left and below the curve 4 2 2 2
µ σ+ = k( ), there is no solution available as 

depicted in Figure 5.23.

FIGURE 5.17 Different areas of stability and instability of the system.
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To assess the stability of non-trivial steady responses, it is recommended to 

employ Equation (5.98). The following equations have been restated later for the 

purpose of refreshing one’s memory:

 

′

′

=− +

= − +




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4 2
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0

3

0

sin

cos

 (5.109)

Given that non-trivial responses have a non-zero amplitude, it would be beneficial to 

employ the following variable transformation in the process of issue solving:

 a a a= +
0 1

 (5.110)

 g g g= +
0 1

 (5.111)

The roots of Equation (5.98) for the condition ′ =a 0 and ′ =g 0 are denoted as a
0
 

and g
0
, respectively. Equations (5.110) and (5.111) are now inserted into Equation 

(5.98).

 a a a a a
1 0 1

0

0 1 0 1
4

′ =− − + +( ) +µ µ
δ

ω
γ γ sin( )  (5.112)
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Now, by extending the capabilities of two variables’ functions, the process of linear-

izing Equations (5.112) and (5.113) can be carried out in the following manner:

a a a a
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 (5.115)

In order to proceed with the solution, it would be more convenient to transform the 

trigonometric values of the Equations (5.114) and (5.115) into algebraic values. In 

order to achieve this, it is necessary for the derivatives in Equation (5.109) to be equal 

to zero. Once this condition is met, the resulting equations will have roots a
0
 and g

0
.  

By substituting these roots into Equations (5.114) and (5.115), trigonometric values 

can be determined as follows:

′

′
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 (5.116)
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 cos( )γ
ω σ

δ

α

δ
0

0

0

22 3

2
=
−

+ a  (5.117)

The final linearization is obtained by substituting Equations (5.116) and (5.117) into 

Equations (5.114) and (5.115), respectively.
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Based on Equations (5.118) and (5.119), the Jacobian matrix is obtained in the fol-

lowing manner:
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The determinant and trace can be determined using the matrix of Equation (5.120) 

as follows:

 τ µ=−2  (5.121)

 ∆=− +
3
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16

0

2

0

2

0

4

0

2

ασ

ω

α

ω

a a
 (5.122)

We are commencing the examination of stability.

Initially, the values with a s< 0 are taken into account. Indeed, inside this band, 

only values of + −k2 24µ  are deemed acceptable. Now we substitute Equation 

(5.108) into Equation (5.122). It is important to mention that the trace t < 0, so:

∆=− + − + + − +
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(5.123)

The solution is considered unstable when ∆< 0 . Therefore:

∆< → − + − < → <
−

−

→ < −0 4 4 0
4

4
42 2 2 2

2 2

2 2

2 2 2σ µ µ σ
µ

µ
σ µk k

k

k
k  (5.124)

Consequently, if s< 0, the upper region of the curve depicted in Figure 5.23 will 

exhibit instability.

The answer is stable when ∆> 0 .

∆> → − + − > → > − →0 4 4 0 42 2 2 2 2 2 2σ µ µ σ µk k k Unacceptable  (5.125)
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Equation (5.125) is unacceptable. The equation contradicts the requirement 

k2 24− >µ σ  that was derived for s< 0.

Now, we will consider the s> 0, for which there will exist a steady state on the 

aforementioned subjects. If σ µ< −k2 24 , then there is only one solution. Specifi-

cally, only the values of + −k2 24µ  are considered acceptable in regard to Equation 

(5.108). Next, we insert the Equation (5.108) into Equation (5.121) while acknowledg-

ing that t < 0.

 ∆= − + −σ µ µk k2 2 2 24 4  (5.126)

The solution is considered unstable when ∆< 0.

 ∆< → − + − < → < −0 4 4 0 42 2 2 2 2 2 2
σ µ µ σ µk k k  (5.127)

Thus, when s> 0, the peak of the curve depicted in Figure 5.23 will exhibit instability.

The solution is stable when ∆> 0:

∆> → − + − > → > − →0 4 4 0 42 2 2 2 2 2 2σ µ µ σ µk k k Unacceptable  (5.128)

The equation denoted as Equation (5.128) is deemed unacceptable. The equation is in 

direct conflict with the relation σ µ< −k2 24 .

Next, we will examine the second scenario in which s> 0 and also σ µ> −k2 24 .  

There are two acceptable solutions in this scenario, and the allowable values for 

Equation (5.108) are ± −k2 24µ . Hence, we will derive two equations for the 

determinants. The expression + −k2 24µ  is initially examined in the context of 

the Equation (5.108). By substituting the value of Equation (5.108) into the Equation 

(5.122), we obtain the following:

 ∆= − + −σ µ µk k2 2 2 24 4  (5.129)

The solution is deemed unstable when ∆< 0.

∆< → − + − < → < − →0 4 4 0 42 2 2 2 2 2 2σ µ µ σ µk k k Unacceptable  (5.130)

The obtained answer is unacceptable. The requirement σ µ> −k2 24  is contra-

dicted by this response. Next, we will examine the case where ∆> 0 :

 ∆> → − + − > → > −0 4 4 0 42 2 2 2 2 2 2σ µ µ σ µk k k  (5.131)

One of the solutions for s> 0, located beneath the curve depicted in Figure 5.23.

For values of s> 0 and σ µ> −k2 24 , there exist two states. The initial state 

was analyzed using Equations (5.129) to (5.131). Next, we will examine the second 
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condition in which the Equation (5.108) incorporates the term - -k2 24µ . We sub-

stituted the Equation (5.108) into Equation (5.121):

∆=− − − + − − +
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(5.132)

The solution is considered unstable when ” < 0.
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k k k k

k k k22 24− µ
 (5.133)

Equation (5.133) reveals that when s> 0, an unstable response occurs below the 

curve depicted in Figure 5.23.

The solution is stable when the value of ∆> 0.

∆> 0→− − + − > → < − →σ µ µ σ µk k k Unacceptable2 2 2 2 2 2 24 4 0 4  (5.134)

The equation denoted as Equation (5.134) is deemed unacceptable. The equation is in 

direct conflict with the constraint σ µ> −k2 24 .

In the scenario where s> 0 and σ µ> −k2 24 , there exist two solutions, one of 

which is stable and the other is unstable. This section is indicated in the lower part of 

the curve depicted in Figure 5.24, specifically in region III. It is important to mention 

that the aforementioned subjects are depicted with greater elaboration in Figure 5.18 

compared to Figure 4.21.

To summarize, the quantity of responses in each region (I, II, III) of graph Figure 5.18, 

along with their stability and instability status, can be expressed as follows:

 1. Within region I, there exists a trivial and stable response.

  2. Within area II, there exist two solutions: one is readily trivial but lacks  

stability, while the other is non-trivial and possesses stability.

 3. Within district III, there exist three distinct answers. The first option is both 

trivial and stable, while the second option is also non-trivial and stable. 

However, the third option is non-trivial and unstable.

By altering the amplitude of parametric excitation k( ) and the detuning parameter 

s( ) in the diagram shown in Figure 5.19, we can observe the different binding states 

inside the system.

Equation (5.108) allows us to depict the non-trivial response amplitude a( ) by uti-

lizing the frequency response s( ) as defined in Figure 5.19. The relationship between 

various values of the frequency response s( ) and the amplitude of the excitation k( ) 
is illustrated in Figure 5.17. By examining the frequency response variations for a 
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FIGURE 5.18 Examination of the stability of the parametric excitation graph in terms of 

frequency for the non-trivial response of the steady state.

FIGURE 5.19 Behavior of the detuning parameter s  in terms of amplitude a.
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constant k  as depicted in Figure 5.17, we observe a progression from left to right, 

transitioning from area I to area II and finally entering area III. The graphic in Fig-

ure 5.19 displays the same variations for two specific values, s
1
 and s

2
, when the con-

stant k  is held constant. This is also seen in Figure 5.17. The diagram in Figure 5.19 

shows two bifurcations, supercritical fork bifurcation at the s
1
 point and a subcritical 

bifurcation at the s
2
 position. It is important to observe that the dash line represents 

an unstable condition, whereas the extended line represents a stable condition inside 

the system.

Figure 5.20 demonstrates the relationship between fluctuations in the excitation 

amplitude k( ) and the amplitude a( ) in exchange for a constant frequency response 

s( ). The diagram in Figure 5.20 represents a specific frequency response value s
1( ) 

which is negative. By altering the value of k  for s
1
, we transition from area I  to 

area II. Consequently, we will observe a bifurcation known as a supercritical fork 

bifurcation.

Figure 5.20 and Figure 5.21 show modifications of the excitation amplitude k( ) 
versus the amplitude a( ) while maintaining a consistent frequency response s( ). In 

Figure 5.21, the graph illustrates the relationship between the excitation amplitude 

k( ) and the amplitude a( ) for the frequency response value s
2( ). The value of s

2( ) 
is positive. When the value of k  is increased from a small value to a large value at  

point s
2( ), the transition occurs from area I to area III and finally to area II. From area I,  

characterized by a stable trivial solution, to area III, where the solution remains stable 

FIGURE 5.20 Parametric excitation amplitude k  according to amplitude a for point s
1
.
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and trivial, an unstable and non-trivial solution is introduced, along with a non-trivial 

and stable solution. At the point where the stable and unstable states overlap, namely, 

where the line and the expanded line k =( 2m) collide, we will observe the formation 

of a saddle node bifurcation. This point also marks the end of the I-zone. Further-

more, when transitioning from area III to area II, the previously trivial and stable 

response transforms into a trivial although unstable response. However, there exists a 

stable and non-trivial solution (see to Figure 5.21). At the transition between area III 

and area II, there is a subcritical fork bifurcation with a value of a=( )0 . If you want 

to study an instance of parametric excitation of Euler-Bernoulli nanobeams, you can 

see the references [13].
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       6  Nonlocal Systems 

and Kinematics of the 

Continuous Structures 

     6.1 INTRODUCTION

Later, we are examining the application of the principles and information from earlier 

chapters to study the nonlinear characteristics of the continuous system in a precise 

and comprehensive manner. In this chapter, initially, an overview of the fundamental 

principles of the continuum mechanics is presented, followed by the utilization of the 

principles of continuum mechanics, we extract nonlinear strains based on the gov-

erning assumptions, and nonlinear strains are introduced based on the von Karman’s 

theory. Next, we will introduce the nonlocal elastic theory, the modified coupled 

stress theory, and nonlocal strain gradient elasticity theory, which take into account 

the size effect and allow us to use them to study the dynamic behavior of micro and 

nanostructures. Finally, Hamilton’s principle is introduced, which is used as a pow-

erful tool for deriving the governing equations of nonlinear behavior of continuous 

structures in subsequent chapters.

     6.2  EXPLANATION THE DYNAMICS OF A 
CONTINUOUS ENVIRONMENT

The trajectory of a particle in particle kinematics is determined by the time vector 

function t  as follows [1]:

 r = ( )r t  (6.1)

The position vector r t( ) is defined as r e e et x t x t x t( )= ( ) + ( ) + ( )1 1 2 2 3 3
, where x t

1 ( ),  
x t

2 ( ), and x t
3 ( ) are the components of the vector as follows:

 x x t x x t x x t
1 1 2 2 3 3
= ( ) = ( ) = ( ), ,  (6.2)

If there are N  particles, there are likewise N  trajectories, each of which can be rep-

resented by an equation as follows:

 r
n n

r t n N= ( ) = …, , , , ,1 2 3  (6.3)

Specifically, the path for particle number 1 is represented by the notation r t
1 ( ), while 

the path for particle number 2 is designated as r t
2 ( ) and so forth. In the context of 

https://doi.org/10.1201/9781003470694-6
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FIGURE 6.1 Position of a particle relative to the origin at time t .

FIGURE 6.2 Vector of displacement of a particle in a continuum environment.

a continuum environment, there exists a substantial quantity of particles. Hence, it 

is unfeasible to distinguish particles by assigning a numerical label to each one and 

following a comparable trajectory as the kinematic particles. It is possible to identify 

them based on their position at time t
0
.

For instance, if a particle exists within a continuum environment and is located at 

location (1, 2, 3) at time t = 0, then the coordinate system 1 2 3, ,( ) can be employed to 

uniquely identify this particle. Therefore, if a particle of a continuum environment is 

located at position X X X
1 2 3
, ,( ) at a specific reference time t

0
, the coordinate system 

X X X
1 2 3
, ,( ) can be employed to uniquely identify this particle. Therefore, the trajec-

tories of motion for each particle in a continuum environment can be expressed using 

a vector equation as follows:

 x x X t X x X t= ( ) = ( ), , ,
0

 (6.4)

The position vector at time t  for particle p (Figure 6.1) is given by x x x x= + +
1 1 2 2 3 3
e e e .  

At time t
0
, particle p was at location X X X X= + +

1 1 2 2 3 3
e e e .

     6.3 DISPLACEMENT FIELD

The displacement vector, denoted as u X t,( ), is the vector from the reference point 

p t( )
0

 to the moving location p t( ) in the continuum environment with material abbre-

viation X  according to Figure 6.2 [1, 2].

 u X t x X t X, ,( )= ( )−  (6.5)
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Equation (6.5) demonstrates that when the path lines of a continuum environ-

ment are unobstructed, the displacement field will also be unobstructed. There-

fore, the movement of a continuum environment can be characterized either by the 

trajectories defined in Equation (6.4) or by the displacement vector field stated in 

Equation (6.5).

     6.4 SMALL DEFORMATION

There are numerous engineering challenges that include mechanical organs or com-

ponents that undergo minuscule deformations, which are analyzed in terms of math-

ematical foundations known as infinitesimal. In this episode, we get a tensor that 

characterizes the distortion of these objects [1, 2].

Let’s examine an object that has a distinct shape at time t
0
 and a different shape 

at time t  (as seen in Figure 6.3). The material point p undergoes a displacement u , 

resulting in its relocation to a new position as follows:

 x X u X t= + ( ),  (6.6)

The Q  point in the neighborhood, located at X dX+ , reaches the x dx+  point, which 

is connected as x dx+ .

 x dx X dX u X dX t+ = + + +( ),  (6.7)

By subtracting the value of Equation (6.6) from the value of Equation (6.7), we obtain 

the following:

 dx dX u X dX t u X t= + +( )− ( ), ,  (6.8)

Applying the gradient definition of a vector function, the Equation (6.8) can be 

expressed as follows:

 dx dX u dX= + ∇( )  (6.9)

FIGURE 6.3 Very small deformations at the material point p under displacement u  at time t .
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The symbol Ñu represents a second-order tensor which is referred to as a displacement 

gradient. The Ñu matrix will be expressed with respect to the Cartesian coordinates 

u u e X X e
i i i i

= =( ), .
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The Equation (6.9) can be expressed as follows:

 dx FdX=  (6.11)

Where:

 F I u= +∇  (6.12)

The deformation gradient, denoted as F , is the gradient of the function ˆ ,x X t( ) that 

describes the motion, where x x X t= ( )ˆ , . In order to get the correlation between ds  

(a length of dx ) and dS (a length of dX ), we perform a dot product of the Equation 

(6.11) within itself:

 dx dx FdX FdX dX F F dXT. . .= = ( )  (6.13)

It means:

 ds dX CdX2 = .  (6.14)

Where:

 C F FT=  (6.15)

The tensor C  is referred to as the Caushy-Green deformation tensor. It should be 

noted that if C I= , then ds dS2 2= . Hence, the equation C I=  represents the motion 

of a physical entity, which might involve both translation and rotation. We have a 

form Equation (6.12):

 C F F I u I u I u u u uT T T T
= = +∇( ) +∇( )= +∇ + ∇( ) + ∇( ) ∇( ) (6.16)

Let’s:

 E u u u u
T T* = ∇ + ∇( ) + ∇( ) ∇( )





1

2
 (6.17)
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Next, the Equation (6.16) will be expressed as follows:

 C I E= +2 *  (6.18)

Equation (6.18) states that the Tensor E*  represents alterations in length within a con-

tinuum environment due to the movement of material points, as C I=  pertains to the 

motion of a solid object. A Lagrange strain tensor, denoted as Tensor E* , is classified 

as a tensor that represents finite deformations.

Typically, when examining elastic problems, we encounter three categories of strain:

 1. Finite strain

  2. Small strain

 3. Infinitesimal strain

When discussing the divisions mentioned earlier, it is important to note that if all the 

sentences in the Equation (6.17) are thoroughly examined, it results in finite strain, 

which is essentially the same as large strains. If we simply consider the linear phrases 

of the given relation, specifically 
1

2
∇ + ∇( )





u u
T

, we are dealing with infinitesimally 

strains. Given the current circumstances surrounding the problem, if we exclude 

some nonlinear sentences (sentences connected to finite strain), we are dealing with 

small strains. These small strains are known as von Karman strains, which will be 

discussed later.

     6.5  RECTANGULAR PLATES SUBJECTED TO SMALL 
DEFORMATIONS: VON KARMAN’S THEORY

This section focuses on von Karman’s theory, which assumes minimal deformation 

strains. To fulfill this objective, examine the rectangular plate as depicted in Figure 6.4.

The point’s displacements in the central plane of the plate are denoted as u, v , and w , cor-

responding to the x, y, and z directions, respectively. The displacements of a point 

on the plate, located at a distance z from the central plane, are denoted as u
1
, u

2
, and u

3
 

(as shown in Figure 6.4a) [3].

When the displacement of the w  plate is almost equal to the thickness of the h  

plate, the conclusions obtained from linear theories will be highly erroneous. In this 

context, a theory is proposed to explain significant deformations in which the magni-

tude of w  is not negligible compared to h , resulting in noticeable differences between 

the original and deformed images. The theory is formulated using Cartesian coordi-

nates, which are appropriate for rectangular plates with dimensions b  and a (as seen 

in Figure 6.4 (b)). This theory takes into account the following assumptions [1, 3]:

H1( ): The plate is thin, h a h b , .

H2( ): The magnitude of the deformation is about equal to the thickness h of the 

plate. Therefore, it is relatively minor compared to the dimensions b  and a 

of the plate for H1( ): w O h= ( ).
H3( ): The slope at any point is significantly small: ¶ ¶ ¶ ¶w x w y/ , / 1 1.
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          H4( ) :  The magnitudes of all strain components are negligible, allowing for the use 

of linear elasticity.

 H5( ) :  Kirchhoff’s assumptions are confirmed, meaning that stresses are undeni-

able in the direction perpendicular to the central surface of the plate, and 

stresses vary linearly in the direction of the plate thickness. These assump-

tions are accurate estimations for slender plates. Despite the planned appli-

cation of external loads that are perpendicular to the sheet plate, stresses are 

generated in the vertical direction, albeit with a magnitude smaller than the 

other stresses.

FIGURE 6.4 Rectangular plate (a) symbols used for central plane displacements of the gen-

eral point and (b) symbols used dimensions and stresses of Kirchhoff.



188 Nonlinear Vibration of Smart Continuous Structures

H6( ):  According to von Karman’s hypothesis, the displacements u and v within 

the plane are extremely minor. In the strain-displacement relationships, 

only the nonlinear phrases that depend on w need to be retained. Disregard 

any other sentences that are not linear.

The hypothesis H6( ) on the omission of nonlinear plate theories to attain improved 

accuracy might be disregarded.

Figure 6.5 illustrates that the distorted image of the plate deviates from its initial 

shape. The Lagrangian approach is employed to describe the plate, ensuring that 

the upper and lower surfaces of the plate are consistently positioned at z h=± / 2 . 

A right-hand Cartesian coordinate system O x y z; , ,( ) is employed, where the x and 

y planes align with the central surface of the primary plate (unmodulated picture), 

and the z axis is perpendicular to them. The Green’s strain tensor is defined in the 

Lagrangian description.
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 (6.19)

It is important to highlight that when considering the first two expressions in the 

definition of strain, we will encounter infinitesimally small strains. If we include 

the expressions denoted as å  in the strain analysis, along with the first two expres-

sions, we are dealing with a small strain. Ultimately, if all of the aforementioned 

relationship expressions are taken into account during stress analysis, the resulting 

FIGURE 6.5 Transverse section of the rectangular plate: (a) the initial form, s
x
, is the nor-

mal Kirchhoff tension, and (b) the deformed form, sx

E( )
, is the normal Eulerian tension.



189Nonlocal Systems and Kinematics of the Continuous Structures

stress will be constrained. For instance, if we replace x1, x2 , and x3  with x, y, and z 

correspondingly, we obtain the following:

 e
xx
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u
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u
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Applying hypothesis H5( ), we obtain the following:

 u u x y z
w

x
1
= ( )−

∂

∂
,  (6.22)

 u v x y z
w

y
2
= ( )−

∂

∂
,  (6.23)

 u w x y
3
= ( ),  (6.24)

The Equations (6.22), (6.23), and (6.24) are characterized by linearity. These equa-

tions are derived based on hypothesis H5( ), which assumes that the strains in the 

plate change linearly with thickness. Additionally, the equations assume that the 

Kirchhoff stresses are absent in the direction perpendicular to the middle plane of 

the plate σ τ τ
zz zx zy
= = =( )0 , where s

ij
 represents the vertical stress acting per-

pendicular to level i  and in line with j . Furthermore, the symbol t
ij
 represents the 

tangent stress depicted in Figure 6.4 (b). Thus, by employing linear elasticity:

 s
xx

a x y b x y z= ( )+ ( )1 1
, ,  (6.25)

 s
yy

a x y b x y z= ( )+ ( )2 2
, ,  (6.26)

 ε

ν

σ σ
zz xx yy

u

z E

∂

∂
=− +( )3  (6.27)

The letter E  represents the Young modulus, whereas the letter n  represents the Pois-

son coefficient. The Equation (6.27), which approximates the linearized expression 

e
zz

, is derived from the linear Equations (6.22) to (6.24). By integrating the given 

Equation (6.63), we obtain the following:

 u w x y
E

a x y a x y z
E

b x y b x y
3 1 2 1 2
= ( )− ( )+ ( )



 − ( )+ ( )



, , , , ,

n n zz2

2
 (6.28)

The expression “w” represents the integral constant. Due to the insignificance of 

the value of 
n
E

, it is possible to disregard the last two phrases on the right side of the 
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Equation (6.28) for thin plates. The Equation (6.24) has been altered, resulting in 

e
zz
 0. Furthermore, the expressions produced for hypothesis H5( ) are as follows:
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By substituting the expression u w x y
3
= ( ),  derived from Equation (6.24) into Equa-

tions (6.29) and (6.30), and then integrating over those equations, we obtain the Equa-

tions (6.22) and (6.23). Now, by incorporating the correlations between Equations 

(6.22) and (6.24) into the Green’s strain tensor, we obtain the following:
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The purpose of this study is to derive the strain-displacement correlations of a plate 

in Cartesian coordinates. The strain components e
xx

, e
yy

, and g
xy

 at any given posi-

tion on the plate are connected to the middle surface strains e
x,0

, e
y,0

, and g
xy,0

, as 

well as to the changes in curvature k
x
, k

y
, and k

xy
 of the middle surface, through the 

following relationships:

 e e
xx x x

zk= +
,0

 (6.32)

 e e
yy y y

zk= +
,0

 (6.33)

 g g
xy xy xy

zk= +
,0

 (6.34)

Where Z represents the distance between the desired location on the plate and its 

central surface. By employing von Karman’s hypothesis H6( ), one can get the sub-

sequent equations for the intermediate surface stresses, as well as the variations in 

curvature and torsion of said surface:
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w

y
y
=−
∂

∂

2

2
 (6.39)
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 (6.40)

Generally, these correlations are sufficiently precise for plate with significant varia-

tions. If a higher level of specificity is necessary for relationships, the hypothesis H6( ) 
cannot be used, and Equations (6.35) to (6.40) can be computed by incorporating all 

nonlinear statements. It is important to mention that the terms 
∂

∂
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w

x

w

y
, which appear in the equations earlier, are referred to as strain nonlinearity in 

the von Karman model.

     6.6  FUNDAMENTAL PRINCIPLES UNDERLYING  
NON-CLASSICAL CONTINUUM MECHANICS THEORIES

     6.6.1 FUNDAMENTALS OF NONLOCAL THEORY 

Eringen initially introduced the nonlocal elastic theory to account for the influence of the 

tiny size parameter in the continuum model. In nonlocal theory, as opposed to classical 

elasticity theory, the stress at a specific place in a continuous physical model is influ-

enced by the strain of all points in that model. Put simply, the strain at a specific place 

is determined by the stress and its partial derivatives at that same position. The nonlocal 

theory examines the interaction between atoms within a molecule on a macroscopic level 

and links the outcomes to the dimensions of the physical model. The fundamental equa-

tion for a linear homogeneous body in the nonlocal elastic domain, disregarding volume 

forces, can be expressed as follows according to this theory [4–6]:

 s
ij j,
= 0 

 σ φ α
ij ij

x x t x dV x x Vx( )= −( ) ( ) ( ) ∀ ∈′ ′ ′∫∫∫ , ,  (6.41)

 t C u u
ij ijkl kl kl k l l k
= = +( )e e, /

, ,
2  

In the earlier connection, the nonlocal stress tensor is represented by the symbol s
ij
, 

while the local stress tensor is represented by the symbol t
ij
. Additionally, C

ijkl
 refers to 

the fourth-order elastic tensor, and e
kl

 represents the classical strain tensor. The integral 

is computed across the volume inhabited by the object, and the stress equation resulting 

from classical elasticity is applied. Nonlocal elasticity causes stress to bind.

The kernel function φ α′−( )x x ,  is a nonlinear modulus. This module func-

tions as a mechanism for reducing the strength of a structural equation that con-

nects the nonlocal strain impact at the source point ¢x  to the nonlocal impact at the 

reference point x .
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The variable ′−x x  denotes the distance in the Euclidean form of the material, 

while a is a constant that relies on the internal properties of the material, such as 

the regular network parameter, grain size, and bond distance between carbon-carbon 

bonds. Additionally, a also depends on external longitudinal characteristics, such as 

crack size or wave size. The a constant is assigned the value of e a
0

/  , while the 

material determines the proportionality of e
0
. This allows for the adjustment and 

calibration of the model to align it with reliable experimental data from other mod-

els. This parameter should be capable of accurately aligning the current connections 

in the nonlocal field with a good approximation to the outcomes derived from the 

atomic diffusion curves when longitudinal waves are present in the atomic lattice 

dynamics laboratory. The values of the  and a parameters are influenced by both 

the internal and external characteristics of the nanostructure. These characteristics 

include the regular network parameter of grain size, carbon ribbon bond distance, 

crack size, and wave size, which were previously discussed.

The equation is expressed as a partial integral, and its analytical solution is typ-

ically challenging, so a differential form of the elasticity equation is commonly 

employed. Eringen states that the equation for nonlocal elasticity can be expressed in 

the following manner.

 φ α π α αx K x x, . /( )= ( ) ( )
−

2 2 2
1

0
   (6.42)

In the given relation, the K
0
 function has been altered to Bessel. The rationale for 

motion in the context of nonlocal theoretical statements can be expressed as follows.

 σ ρ
ij j i i

f u
,
+ =   (6.43)

The variables “r” and “ f
i
” represent the mass density and volume force or applied 

force, respectively. The variable “u
i
” represents the displacement vector. Similarly, 

various relations for different coordinate lines can be expressed using the same 

approach.

Eringen formulated the structural equation as a differential equation in nonlocal 

theory, assuming that the kernel function f  is a Green’s function.

 σ ρ
ij j i i

f u
,
+ −( )=  0  (6.44)

The linear differential operator   is defined by the given relation.

 = −( ) ∇ = − ∇1 1
0

2 2 2e a µ  (6.45)

In the given relationship, μ represents the nonlinear parameter and is measured in 

square nanometers (nm2 ). By considering Equations (6.44) and (6.45), the differen-

tial equation associated with the opinion in Eringen’s nonlocal theory can be stated 

as follows [7–9]:

 1
0

2 2−( ) ∇




= ( )e a nl

ij ij
s s  (6.46)
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     6.6.2 THE HYPOTHESIS OF MODIFIED STRESS COUPLING 

In 1909, Cozart presented the inaugural mathematical model for analyzing materials 

that exhibit a stress pair. Subsequently, additional researchers have further improved 

the stress pair theory for materials exhibiting elastic properties throughout the years. 

These theories introduce the gradient of the rotation vector as a curvature tensor, 

leading to their classification as infinite stress couple theories [10–12].

Experiments conducted on metals and polymers have observed the influence of 

micron-scale factors on the movement behavior of materials. The explanation for this 

behavior is outside the scope of classical mechanics theories. The stress pair theory 

has been employed to demonstrate the correlation between displacement behavior 

and size. Later, we will analyze the distinctions between stress couple theory and 

other mechanical theories.

The stress couple theory for linear elastic materials states that it encompasses not just 

a force that induces particle movement but also a couple that induces particle rotation.

The equilibrium relations posited in this theory are derived from the principle 

of momentum conservation. The modified stress couple theory introduces a set of 

additional equilibrium relationships for a system of material particles. This theory 

extends the original stress couple theory by incorporating the determination of parti-

cle rotation. According to this theory, the stress couple vector is a vector that exhibits 

symmetry. The primary objective of the modified stress couple theory is to demon-

strate the length scale effect using only one parameter, whereas the stress couple 

theory requires two parameters for the same purpose [13].

     6.7  THE EQUATIONS THAT GOVERN THE STRESS 
COUPLE THEORY FOR A CHANGEABLE BODY

We are examining a random volume n¢ of a variable object and a constituent of its surface 

dv . t
n
 and µ

n
 are defined as the force and torque per unit area, respectively. The subscript 

“n” denotes the orientation of the normal vector in the out-of-plane direction. The sym-

bols f  and l  represent the quantities of force and torque per unit volume, respectively. The 

following are the suggested relations for a continuous volume [14, 15]:

 
′ ′∂∫ ∫+ =

v v
n

fdv t ds 0  

 
′ ′∂∫ ∫× +( ) + × +( ) =

v v
n n

x f l dv x t dsµ 0  (6.47)

Let x denote the location vector of a particle of matter.

However, as:

 t
n 
= t.n ; m

n 
=m .n (6.48)

The stress tensor is denoted by t , while the stress couple tensor is represented by μ. 
The expression for the surface integral using the divergence theorem can be formulated.

 
′∫ ∇+( ) =

v
t f dv. 0 
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′∫ × ∇+( )−∈ + ∇+( ) =

v
x t f t l dv. : .µ 0  (6.49)

Given that volume ¢v  is discretionary, the corresponding dependent volume can be 

excluded.

 
t f

t l t

.

. :

∇+ =

∇+ −∈ =

0

0
 (6.50)

Î is a tensor that alternates, while Ñ is Hamilton’s differential operator. They collab-

orate to sustain a consistent equilibrium. In order to omit the temporary torque, we 

have the following:

 
′ ′∂∫ ∫× −∈( )( ) + × =

v v
n

x l t dv x ds: µ 0  (6.51)

l t−∈:  represents the coupling between the object and the rest of the system. The 

relationships earlier can be expressed using the divergence theorem.

 
′∫ × −∈ + ∇( )−∈( )

v
x l t dv: . :µ µ = 0  (6.52)

Which results as follows:

 ∈ =: µ 0  (6.53)

The stress tensor can be divided into two parts: the symmetric part and the antisym-

metric part.

 σ τ= +( ) = −( )1 2 1 2/ , /t t t tT T  (6.54)

Where tT  is the transposition of t .

The stress coupling tensor μ is separated into a spherical component mg and a 

deviatoric component m.

 

µ µ

µ µ

= +

= ( )

( )=

g m

g tr

tr m

,

,
1

3

0

 (6.55)

By utilizing relationships . :∇+ −∈ =l t 0 and employing t f.∇+ = 0, and substitution 

of relationships, we achieve equilibrium within it.

 σ τ+( )∇+ =. f 0 

 µ τ. . :∇+ ∇+ −∈ =m l 0 (6.56)
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By eliminating the asymmetric stress tensor from the equation mentioned earlier, the 

resulting equilibrium equation is as follows:

 s. : .∇+ ∈ ∇⊗∇+ ⊗∇( )+ =
1

2
0m fl  (6.57)

     6.7.1  A NOVEL AND COMPREHENSIVE ITERATION OF THE THEORY 
ROOTED IN THE CONCEPT OF STRAIN GENERALIZATION 

In this part, displacements and e , c, s , and m are determined by applying the virtual 

work principle, and we present the obtained results here, where c is the symmetric 

curvature tensor. The initial values of the displacement slope and rotation slope are 

provided for the symmetrical section.
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 (6.58)

Ultimately, we are employing the concept of virtual work.

 σ
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=
∂

∂
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∂
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w
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w w
, , 0  (6.59)

Here, w  represents the angular density of deformation. The equations earlier demon-

strate that the deformation energy density is independent of rotation q .

The w  for the second-degree function of generalized strains in linear isotropic 

materials follows the linear elastic law.

 w tr l= ( ) + +( )
1

2

2 2λ ε µ ε ε χ χ: :  (6.60)

The substitution of the Equation (6.60) in the Equation (6.59) results [13]:
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     6.8  MODIFIED COUPLE STRESS THEORY FOR 
NON-ISOTROPIC MATERIALS

In the field of classical elasticity, shear strains are quantified by taking the 

derivatives of displacements. The coefficients associated with these strains are 

determined by examining the relationship between stress and shear actions. 

Furthermore, these coefficients can be readily extended to encompass non-isotropic  

elasticity. The coupled stress theory’s spherical inhomogeneous elasticity is 

determined by rotation components rather than rotational derivatives. Addition-

ally, the modified coupled stress theory restricts the curvature to spherically iso-

morphic materials. Hence, the adapted couple stress theory is inapplicable to 

this particular material, necessitating the revision of both stress and moment 

components.

 σ ε
ij ijkl kl

C=  (6.62)

 m l l
ij i i ij j j ji
= +( )2 2

µ χ µ χ  

As previously mentioned, c represents the curvature tensor of asymmetric couple 

stress, m represents the moment tensor of symmetric couple stress, and l
i
 represents 

the length scale parameter. The direction i represents the direction of impurity and 

defects in the material. Consequently, the length scale parameter in each direction 

can indicate a scale of measurement. The dimensions and scale of impurities and 

flaws inside the underlying structure of the material. Consequently, this theory will 

incorporate five constants corresponding to the five directions of the material crystal. 

Hence, the strain energy for the modified couple theory can also be expressed in the 

subsequent manner [16–18].

 U m dv
ij ij ij

s

ij

s= +( )∫
1

2 π

σ ε χ

′
 (6.63)

     6.9 FUNDAMENTALS OF MODIFIED STRAIN GRADIENT THEORY

According to the strain gradient theory, stress is not only dependent on strain, as 

stated in classical mechanics, but also on the strain gradient. The notion of lowest 

total potential energy has been employed to derive new relationships in the strain 

gradient theory. The strain gradient theory incorporates a statistical component 

known as the length effect parameter, which reveals that the material’s behavior at 

a small scale is influenced by its dimensions. The subject in the theory of classical 

elasticity could not be articulated due to the omission of this parameter in the equa-

tions. The strain gradient theory introduces a new stress element known as the total 

stress tensor. This tensor differs from the Cauchy stress tensor and can be utilized as 

the total stress tensor in the momentum equation.

The theory of strain gradient elasticity incorporates a new parameter, known as 

the characteristic length of the material, into the structural equations. This allows for 

the consideration of the material’s structure when analyzing its behavior. This theory 
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considers both the potential energy of the material and the strain. Additionally, the 

strain gradient influences this function, resulting in the inclusion of various novel 

variables in the structural equations. Put simply, the strain energy density in the 

strain gradient theory is determined by the normal strains e
ij
, which are the sym-

metric component of the first-order deformation gradient of the displacements, as 

well as the second-order deformation gradient h
ijk

. The answer varies depending on 

the circumstances. The theory was initially proposed in 1963 by Medlin [14, 15, 19].

 

U U

u u
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ij ijk

ij i j j i

ijk k ij

= ( )

= +( )
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ε η

ε

η
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. .

.

1

2
 (6.64)

The strain tensor e
ij
 in the given relationships consists of six separate components, 

while the second-order deformation gradient tensor consists of 18 independent com-

ponents. It is important to note that both of these tensors are symmetric tensors. The 

stresses associated with this strain can be described using the second-order gradient 

tensor present in this theory.

 

σ
ε

τ
η

ij

ij

ijk

ijk

U

U

=
∂

∂

=
∂

∂

 (6.65)

Hence, the overall strain energy can be represented in the following manner.

 Π= = +W
ij ij ijk ijk
σ ε τ η  

 u WdV dV
ij ij ijk ijk

= ∫ = ∫ +( )δ σ ε τ η  (6.66)

Mindlin formulated the strain energy density using the strain gradient theory for 

classical linear elastic isotropic materials in the following manner.

 U a a a a
ii jj ij ij ijk ikk ijk kjj iik jjk ji

= + + + + +
1

2
1 2 3 4

λε ε µε ε η η η η η η η
kk ijk ijk kji

aη η η+
5

 (6.67)

The normal Lamé constants are directly related to the normal strain invariant 

a
n

1 5, ,…( ), whereas the additional second-order elastic constant is directly related to 

the second-order deformation gradient invariants.

Fleck and Hutchinson categorize the transformation of the second-order gradient 

tensor into symmetric h
ijk

s  and asymmetric h
ijk

a  components as follows [20, 21]:

 h h h h
ijk

s

ijk jki kij
= + +( )

1

3
 

 η χ χ
ijk

a

ikl lj jkl li
e e= +( )

2

3
 (6.68)
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The terms “permutation tensor e
ijk

” and “curvature tensor c
ij
” are referred to in the 

aforementioned equations.

By partitioning the symmetrical component of the second-order strain h
ijk

s  into 

two components h
ijk

0( )
 and h

ijk

1( )
, we derive novel, distinct second-order strain metrics.
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1 0
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 (6.69)

The c
ij
 -curvature tensor was decomposed into two components: a symmetric part 

and an asymmetric one.
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 (6.70)

The initial component of the second-order symmetric deformation gradient is deter-

mined by the expansion gradient, whereas the nonsymmetric component is represented 

by the curvature tensor. Therefore, the expression can be formulated as follows:

 η ε χ ε χ
ipp

s

i imm mn

a

i imn mn
e e= + = +

2

3

2

3
 (6.71)

In the given relationships, e e
i
= is the dilation strain, e

i
 corresponds to the rate of 

change of dilation strain, h
ijk

1( )
 is the rate of change of deviatoric tension, and c

ij
is the 

rate of change of rotation.

If t
ijk

0( )
 and t

ijk

1( )
 are the trace and traceless sections of the components of the 

symmetric part of the couple stress tensor h
ijk

0( )
, h

ijk

0( )
, and h

ijk

a  and the related strains as 

t
ijk

0( )
, t

ijk

1( )
, and t

ijk

a , the virtual work resulting from the second-order gradient tensors 

can be calculated by considering the following:

 δ τ δη τ δη τ δηŵ
ijk ijk ijk ijk ijk

a

ijk

a= + +( ) ( ) ( ) ( )0 0 1 1
 (6.72)

The variables t
ijk

0( )
 and t

ijk

1( )
 are defined according to the following specifications:
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By employing e
i
, h

ijk

1( )
, and c

ij
 as the second-order strain requirements, the following 

can be inferred:

 

δ δε τ δη δχ
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ŵ P m

P

m e

i i ijk ijk ij ij

i mmi

s

ij i q

a

j

= + +

=

=

( ) ( )1 1

3

5

4

3

′

′

ρρ τ
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 (6.74)

Thus, based on the aforementioned relationships in the strain gradient theory, it can 

be concluded that the strain energy density is dependent on both the first-order gra-

dient e
ij
 and the second-order gradient e

ijk
 of the displacements. Therefore, it may be 

expressed as follows:

 W W
ij ij k

= ( )e e.
,

 (6.75)

Consequently, the amount of stored energy per unit volume in Mindlin’s theory of 

elasticity, which takes into account the variation of strain, may be mathematically 

represented as follows:

 W a a a
ii jj ij ij ij j ik k ii k kj j ii k jj k

= + + + +
1

2
1 2 3

λε ε µε ε η η η η η η
, , , , , ,

++ +a a
ij k ij k ij k kj i4 5
η η η η

, , , ,
 (6.76)

The strain energy density relation for strain gradient theory can be expressed as 

follows:

 W a a a a
ii jj ij ij ijk ikk ijk kjj iik jjk ij

= + + + + +
1

2
1 2 3 4

λε ε µε ε η η η η η η η
kk ijk ijk kji

aη η η+
5

 (6.77)

The couple stress theory can be considered as a specific instance of a higher-or-

der stress theory, where the influence of the dilatation gradient g
i
 or e

i
 or the 

deviatoric tension gradient h
ijk

1( )
 can be disregarded. Hence, the expression for 

the whole internal virtual work density may be formulated in this particular 

scenario.

 δ σ δε δχw m
ij ij ij ij

= +  (6.78)

Without the size scale component, the equations derived from the strain gradient 

theory are identical to the equations found in classical mechanics. The stored strain 

energy U  in the surroundings of linear elastic materials is expressed in Hamilton’s 

relation, based on the modified strain gradient theory [22].

 U p m dV
ij ij i i ijk ijk ij ij

= + + +( )∫
1

2
σ ε γ τ η χ  (6.79)
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Regarding the aforementioned relationship:
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 (6.80)

In the given equation, the variable u
i
 denotes the displacement vector along the x, 

y, and z axes. g
i
 symbolizes the dilatation gradient tensor, h

ijk
 the deviatoric stretch 

gradient tensor, c
ij
 the symmetric rotation gradient tensor, d

ij
 the Kronecker delta, 

and e
ijk

 the permutation tensor symbol.

The Cauchy stress tensor and high-order stress tensors, denoted as t
ijk

, p
i
, and 

m
ij
 are defined as follows. It is important to mention that the relations that follow 

involve three independent length scale parameters l
0
, l and l

1 2
, . These parameters are 

the gradient vector of the deviatoric tension gradient tensor and the symmetric rota-

tion gradient tensor, respectively, and are interdependent
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     6.10 NONLOCAL STRAIN GRADIENT ELASTICITY THEORY

Two basic presumptions of classical mechanics prohibit the use of classical ideas at 

micro- and nanoscales. At the nanoscale, the continuity of the material’s mechani-

cal field is one of these presumptions that is fully questioned because, at lower sizes, 

the existence of voids between atoms has been demonstrated and is unavoidable. 

The assumption that the stress at a location depends only on the strain at that same 

position in classical mechanics presents another barrier to applying the theory on 

smaller scales. Eringen’s research indicates that, at the nanoscale, the strain of the 

material as a whole as well as the stress at a particular place affect the stress at 

that location. Consequently, non-classical theories are needed for analysis at the 

nanoscale. Numerous studies have been conducted recently with the goal of taking 

into account the longitudinal scale of materials in the micro and nano size. Some 

of these studies have used the strain gradient theory, which is based on the theory 
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of Eringen, while others have used the nonlocal theory. The strain gradient theory’s 

modified pair stress is regarded as its most crucial component. After much debate 

among academics over this disparate length scales, Lim and her associates finally 

articulated the theory of nonlocal strain gradient elasticity based on the nonlocal 

effects of strain field and strain gradient field. This theory takes into account both 

the nonlocality of strain gradients and higher-order stress gradients to offer an elas-

tic system. This theory is entirely distinct from the other two theories because, while 

the widely used strain gradient theory only looks at the local effects of higher-order 

stresses, the nonlocal theory ignores the nonlocal effects of higher-order stresses. 

This theory states that the nonlocal stress at reference point x depends on the strain 

at that place as well as the strain at every other point in volume V . This theory takes 

the following into consideration for the internal potential energy density U
0
 of an 

isotropic elastic body [23, 24].

 

U C
ij ij ij m ij m ij ijkl

V
k0 0 1 0 0

1

2
ε ε α ε ε α ε α µ ε, , ; , , ,

, ,
′ ′( )= −( ) ′′∫ x x

ll

ij m ijkl
V

kl m

dV

l
C dV

′

+ −( ) ′ ′′∫
2

1 1
2
ε α µ ε

, ,
,x x

 (6.82)

The volume integral encompasses the entire object. e
ij
 and ¢e

IJ
 denote the strain ten-

sor at the reference point x and the strain tensor at the adjacent points x’, respectively. 

a
0
 and a

1
 are kernel functions associated with nonlocal effects in relation to strain 

fields and strain gradients. Furthermore, µ
0
 and µ

1
 are nonlocal parameters, while l  

is the length scale parameter of the strain gradient.

Utilizing Equation (6.83), the classical stress tensor s , the higher-order stress ten-

sor s1, and the total stress tensor associated with the nonlocal strain gradient theory 

t  can be expressed as follows:
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In this context, the notation “:” denotes the multiplication of two tensors. Given that 

resolving an integral equation is significantly more challenging than addressing a 

differential problem, Lim et al. [24] introduced the differential formulation of struc-

tural equations grounded in the high-order nonlocal strain gradient theory as follows:
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= = ∇ =

∂

∂
+
∂

∂
e a e a

x y
, ,  (6.85)

Where Ñ2 denotes the Laplacian operator, e
0
 and e

1
 are nonlocal material constants, 

and a represents the internal characteristic length. By setting µ µ µ
0 1
= =  in equation 
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(6.84) and neglecting terms of order O ∇( )2 , a more simplified representation of the 

structural equations for nonlocal strain gradient will be derived [25].

 1 12 2 2 2
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


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= − ∇
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
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µ εt C l
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 (6.86)

The nonlocal strain gradient theory simplifies to classical continuous medium 

theory when e a l
i
= = 0 and to strain gradient theory when e a

i
= 0 . Under the 

assumption of isotropic Euler-Bernoulli beam theory, Equation (6.84) is expressed 

as follows [26]:
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Where s
xx

 represents normal stress, e
xx

 denotes normal strain, and ∇=
∂

∂x
. Under 

the premise of retaining just terms of order O ∇( )2  and setting e e e= =
0 1

, the struc-

tural Equation (6.87) is thus simplified as follows:

 1 12 2 2 2
− ∇
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
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= − ∇
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


ea E l
xx xx
σ ε  (6.88)

     6.11 VARIATIONAL METHOD

This section describes the extraction of differential equations that regulate the static 

and dynamic behavior of an elastic object, utilizing energy-compliant methods based 

on the principles of variation [27, 28].

Various techniques can be employed to derive differential equations that describe 

the behavior of the elastic item. The principles of minimum potential energy, min-

imum complementary energy, and principle of Reissner energy can be utilized to 

address static problems. The Hamilton principle refers to the fundamental concept of 

variation, specifically in relation to the dynamic behavior shown by systems consist-

ing of particles, solid objects, or deformable objects. This section briefly discusses 

the concepts of variation, with a particular emphasis on the Hamilton principle.

Specifically, this section focuses on the equilibrium equations and equations of 

motion for continuous systems. Since we have knowledge of the principles of contin-

uum environment mechanics discussed earlier, we aim to apply these principles to 

determine the principles governing the changes in a continuous environment. Specif-

ically, we want to find the following:

 a) Principles that are equivalent to the equilibrium relations or movement 

of a continuous environment. (These equations are referred to as exact 

equations.)

   b)  The extraction of engineering or technical equations and boundary condi-

tions, which are often known as approximation equations, is relevant. Alter-

native approaches to solving 3D elasticity problems include employing 

equations of beams, plates, and shells, which are approximate theories.
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 c) To obtain approximate solutions, one can utilize both exact equations and 

approximation equations. There are three methods for deriving the equations 

that describe the mechanical behavior of an object, which are as follows:

1.  The equilibrium approach: Newton’s second law of motion

 2. The integral equation method

3. Variation method

This section will outline the Hamilton principle as a highly effective technique for 

deriving differential equations that govern the static and dynamic behavior of a 

continuous system.

     6.12 HAMILTON PRINCIPLE

The Hamilton principle is the fundamental concept that can be employed to address 

dynamic problems involving variation. Based on this approach, functional change is 

measured in relation to time. The Hamilton principle employs a function known as 

Lagrangian, which is defined as follows [27, 28]:

 L T U= − = −Kinetic Energy Potential Energy (6.89)

By formulating the equation of motion, we establish a continuous environment in the 

following manner:

 σ ρ ρ
ij j i i

b u i
,

, , ,+ = = 1 2 3 (6.90)

The equation in question is known as the Navier-Cauchy equation. By doing the 

multiplication of du
i
 in Equation (6.90) and thereafter integrating the volume, we obtain 

the following:
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By conducting same processes to those described in the preceding section, which 

resulted in the establishment of the principle of minimum potential energy, Equation 

(6.91) can be expressed as follows:
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Considering the existence of time function variables and their derivatives in Equation 

(6.92), we can derive the aforementioned equation with respect to time integration (t) 

in relation to the presence of time function variables and their derivatives as follows:

 
t

t

S

i ij ij

v

i i

v

i i

v

i u dS dV b u dV u u dV

1

2

∫ ∫∫ ∫∫∫ ∫∫∫− + −
σ

δ σ δε ρ δ ρ δ∼
σ ∫∫∫∫














=dt 0 (6.93)



204 Nonlinear Vibration of Smart Continuous Structures

We possess a connection with the periodic integral of the last Equation (6.93).
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Given that the u
i
 function is specified at the time boundary, the first sentence on the 

right side of the Equation (6.94) is equal to zero. Therefore:
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Means:

 T u u dV
i i

v
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1

2
r    (6.96)

The Equation (6.96) denotes the total kinetic energy of a continuous environment. 

Based on Equations (6.94), (6.95), and (6.96), the Equation (6.93) can be restated in 

the following manner:
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Equation (6.97) is the general shape which refers to the mathematical representation 

of the equations of motion for any object and is occasionally referred to as the general 

form of the Hamilton principle, irrespective of material.

However, in the case of an elastic object, the following is well-established [1]:

 σ

ε
ij

ij

u
=
∂

∂
 (6.98)

It is important to acknowledge that the Equation (6.98) is contingent upon both elastic 

and plastic behavior. In the context of Equation (6.98), “u” represents the density of 

strain energy, which can be expressed in terms of linear elastic behavior.

 u C
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e e  (6.99)

The C
ijkl

 represents the fourth-order tensor of elasticity. Given that u u
ij

= ( )e , the 

expression can be simplified as follows:
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And
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The symbol ∏ represents the potential energy associated with the strain. Given the 

Equation (6.101) with respect to Equation (6.97), we have the following:
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Let us now establish the definition of potential energy for the specified external 

forces, encompassing both the forces applied to the object’s boundary and the physi-

cal force. This can be expressed as follows:

 V W W u dS b u dV
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σ

σ δ ρ δ  (6.103)

The surface integral Ss  reflects the external forces exerted on the object’s surface, 

whereas the volume integral V  represents the physical forces. Therefore, when the 

Equation (6.96) is supplied, the Equation (6.102) can be derived as follows [27, 28]:
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The Lagrangian function is denoted as L  in the context of Equation (6.104). The 

Equation (6.104) is referred to as the Hamilton principle. The Hamilton principle can 

be defined as follows: the integral of the Lagrangian function over the time interval 

from t
1
 to t

2
 is minimized or maximized for all possible real displacements, while 

keeping the virtual displacements zero. This condition holds at all points of the object 

at times t
1
 and t

2
, as well as on the surface S

u
 where the displacements are specified.

The Hamilton principle, which considers the displacements ( ( )u x x x t
i 1 2 3

, , ,

i= )1 2 3, ,  that generate a dynamic trajectory in space, might be subject to alternative 

interpretations. The Hamilton principle states that among all possible dynamic paths 

that meet the geometric boundary conditions on S
u
 at all times and the conditions 

specified at two arbitrary moments t
1
 and t

2
 at any point in the object, the actual 

dynamic path (response) minimizes the Lagrangian function.

     6.12.1 UTILIZATIONS OF THE HAMILTON PRINCIPLE 

The Hamiltonian principle can be applied to derive equations that govern intricate 

structures and engineering problems, encompassing the following [28]:

 1. Transverse vibration of the springs

  2. Longitudinal vibration of bars

  3. Torsion vibration of shafts

  4. Transverse vibration of the beams

  5. Vibration of the membranes

  6. Transverse vibration of plates

 7. Vibration of the shells
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In the upcoming chapters, we will explore how the Hamilton principle can be 

employed to derive static and dynamic equations that control geometric problems. 

An advantage of employing the Hamilton principle is that, along with the governing 

equations, it yields all feasible boundary conditions for the problem. These boundary 

conditions are selected based on the physics of the problem and the relevant condi-

tions for the boundaries.
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       7  An Introduction to 

Smart Materials  

     7.1 INTRODUCTION

In modern times, different equipment requires materials with diverse qualities that 

are suitable for their specific operating conditions. Hence, selecting the appropriate 

material for the fabrication of these devices based on their operational circum-

stances is a crucial engineering concern. Currently, over 50,000 different materials 

have been identified for the purpose of designing and producing goods in various 

industries. These materials span a wide spectrum, ranging from commonly used 

substances like copper, zinc, and brass, which have been in use for a long time, to 

more advanced materials such as superalloys. Engineering ceramics and composite 

materials are classified into separate categories. In order to ensure the appropriate 

design of components used in various equipment, it is important to identify the 

available materials and select those that possess the ideal qualities for manufac-

turing distinct parts. Over the past few decades, there has been a considerable 

rise in the use of industrial materials, including composite materials and function-

ally graded materials (FGM). This increase can be attributed to their exceptional 

performance and qualities, as well as their extensive use across many industries. 

Hence, this chapter focuses on comprehensively examining the fundamental princi-

ples and core ideas pertaining to composite materials, functionally graded materi-

als (FGM), viscoelastic materials, magnetostrictive materials, dielectric materials, 

and metamaterials.

     7.2 WHAT ARE SMART MATERIALS?

Smart materials are a class of materials that have the ability to respond to external 

stimuli by changing their properties. These materials are designed to exhibit unique 

and often complex behaviors, making them highly versatile and adaptable for various 

applications. One particular type of smart material that has gained significant atten-

tion is functionally graded materials (FGMs).

Functionally graded materials are a special category of smart materials that pos-

sess a gradual variation in composition, structure, or properties across their volume. 

Unlike traditional materials, which have uniform properties throughout, FGMs 

exhibit a continuous transition from one material phase to another. This gradient in 

properties allows FGMs to possess tailored characteristics that can be optimized for 

specific applications.

The concept of functionally graded materials originated from nature itself. Many 

biological structures, such as bones and teeth, exhibit a gradual change in compo-

sition and properties, enabling them to withstand different mechanical loads and 

https://doi.org/10.1201/9781003470694-7


209An Introduction to Smart Materials

perform specific functions. Inspired by these natural examples, researchers have 

developed synthetic FGMs that mimic these gradient structures.

The unique feature of FGMs lies in their ability to combine the desirable proper-

ties of different materials into a single structure. By carefully controlling the com-

position and microstructure, FGMs can exhibit a wide range of properties, including 

mechanical, thermal, electrical, magnetic, and optical characteristics. This versa-

tility makes FGMs suitable for a diverse range of applications, from aerospace and 

automotive industries to biomedical and energy sectors.

The composition gradient in FGMs can be achieved by various techniques, includ-

ing powder metallurgy, additive manufacturing, casting, and solidification. These 

manufacturing methods allow for precise control over the distribution of different 

materials within the FGM, resulting in a tailored gradient profile. The choice of 

manufacturing technique depends on the specific requirements of the FGM and the 

desired properties.

The properties and performance of FGMs are influenced by several factors, 

including the composition gradient, microstructure, and processing conditions. The 

gradual change in properties across the FGM can lead to enhanced mechanical 

strength, improved thermal stability, and increased resistance to wear and corrosion. 

Additionally, FGMs can exhibit unique functionalities, such as shape memory effect, 

self-healing, and piezoelectricity, which further expand their potential applications.

The applications of FGMs are vast and diverse. In the aerospace industry, FGMs 

can be used to design lightweight and high-strength components, such as turbine 

blades and structural panels. The gradual change in properties allows for better load 

distribution and improved performance under extreme conditions. In the automo-

tive sector, FGMs can be utilized to develop fuel-efficient engines, lightweight body 

structures, and advanced braking systems.

The energy and power sector can benefit from FGMs by utilizing their ther-

mal and electrical properties. FGMs can be employed in the design of efficient 

heat exchangers, thermoelectric devices, and energy storage systems. In the bio-

medical field, FGMs have the potential to revolutionize tissue engineering and 

regenerative medicine. By mimicking the natural gradient structures found in bio-

logical tissues, FGMs can enhance the integration and functionality of implants 

and prosthetics.

Despite the numerous advantages offered by FGMs, there are also challenges asso-

ciated with their development and implementation. The design and analysis of FGMs 

require advanced modeling and simulation techniques to predict their behavior under 

different conditions. Additionally, the characterization of FGMs is a complex task 

due to their gradient nature, requiring specialized techniques for microstructural 

analysis, mechanical testing, and thermal analysis.

In conclusion, smart materials, particularly functionally graded materials, are a 

fascinating class of materials that possess unique properties and behaviors. The grad-

ual variation in composition and properties across the volume of FGMs allows for 

tailored characteristics that can be optimized for specific applications. With their 

wide range of properties and potential applications, FGMs have the potential to revo-

lutionize various industries and pave the way for innovative technologies.
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     7.3 APPLICATIONS OF SMART MATERIALS

     7.3.1 BIOMEDICAL APPLICATIONS 

Smart materials have revolutionized the field of biomedical engineering, offering 

new possibilities for medical devices, implants, and tissue engineering. One of the 

key applications is in the development of smart drug delivery systems. These systems 

use stimuli-responsive materials to release drugs at specific locations or in response 

to specific conditions in the body. This allows for targeted and controlled drug deliv-

ery, minimizing side effects and improving treatment outcomes.

Shape memory polymers (SMPs) have also found applications in biomedi-

cal engineering. They are used in the design of smart implants that can change 

their shape and properties in response to body temperature or other stimuli. This 

enables minimally invasive surgeries and improves the performance and longevity 

of implants.

     7.3.2 ENERGY AND POWER APPLICATIONS 

Smart materials have the potential to revolutionize the energy and power sector by 

improving efficiency, reliability, and sustainability. One of the key applications is in 

the development of smart energy storage systems. Smart materials, such as shape 

memory alloys and phase change materials, are used to create energy storage devices 

that can store and release energy efficiently. These devices have the potential to 

enhance the performance of renewable energy systems and enable the widespread 

adoption of clean energy sources.

Another important application is in the field of energy harvesting. Smart materials, 

such as piezoelectric materials and thermoelectric materials, can convert mechanical 

or thermal energy into electrical energy. This opens up new possibilities for power-

ing electronic devices and sensors in remote or inaccessible locations.

     7.3.3 OTHER APPLICATIONS 

Smart materials have found applications in various other fields as well. In the field 

of civil engineering, smart materials are used in the design of smart structures that 

can adapt to changing environmental conditions, such as temperature, humidity, and 

wind loads. These structures can self-monitor, self-diagnose, and self-repair, leading 

to improved safety and durability.

In the field of consumer electronics, smart materials are used in the development 

of flexible displays, touch screen, and wearable devices. These materials offer unique 

properties, such as flexibility, transparency, and stretchability, enabling the creation 

of innovative and user-friendly electronic products.

In conclusion, smart materials have a wide range of applications across different 

industries. From aerospace to automotive, biomedical to energy, these materials have 

transformed the way we design and develop products. With their unique properties 

and capabilities, smart materials continue to drive innovation and open up new pos-

sibilities for the future.
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     7.4 ADVANTAGES AND CHALLENGES OF SMART MATERIALS

Smart materials have gained significant attention in various fields due to their unique 

properties and capabilities. These materials have the ability to respond to external 

stimuli, such as temperature, light, pressure, or electric fields, by changing their 

physical or chemical properties. This responsiveness makes them highly versatile 

and opens up a wide range of applications in engineering, medicine, and other indus-

tries. However, along with their advantages, smart materials also present certain 

challenges that need to be addressed for their successful implementation. In this sec-

tion, we will explore the advantages and challenges associated with smart materials, 

with a particular focus on functionally graded materials.

     7.4.1 ADVANTAGES OF SMART MATERIALS 

7.4.1.1 Enhanced Functionality

One of the key advantages of smart materials is their ability to enhance the function-

ality of a system or device. By incorporating smart materials, engineers can design 

systems that can adapt, respond, or self-regulate based on changing conditions. 

For example, shape memory alloys (SMAs) can recover their original shape after 

deformation, making them ideal for applications such as actuators and sensors. This 

enhanced functionality allows for the development of more efficient and intelligent 

systems.

7.4.1.2 Improved Performance

Smart materials offer improved performance compared to traditional materials. 

For instance, piezoelectric materials can convert mechanical energy into electrical 

energy and vice versa, enabling the development of sensors, transducers, and ener-

gy-harvesting devices. The unique properties of smart materials, such as high sen-

sitivity, fast response time, and low power consumption, contribute to the improved 

performance of systems and devices.

7.4.1.3 Energy Efficiency

Smart materials can contribute to energy efficiency in various ways. For example, 

shape memory alloys can be used in smart building systems to regulate temperature 

and reduce energy consumption. Similarly, piezoelectric materials can be employed 

in energy harvesting devices to convert mechanical vibrations into electrical energy. 

By utilizing the energy conversion capabilities of smart materials, energy-efficient 

systems can be developed, leading to reduced energy consumption and environmen-

tal impact.

7.4.1.4 Self-healing and Self-repair

Certain smart materials possess self-healing and self-repair capabilities, which can 

significantly extend the lifespan of structures and devices. For instance, self-healing 

polymers can autonomously repair minor damages, preventing the need for costly 

repairs or replacements. This property is particularly beneficial in applications where 

maintenance is challenging or expensive, such as aerospace or offshore structures.
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7.4.1.5 Miniaturization and Integration

Smart materials enable the miniaturization and integration of components, leading to 

compact and lightweight systems. This advantage is crucial in industries such as elec-

tronics and aerospace, where size and weight reduction are critical factors. By utilizing 

smart materials, engineers can design smaller and more efficient devices, leading to 

advancements in portable electronics, wearable technology, and miniaturized sensors.

     7.4.2 CHALLENGES OF SMART MATERIALS 

7.4.2.1 Cost

One of the primary challenges associated with smart materials is their cost. Many 

smart materials, such as shape memory alloys and piezoelectric materials, are rela-

tively expensive compared to traditional materials. The high cost of production and 

limited availability of certain smart materials can hinder their widespread adoption 

in various industries. However, as research and development continue, the cost of 

smart materials is expected to decrease, making them more accessible for commer-

cial applications.

7.4.2.2 Reliability and Durability

Reliability and durability are crucial factors in the successful implementation of 

smart materials. Some smart materials may exhibit degradation or fatigue over time, 

affecting their performance and lifespan. For example, shape memory alloys can 

experience fatigue failure after a certain number of shape memory cycles. It is essen-

tial to understand the long-term behavior and reliability of smart materials to ensure 

their safe and efficient operation.

7.4.2.3 Integration and Compatibility

Integrating smart materials into existing systems or structures can be challenging 

due to compatibility issues. Smart materials may have different mechanical, thermal, 

or electrical properties compared to traditional materials, requiring careful consid-

eration during the design and manufacturing processes. Ensuring proper integra-

tion and compatibility between smart materials and other components is crucial to 

achieve the desired functionality and performance.

7.4.2.4 Manufacturing Complexity

Manufacturing smart materials can be complex and require specialized techniques. 

Some smart materials, such as functionally graded materials, involve the combina-

tion of different materials with varying properties. Achieving a seamless transition 

between different material compositions and maintaining the desired gradient can 

be challenging. Developing efficient and cost-effective manufacturing techniques for 

smart materials is essential to enable their widespread adoption.

7.4.2.5 Environmental Impact

The environmental impact of smart materials is another important consideration. 

Some smart materials may contain hazardous substances or require energy-intensive 

manufacturing processes. It is crucial to assess the environmental implications of 
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smart materials throughout their lifecycle, from raw material extraction to disposal. 

Developing sustainable and environmentally friendly approaches for the production 

and use of smart materials is necessary to minimize their impact on the environment.

In conclusion, smart materials offer numerous advantages, including enhanced 

functionality, improved performance, energy efficiency, self-healing capabilities, 

and miniaturization. However, challenges such as cost, reliability, integration, man-

ufacturing complexity, and environmental impact need to be addressed for their 

successful implementation. Overcoming these challenges will pave the way for the 

widespread adoption of smart materials in various industries, leading to advance-

ments in technology, sustainability, and quality of life.

     7.5 COMPOSITE MATERIALS

Composite materials have been used for a significant period of time. Flower straw 

is considered one of the earliest examples of man-made composites. However, 

the utilization of sophisticated composites dates back to the 1940s. During that 

period, both the American and former Soviet military achieved the production of 

epoxy-boron polymer composites for utilization in the aerospace industry, engag-

ing in a fierce competition. After a period of 20 to 30 years, composites became 

extensively utilized in various industries including building, transportation, elec-

tronics, oil, and gas, among others. Furthermore, composites have been extensively 

utilized in maritime sectors, encompassing the fabrication of boats, ships, and off-

shore installations. Composite materials are formed by combining two or more 

materials on a large scale to enhance their technical features in comparison to the 

individual components. On a macroscopic scale, the constituents of a composite 

material retain their molecular structure and do not create chemical connections 

with each other. Contrary to composite materials, certain materials like metal 

alloys are formed at a microscopic level. This results in the creation of a uniform 

material, which means that metal alloys are not classified as composite materials 

when seen on a larger scale.

During the period from 1847 to 1909 ad, advancements in chemistry led to the 

development of resins that were well-suited for the production of composite mate-

rials. The fundamental principles of composite materials were established in 1930, 

followed by the development of glass fiber–reinforced polyester in 1942 and epoxy 

resin–based composite materials in 1946. Over time, several varieties of fields and 

reinforcements were employed to manufacture composite materials. In modern 

times, composite materials are manufactured with the incorporation of robust and 

elongated fibers, resulting in exceptional strength and resistance to deformation 

despite their low bulk. Composite materials are very ideal for constructing aircraft 

bodies and space equipment due to their ability to reduce the overall mass of the 

equipment. This reduction in mass leads to a large increase in the efficiency of 

these equipment. Thus far, numerous endeavors have been undertaken to substitute 

metals like steel and aluminum with composite materials, aiming to enhance the 

performance of metal components while also reducing weight. Composite materi-

als are specifically engineered for various uses by combining two or more distinct 

materials and establishing a bond between them. This is done in order to ensure 
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that the new material possesses the desired qualities. Composite materials have 

been employed in constructing structures that require both high strength and resis-

tance to external loads while also needing to be lightweight. In the design of these 

structures, it is crucial to ensure dimensional stability and corrosion resistance, 

taking into account the specific operating circumstances. The objective of develop-

ing composite materials is often to attain specific physical qualities that are absent 

in pure materials [1].

     7.5.1 CHARACTERISTICS OF COMPOSITE MATERIALS 

Composite materials have garnered significant attention in various industries due to 

their ability to possess desirable properties that are absent in metals, polymers, and 

ceramics. Consequently, there is a continuous effort to enhance the performance of 

various equipment by optimizing the utilization of composite materials. Composite 

materials can enhance various properties through effective design. Some of these 

properties include the following:

 1. Strong resistance to deformation

   2.  Superior strength-to-mass ratio

   3.  Exceptional durability against fatigue and corrosion

   4.  Versatility in material composition

       5.  Proficiency in developing composite materials based on specific produc-

tion and assembly requirements

   6.  Capacity to assimilate energy and dampen vibration

   7.  Affordable production tools

 8. Developing intelligent materials

Some drawbacks of composite materials include the exorbitant cost of raw materials 

and the expensive nature of some production and assembly procedures. Composite 

materials exhibit reduced strength in the direction orthogonal to the fibers, and under 

compressive loading, the composite sheets may experience buckling in the direc-

tion perpendicular to the plane. Polymer composite materials exhibit sensitivity to 

temperature, ambient humidity, and flaws resulting from impact loading and layer 

separation. Composite material parts present greater challenges in terms of repair 

compared to metal parts.

     7.5.2 APPLICATION OF COMPOSITE MATERIALS 

Composite materials are extensively utilized in numerous industries due to their 

diversified qualities and the capacity to achieve desired engineering characteristics. 

Considerable study has been conducted in the domain of composite materials, with 

the aim of enhancing our understanding of these materials and their potential as via-

ble alternatives to other materials in many applications. The utilization of composite 

materials may be observed in several sectors, such as military and aerospace indus-

tries, automobile industries, sports industries, marine industries, civil and building 

structures, industrial parts, and medicine.
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The aerospace industry has a longer history of utilizing composite materials com-

pared to other industries. This is mostly due to the significant advantage of reduc-

ing the weight of aircraft and enabling them to achieve greater heights and speeds. 

Composite materials incorporating glass, carbon, and Kevlar fibers are frequently 

employed in the design and production of diverse aircraft components (Figure 7.1 (a)).

FIGURE 7.1 Composite materials: a) utilized in the Boeing 777 airplane and b) cars.
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The utilization of composite materials in mass production of car parts has been 

driven by several key factors. These include the ability to produce parts with desired 

surface finishes, achieve the necessary strength while reducing weight, and enhance 

corrosion resistance. Additionally, the use of composite materials in marine indus-

tries has been motivated by their lightweight nature, improved efficiency, and fuel 

reduction. The utilization of composite materials in the construction industry has 

garnered significant interest due to its ability to withstand earthquakes and environ-

mental variables. Previously, bridges have utilized plastics that are strengthened with 

glass or carbon fibers for constructing some components. These materials are exten-

sively utilized in the production of industrial parts due to their ability to be tailored 

to specific working circumstances.

              7.5.3 THE CLASSIFICATION OF COMPOSITE MATERIALS 

Composite materials are often classified into four main groups, as outlined by  

Jones [2]:

 1. Fiber composite materials are a type of material

   2.  Materials composed of many layers

   3.  Materials composed of particles

 4. Composite materials featuring a unified structure

     7.5.4 FIBER COMPOSITE MATERIALS 

Fiber composite materials are composed of a substrate material that is strengthened 

by strands of fibers. Fiber composite materials can be composed of polymer, metal, 

or ceramic components, referred to as polymer composite materials, metal composite 

materials, and ceramic composite materials, respectively. Typically, these materi-

als exhibit reduced density, tensile strength, and durability in comparison to fiber 

strands. The primary roles of the fibers are as follows:

• Resilience to external influences

• Inducing the ability to withstand changes in shape

• Generating robustness and establishing structural integrity

     7.5.5 ENHANCEMENTS OF FIBER COMPOSITE MATERIALS 

Typically, polymer composite materials incorporate glass, carbon, and polymer fibers 

to enhance their technical characteristics. The subsequent text provides a description 

of the characteristics of the aforementioned materials.

7.5.5.1 Glass Fibers

These fibers are formed by the flow of molten glass material, driven by gravity, 

through the perforations of the mold. The fibers are then rapidly cooled to solid-

ify. The diameter of the fibers is calculated based on the dimensions of the mold 

hole. Once the fibers are produced, a coating is applied to their surfaces to establish 

favorable circumstances for bonding the fibers to the substrate material, so creating 
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composite materials. Glass fibers are extensively utilized in various composite struc-

tures due to their exceptional properties such as high flexibility, tensile strength, 

corrosion resistance, and fatigue resistance.

7.5.5.2 Carbon Fibers

These fibers are commonly employed in a variety of structures, particularly in aero-

space applications, because of their high tensile modulus and strength. This results 

in suitable dimensional stability and their lightweight nature, which is advantageous 

compared to glass fibers. Carbon fibers are manufactured by subjecting carbon oxide 

polymer strands to high temperatures, followed by carbonization. Carbon fibers are 

utilized when glass fibers are unsuitable for reinforcing polymer materials due to 

their higher cost. Carbon fibers offer superior strength and lower volumetric mass, 

making them the preferred choice in such cases.

7.5.5.3 Polymer Fibers

In order to generate these fibers, the initial substance is liquefied and then forced 

into a mold to form the intended diameter of the fiber. Subsequently, once it exits 

the mold, the material is cooled down. Polymers consist of molecular chains, and 

their orientation occurs when they travel through a mold. This process greatly 

enhances the qualities of the polymer fibers in a specific direction. Kevlar is the 

most significant polymer fiber due to its superior tensile strength to volume ratio 

in comparison to other fibers. Other notable qualities of this product include 

exceptional resistance to impact and a negative coefficient of thermal expan-

sion. The user’s text is a single period. Some drawbacks of Kevlar polymer fibers 

include a relatively low working temperature (about 100 degrees Celsius), diffi-

culty in cutting and machining, and weaker compressive mechanical qualities 

compared to its tensile strength. These fibers are less expensive than carbon 

fibers and more costly than glass fibers. Polymer materials can be classified into 

two distinct categories: thermoset materials and thermoplastic materials, each 

possessing unique features.

     7.5.6 COMPOSITE MATERIALS CONSISTING OF MANY LAYERS 

This composite material is composed of a minimum of two layers of distinct mate-

rials that are joined together in a way that imparts desirable qualities to the final 

material, in comparison to the individual layers (Figure 7.2). The objective of devel-

oping layered composite materials is to enhance several material properties, includ-

ing strength, deformation resistance, weight reduction, corrosion resistance, wear 

resistance, thermal properties, and surface polish. Layered composite materials can 

incorporate fiber materials, which introduces more design variables and allows for 

the creation of many properties.

              7.5.7 PARTICULATE COMPOSITE MATERIALS 

Occasionally, in order to enhance the characteristics of the material, one may intro-

duce one or more varieties of particles from different materials into the domain.
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The particles and backdrop can have either metallic or non-metallic properties. 

The addition of sand particles to cement to create concrete for building construction 

is an instance of reinforcing a non-metallic substance with non-metallic particles, 

hence, enhancing the compressive strength of the composite material.

7.5.8 COMPOSITE MATERIALS BY COMBINING DIFFERENT ELEMENTS

Occasionally, a composite material is created by combining two or three previously 

discussed forms of composite materials. In such cases, there are numerous factors 

to consider when designing the composite material for a particular purpose. When 

constructing multilayer composite materials, it is possible to use fibrous composite 

materials for each layer. In this case, the type of constituent materials, the orientation 

of the fibers, and the volume percentage of the fibers can be altered in relation to the 

adjacent layer. This allows for the creation of different desired properties in different 

directions.

7.5.9 THE COMPOSITION OF THE MATERIAL

Composite materials, comprising many materials, have superior engineering quali-

ties compared to conventional materials, such as metals. Composite materials have 

the potential to enhance several features such as stiffness, strength, weight reduction, 

corrosion resistance, thermal properties, and fatigue life. Composite materials typi-

cally comprise two components: fibers, which serve as the reinforcing material, and 

a matrix material, which forms the base (see Figure 7.3). The matrix material serves 

the purpose of binding the fibers together, as well as facilitating the transfer of loads 

and safeguarding the fibers against elongation caused by the environment [3].

Composite materials often exist in three distinct forms:

 1. Fiber composites consisting of fibers made from one material embedded in 

a matrix material made from another substance.

   2.  Particulate composites consist of a mixture of particles of large size embed-

ded in a matrix material.

FIGURE 7.2 Schematic of the composite material reinforced with continuous fibers in a 

layered structure.
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 3. Multilayer composites consist of multiple layers of diverse materials, 

encompassing the first two types of composites. There will be four poten-

tial combinations: metal within non-metal, non-metal within metal, non-

metal within non-metal, and metal within metal.

              7.5.10 MULTIPLE LAYERS 

A fiber-reinforced layer comprises many fibers that are embedded in a matrix, 

which may contain a metal like aluminum or a non-metal like a thermoplastic 

polymer. Fibers can exhibit characteristics such as continuity, discontinuity, wav-

iness, parallelism, non-parallelism, or random distribution. The identification of 

each layer in the multilayer structure can be determined based on its position, 

material composition, and angle of orientation with respect to the reference axis 

(in this case, the x-axis), as illustrated in Figure 7.4. The orientation of each layer 

is indicated by its angle and is distinguished from other layers by a forward slash (/). 

A multilayer refers to a collection of layers that are specifically designed to possess 

the necessary level of stiffness and strength. For instance, the layer that is strength-

ened with fibers of the same orientation can be arranged in a manner where the 

fibers in each layer are either aligned in the same direction or in varying directions 

(as shown in Figure 7.5). The layers are typically fused together within a homoge-

neous matrix material. A multilayer with fibers oriented at 30 or 45 degrees in the 

lamination direction can generate shear loads [2].

                      7.5.11  STUDY OF THE MECHANICAL PROPERTIES AND BEHAVIOR OF  
COMPOSITE MATERIALS 

Composite materials exhibit distinct mechanical properties in comparison to 

their individual constituent materials, necessitating the use of analytical and lab-

oratory techniques for their evaluation. The majority of engineering materials 

are characterized by their homogeneity and isotropy, which can be defined as 

follows:

 1. Homogeneous material has consistent properties across its entirety so that the 

properties are defined at every place and are not influenced by its position.

FIGURE 7.3 Schematic of the constituent elements of composite materials.
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 2. An isotropic material exhibits uniform qualities in all directions at every 

place within the material, meaning that the properties at each point are not 

influenced by the direction.

The majority of composite materials exhibit heterogeneous properties, resulting in 

non-uniform qualities that vary based on the material’s position. Conversely, com-

posite materials exhibit anisotropic behavior, meaning that their properties vary 

depending on the direction at each point within the material. Materials can exhibit 

four different types of anisotropic behavior.

7.5.11.1 Material Exhibiting Perfect Anisotropy

Matter exhibits varying qualities at different points and in different directions, lack-

ing any plane of symmetry for these properties.

7.5.11.2 Material with a Monoclinic

Non-anisotropic materials exhibit symmetry with respect to a plane.

FIGURE 7.4 The orientation of fibers in the different layers of a composite material.

FIGURE 7.5 The composite laminate consisting of layers that include fibers oriented in dif-

ferent directions.
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7.5.11.3 Orthotropic Materials

An orthotropic substance refers to a material that has different mechanical properties 

in different directions.

7.5.11.4 Transverse Isotropic Material

At a specific location within the material, its properties vary along three perpendic-

ular directions. However, the material’s qualities exhibit symmetry when observed 

from three perpendicular planes.

A transversely isotropic material is a type of material that exhibits the same 

mechanical properties in all directions perpendicular to a certain axis.

A material is considered transversely isotropic if its properties remain consistent 

in all directions within a plane, when defined at the anisotropic point.

Composite materials can be investigated from two perspectives based on their 

heterogeneous and anisotropic qualities.

 1. The composite material’s behavior is analyzed from a microscopic per-

spective, taking into account the qualities of its components and their 

interaction.

 2. The macroscopic perspective is employed to analyze composite 

 materials by seeing them as a continuous environment. This allows 

us to describe the behavior of the composite material as if it were a 

homogeneous material, exhibiting identical behavior to the composite 

material [2].

     7.5.12 ATTRIBUTES OF A LAYER THAT IS ALIGNED IN A SINGLE DIRECTION 

An orthotropic material is formed by a reinforced layer with fibers that are positioned 

in a way that the symmetry planes of the material are parallel and perpendicular to 

the direction of the fibers. The material x_1 is aligned with the fibers, x_2 is per-

pendicular to the fibers, and x_3 is perpendicular to the composite layer. The char-

acteristics of the orthotropic material in a composite layer are determined through 

appropriate laboratory experiments or theoretical approaches. The micromechanical 

approach, also known as the theoretical approach, is employed to calculate the engi-

neering constants of fiber-reinforced composite materials. This method relies on the 

following assumptions:

 1. The matrix and fibers exhibit perfect adherence.

    2. The fibers exhibit parallel alignment and are evenly dispersed.

   3.  The matrix is devoid of micro-cracks and does not possess any initial 

tension.

   4.   Both fibers and matrix exhibit isotropy and behave in accordance with 

   Hooke’s law.

 5. The applied loads are either parallel or perpendicular to the direction of  

the fibers.
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Based on these postulates, the modulus and Poisson’s ratio of a material rein-

forced with fibers can be expressed in relation to the modulus of elasticity, 

Poisson’s ratio, and volume fraction of the structural materials in the following 

manner:

 r r r= +
f f m m
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 planes, respectively. In Equations (7.1) to 

(7.5), the subscripts f and m denote the distinct characteristics of the orthotropic 

layer, specifically the fiber (reinforcing phase) and matrix (ground phase) fea-

tures, respectively. Furthermore, the symbol r denotes the mass density of the 

layer. Additionally, v
f
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m
 are used to determine the volume fraction of each 

material. These volume fractions are related by the equation v v
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The engineering parameters E
11

, E
22

, E
33

, G
12

, G
13

, v
12

, v
13

, and v
23

 for an orthotropic 

material can be found by experimental methods.

     7.5.13 STUDY OF STRUCTURAL EQUATIONS IN LINEAR ELASTICITY 

When formulating the fundamental connections of a composite layer, the assumption 

is made that plastic deformations are not taken into account.

 1. The composite layer is uninterrupted, meaning there are no gaps.

 2. The composite layer exhibits the characteristics of a linear elastic material.

Composite materials are intrinsically heterogeneous, and the properties of the com-

posite material are derived from the mean weight of the structural constituents (fibers 

and matrix). Structural equations establish the relationship between stresses and 

strains in the theory of elasticity. Linear elasticity is the most basic type of structural 

equations, encompassing Hooke’s law as a broader concept. If we assume that the 
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stresses are directly proportional to the strains, the linear elastic structural equations 

can be expressed in the following generic form:
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Alternatively, it might be stated in a suggestive manner as follows:

 σ ε
ij ijkl kl

C=  (7.8)

The variables v
12

 represent the stress components, while e
kl
 represent the strain com-

ponents. C
ijkl

 represents the material coefficients that are determined in orthogonal 

Cartesian coordinates, as stated by Reddy [3]. The set of 36 C
ijkl

 coefficients are 

referred to as elastic constants and are required to be determined for every material. 

Various theories have been proposed to decrease the quantity of elastic constants 

in structural equations. Typically, in linear elastic analysis, it is assumed that the 

constituent matrix C is symmetric. By making this assumption, the total number of 

constants is decreased to 21. The number can be further decreased if the material 

qualities exhibit symmetry in specific planes. For instance, if the properties of the 

materials in plane 1–2 exhibit symmetry, it can be demonstrated that the matrix C 

takes on a certain form consisting of 13 independent coefficients.
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An orthotropic material is characterized by symmetrical material properties in all 

three coordinate planes, resulting in a total of nine constants. Wood typically exhib-

its orthotropic behavior. The fundamental equations for an orthotropic material are 

often formulated in the following manner:

 

σ

σ

σ

σ

σ

σ

11

22

33

12

13

23





















































=

C C C

C C C

C C C

1111 1122 1133

2211 2222 2233

3311 3322 3333

0 0 0

0 0 0

0 0 0

00 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1212

1313

2323

C

C

C

































ε
111

22

33

12

13

23

ε

ε

ε

ε

ε





















































 (7.10)



224 Nonlinear Vibration of Smart Continuous Structures

In conclusion, if the characteristics of the material are the same in all direc-

tions, it is referred to as isotropic. In this case, just two separate constants are  

needed to describe the structural equations. The constants are referred to as E,  

which represents the modulus of elasticity, and v, which represents Poisson’s ratio. 

Structural equations establish a correlation between stress and strain at a cer-

tain location. If the structural equations remain constant throughout the mate-

rial, it is referred to as homogeneous. Otherwise, if the structural equations vary 

between different points in the material, it is considered heterogeneous. Typically, 

in the context of linear elasticity problems, it is commonly believed that materials 

exhibit homogeneity and isotropy. Consequently, the characteristics of materials 

are typically explained based on the constant values of E and v, which apply uni-

formly throughout the solid.

     7.6 FUNCTIONALLY GRADED MATERIALS (FGM)

FGMs, or functionally graded materials, are a type of advanced composites. The 

concept of functionally graded materials (FGM) was initially proposed in 1984 by 

a cohort of Japanese scientists with the aim of developing heat protective materials. 

Subsequently, FGM has garnered significant attention and interest as a material for 

heat shielding purposes. The materials are acquired by the process of powder metal-

lurgy, which involves the combination of two or more materials [4].

Local stress concentration can occur due to a sudden alteration in the composition 

and structure of materials and mechanical systems. This concentration of stress can 

be generated by either internal or external loading. By eliminating abrupt alterations 

in the structure and modifying the intensity of these variations, it is evident that the 

level of stress concentration is significantly diminished. Targeted materials have a 

remarkable capacity to enhance the thermomechanical properties of materials. Here 

are some techniques for enhancing the thermomechanical characteristics of materi-

als using functionally graded materials (FGMs):

 1. It minimizes thermal stresses and regulates their occurrence.

   2.  The plasticization point and failure point can be postponed for a given ther-

momechanical force.

   3.  Reducing the intensity of stress, particularly at the outside margins of the 

body, and completely removing it at the frontiers.

   4.  Enhancing the strength of connections between different materials, such as 

metal and ceramic, by establishing gradients.

 5. To achieve the highest force necessary for crack propagation at the joint bor-

der, it is possible to enhance this by establishing a gradient in the mechani-

cal characteristics of the material.

     7.6.1 FGM DEFINITIONS 

 1. An FGM, or functionally graded material, is a material that exhibits a 

varying composition, structure, and engineering properties in a specific 

direction. This gradient is intentionally designed to enhance the material’s 

engineering properties, making it superior to a homogenous material [5].
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   2.  A substance that exhibits continuous or progressive variations in its quali-

ties or performance in one or more directions.

 3. FGMs, or functionally graded materials, are highly sophisticated compos-

ites engineered at a microscopic level to exhibit spatial and progressive vari-

ations in their material properties.

FGMs, or functionally graded materials, consist of a combination of ceramic and 

metal components. The specific benefits of using each of these elements, as well 

as the rationale for incorporating them into the structure of a desired material, are 

detailed in Table 7.1 [6].

Ceramics possess a high heat transfer coefficient and excellent heat resistance, 

allowing them to endure extremely high temperatures. Additionally, the presence 

of a metal framework in these materials contributes to their required flexibility. 

The utilization of both ceramic and metal enables seamless transitions between 

different levels of the construction. These materials were initially developed to 

create thermal shields in different structures and industries. Their key character-

istic is their ability to endure extremely high temperatures, reaching up to approx-

imately 2,500 degrees Celsius. Additionally, they exhibit resistance to significant 

temperature variations, corrosion, and abrasion. Furthermore, their metal composi-

tion grants them exceptional durability. There is no text provided. These materials 

have a significant impact on the construction of important structures, defense, and 

sophisticated industries.

FGM materials have microscopic heterogeneity, and their alterations occur gradu-

ally through the manipulation of the volume ratio between two constituent materials. 

Consequently, the mechanical properties of the structure undergo a continuous and 

gradual change from one side to the other. This eliminates the issues of incompati-

bility between metal and ceramic at their shared surface, such as warping in layered 

composites. Warping occurs when there is a sudden change in tension at the interface 

between the materials. The manufacture of FGM materials can utilize a variety of 

materials, including stainless steel, zirconia, nickel, silicon, nitride, titanium, tung-

sten, and copper.

TABLE 7.1

Materials that Are Specifically Composed of Metal and Ceramic

Property

High-temperature surface Pure ceramic High thermal resistance

Good anti-oxidation properties

Low heat capacity

Low-temperature surface Pure metal High toughness and mechanical strength

High thermal conductivity

High fracture toughness
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     7.6.2 DEFINITION AND CHARACTERISTICS OF FUNCTIONALLY GRADED MATERIALS 

Functionally graded materials (FGMs) are a class of smart materials that exhibit 

unique properties and characteristics, making them highly versatile and suitable for 

a wide range of applications. Unlike traditional materials, which have uniform prop-

erties throughout, FGMs are designed to have a gradual variation in composition, 

structure, or properties across their volume. This gradual variation allows FGMs to 

possess tailored properties that can be optimized for specific applications.

7.6.2.1 Composition and Structure

The composition and structure of functionally graded materials play a crucial role in 

determining their properties and performance. FGMs are typically composed of two or 

more different materials, such as metals, ceramics, polymers, or composites, which are 

combined in a controlled manner. The composition of the materials varies gradually from 

one end of the material to the other, resulting in a continuous transition of properties.

The structure of FGMs can be classified into two main types: continuous and 

graded. In continuous FGMs, the composition changes smoothly and continuously 

from one end to the other, without any distinct interfaces between the different mate-

rials. Graded FGMs, on the other hand, have distinct layers or regions with different 

compositions, resulting in a stepwise change in properties.

7.6.2.2 Tailored Properties

One of the key advantages of functionally graded materials is their ability to exhibit 

tailored properties. By carefully designing the composition and structure, FGMs can 

possess a wide range of properties, including mechanical, thermal, electrical, mag-

netic, and optical properties. This tailoring of properties allows FGMs to meet spe-

cific requirements and perform optimally in various applications.

For example, in structural applications, FGMs can be designed to have a gradi-

ent in mechanical properties, such as stiffness or strength, to optimize load-bearing 

capabilities. In thermal management applications, FGMs can be engineered to have 

a gradient in thermal conductivity, enabling efficient heat transfer across different 

regions. Similarly, in electrical or magnetic applications, FGMs can be tailored to 

exhibit varying electrical or magnetic properties, respectively.

7.6.2.3 Gradient Control

The control of the gradient in functionally graded materials is a critical aspect of 

their design and manufacturing. The gradient can be controlled by adjusting the com-

position, structure, or processing parameters during fabrication. Various techniques, 

such as powder metallurgy, additive manufacturing, casting, and solidification, can 

be employed to achieve the desired gradient.

The control of the gradient allows for precise tuning of the properties along the 

material’s length or across its volume. This control can be achieved by adjusting 

the composition ratio, the thickness of the layers, or the processing conditions. The 

ability to control the gradient enables the customization of FGMs for specific appli-

cations, ensuring optimal performance and functionality.



227An Introduction to Smart Materials

     7.6.3 ADVANTAGES OF FUNCTIONALLY GRADED MATERIALS 

Functionally graded materials offer several advantages over conventional materials, 

making them highly desirable for a wide range of applications. Some of the key 

advantages include the following:

 1. Tailored properties: FGMs can be designed to possess specific properties, 

allowing for optimal performance in various applications.

 2. Improved functionality: The tailored properties of FGMs enable them to 

perform multiple functions simultaneously, reducing the need for multiple 

materials or components.

 3. Enhanced performance: The gradual variation in properties across FGMs 

can improve their overall performance, such as increased strength, improved 

thermal stability, or enhanced wear resistance.

 4. Reduced stress concentration: The gradual transition in properties helps to min-

imize stress concentration at interfaces, reducing the risk of failure or damage.

 5. Design flexibility: FGMs offer greater design flexibility compared to con-

ventional materials, as their properties can be customized to meet specific 

requirements.

 6. Cost-effectiveness: FGMs can potentially reduce material and manufactur-

ing costs by eliminating the need for multiple materials or complex assem-

bly processes.

7.6.3.1 Challenges of Functionally Graded Materials

While functionally graded materials offer numerous advantages, they also present 

certain challenges that need to be addressed during their design, manufacturing, and 

application. Some of the key challenges include the following:

 1. Material compatibility: The selection and compatibility of different materi-

als used in FGMs can be challenging, as they need to have similar thermal 

expansion coefficients and chemical compatibility to avoid delamination or 

degradation.

 2. Manufacturing complexity: The fabrication of FGMs can be complex and 

require specialized manufacturing techniques, such as additive manufactur-

ing or powder metallurgy, which may increase production costs.

 3. Quality control: Ensuring consistent and uniform properties throughout the 

FGMs can be challenging, as any variations in composition or structure can 

affect their performance.

 4. Limited understanding: Despite extensive research, there are still gaps in 

our understanding of the behavior and performance of FGMs, making their 

design and analysis a challenging task.

 5. Scale-up and commercialization: Scaling up the production of FGMs and 

integrating them into commercial applications can be a significant chal-

lenge, requiring further research and development.

Despite these challenges, the unique properties and advantages offered by function-

ally graded materials make them a promising class of smart materials with immense 
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potential for various engineering applications. Continued research and development 

in this field will further enhance our understanding and utilization of FGMs, opening 

up new possibilities for advanced materials design and innovation.

     7.6.4 MANUFACTURING TECHNIQUES FOR FUNCTIONALLY GRADED MATERIALS 

Functionally graded materials (FGMs) are a class of smart materials that exhibit vary-

ing properties and composition across their structure. These materials are designed 

to have a gradual transition in their composition, allowing for a seamless integration 

of different materials with distinct properties. The manufacturing techniques used to 

create functionally graded materials are crucial in achieving the desired properties 

and performance.

7.6.4.1 Powder Metallurgy

Powder metallurgy is a widely used manufacturing technique for functionally graded 

materials. It involves the mixing of powders with different compositions and prop-

erties, followed by compaction and sintering processes. The powders are carefully 

selected to achieve the desired composition gradient, and the compaction process 

ensures uniform distribution of the powders. Sintering then facilitates the bonding 

of the particles, resulting in a solid structure with a gradual change in composition.

Powder metallurgy offers several advantages for manufacturing functionally 

graded materials. It allows for precise control over the composition gradient, enabling 

the design of materials with tailored properties. Additionally, it enables the incorpo-

ration of different materials, such as metals, ceramics, and polymers, into a single 

structure. The flexibility of powder metallurgy makes it suitable for a wide range of 

applications, including aerospace, automotive, and biomedical fields.

7.6.4.2 Additive Manufacturing

Additive manufacturing, also known as 3D printing, has emerged as a promising 

technique for manufacturing functionally graded materials. This technique involves 

the layer-by-layer deposition of materials to create complex structures with varying 

composition and properties. Additive manufacturing offers the advantage of high 

precision and the ability to create intricate designs that are difficult to achieve using 

traditional manufacturing methods.

In the context of functionally graded materials, additive manufacturing allows for 

the precise control of the composition gradient. Different materials can be deposited 

in specific regions, resulting in a seamless transition between them. This technique 

also enables the incorporation of functional features, such as embedded sensors or 

actuators, within the structure of the material. Additive manufacturing has found 

applications in various industries, including aerospace, automotive, and electronics.

7.6.4.3 Casting and Solidification

Casting and solidification techniques are commonly used for manufacturing func-

tionally graded materials, particularly in the production of metal-ceramic compos-

ites. These techniques involve the controlled solidification of a molten mixture of 

different materials to create a graded structure. The composition gradient is achieved 

by controlling the cooling rate and the distribution of the materials within the mold.
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Casting and solidification techniques offer several advantages for manufacturing 

functionally graded materials. They allow for the production of large and complex 

structures with a continuous composition gradient. The process can be easily scaled 

up for mass production, making it suitable for industrial applications. However, the 

control over the composition gradient may be limited compared to other manufac-

turing techniques.

7.6.4.4 Joining and Bonding Techniques

Joining and bonding techniques are essential for creating functionally graded materi-

als by combining different materials with distinct properties. Various methods, such 

as welding, brazing, and adhesive bonding, can be employed to achieve a seamless 

integration of materials. The choice of joining technique depends on the materials 

involved and the desired properties of the final product.

Welding is commonly used for joining metals in functionally graded materials. It 

involves the fusion of the materials at high temperatures, resulting in a strong bond. 

Brazing, on the other hand, uses a filler material with a lower melting point to join the 

materials. Adhesive bonding utilizes adhesives to create a bond between the materi-

als. These joining techniques allow for the creation of functionally graded materials 

with tailored properties and performance.

7.6.4.5 Hybrid Manufacturing Techniques

Hybrid manufacturing techniques combine multiple manufacturing processes to 

create functionally graded materials. These techniques leverage the advantages 

of different methods to achieve the desired composition gradient and properties. 

For example, a combination of additive manufacturing and powder metallurgy 

can be used to create complex structures with precise control over the composi-

tion gradient.

Hybrid manufacturing techniques offer enhanced flexibility and control over the 

manufacturing process. They allow for the integration of different materials and the 

creation of intricate designs. However, these techniques may require more complex 

equipment and processes, making them suitable for specialized applications.

In conclusion, the manufacturing techniques for functionally graded materials 

play a crucial role in achieving the desired properties and performance. Powder 

metallurgy, additive manufacturing, casting and solidification, joining and bonding 

techniques, and hybrid manufacturing techniques offer different advantages and 

capabilities. The choice of manufacturing technique depends on the specific require-

ments of the application and the desired composition gradient.

     7.6.5 PROPERTIES AND PERFORMANCE OF FUNCTIONALLY GRADED MATERIALS 

Functionally graded materials (FGMs) are a class of smart materials that exhibit 

unique properties and performance characteristics. These materials are designed to 

have a gradual variation in composition, microstructure, or properties across their 

volume, resulting in a seamless transition from one material to another. This gradual 

variation allows FGMs to possess tailored properties that can be optimized for spe-

cific applications.
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7.6.5.1 Composition and Microstructure

The composition and microstructure of functionally graded materials play a crucial 

role in determining their properties and performance. FGMs are typically composed 

of two or more different materials, such as metals, ceramics, polymers, or compos-

ites, which are carefully selected based on their desired properties. The composition 

gradient can be achieved by varying the ratio or concentration of these materials 

along a specific direction.

The microstructure of FGMs can also vary gradually, leading to changes in grain 

size, phase distribution, or porosity. These microstructural variations can signifi-

cantly influence the mechanical, thermal, and electrical properties of the material. 

By controlling the composition and microstructure, FGMs can be tailored to exhibit 

specific characteristics, such as enhanced strength, improved thermal stability, or 

superior electrical conductivity.

7.6.5.2 Mechanical Properties

One of the key advantages of functionally graded materials is their ability to exhibit 

a wide range of mechanical properties. By carefully designing the composition gra-

dient, FGMs can achieve a seamless transition from one material with high strength 

and stiffness to another with high toughness and ductility. This unique property gra-

dient allows FGMs to withstand varying mechanical loads and provide improved 

resistance to fatigue, fracture, and wear.

The mechanical properties of FGMs can be further enhanced by optimizing the 

microstructure. For example, controlling the grain size distribution can improve the 

material’s strength and hardness, while introducing specific phases or reinforcements 

can enhance its toughness and impact resistance. These tailored mechanical proper-

ties make FGMs suitable for a wide range of applications, including structural com-

ponents, load-bearing parts, and protective coatings.

7.6.5.3 Thermal and Electrical Properties

Functionally graded materials also exhibit exceptional thermal and electrical prop-

erties due to their composition and microstructure gradients. The gradual variation 

in material composition allows FGMs to have a controlled thermal expansion coeffi-

cient, which can reduce thermal stresses and improve thermal stability. This property 

is particularly advantageous in high-temperature applications where thermal mis-

match can lead to premature failure.

Moreover, FGMs can possess unique electrical conductivity characteristics. 

By incorporating conductive materials in the composition gradient, FGMs can 

exhibit varying electrical conductivity along their length. This property can be 

utilized in applications such as electrical contacts, sensors, or electromagnetic 

shielding.

7.6.5.4 Durability and Reliability

The properties and performance of functionally graded materials contribute to their 

overall durability and reliability. The tailored mechanical, thermal, and electrical 

properties of FGMs allow them to withstand harsh operating conditions, such as high 

temperatures, corrosive environments, or dynamic loading. The gradual variation in 
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material composition and microstructure also reduces the likelihood of stress con-

centration and material degradation, enhancing the material’s overall reliability.

However, it is important to note that the performance of FGMs can be influenced 

by factors such as manufacturing defects, material degradation over time, and environ-

mental exposure. Therefore, proper design, characterization, and testing are essential 

to ensure the long-term durability and reliability of functionally graded materials.

7.6.5.5 Performance Optimization and Design Considerations

To fully exploit the properties and performance of functionally graded materials, 

careful consideration must be given to their design and optimization. The selection of 

appropriate materials, composition gradients, and microstructural variations should 

be based on the specific requirements of the intended application. Computational 

modeling and simulation techniques can aid in predicting the material’s behavior and 

optimizing its performance.

Furthermore, the manufacturing process plays a crucial role in achieving the 

desired properties and performance of FGMs. The choice of manufacturing tech-

nique, such as additive manufacturing, powder metallurgy, or casting, can influence 

the material’s microstructure and properties. Therefore, a comprehensive under-

standing of the manufacturing techniques and their impact on the material’s perfor-

mance is essential for successful FGM fabrication.

In conclusion, functionally graded materials possess unique properties and perfor-

mance characteristics due to their composition and microstructure gradients. These 

materials offer tailored mechanical, thermal, and electrical properties, making them 

suitable for a wide range of applications. However, careful design, optimization, and 

manufacturing considerations are necessary to fully exploit the potential of function-

ally graded materials and ensure their durability and reliability.

When utilizing FGM materials, it is imperative to express the relationships that 

govern this specific type of materials in mathematical equations and incorporate 

them into the computations. Hence, it is imperative to initially elucidate the clas-

sifications of these materials from a mathematical perspective. The majority of 

researchers employ power functions, exponential functions, or hyperbolic functions, 

all of which will be analyzed in the next sections. To fulfill this objective, let us 

examine a rectangular piece as depicted in Figure 7.6. The image illustrates that the 

FIGURE 7.6 Displaying the physical properties of a functionally graded material (FGM) sheet.
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x and y coordinates determine the plane of the sheet, while the z coordinate indicates 

the central plane of the sheet in the direction of its thickness. The upper and bottom 

sides of the sheet have distinct material properties, including differing elastic moduli 

and Poisson’s ratios. These qualities only vary in the direction perpendicular to the 

surface, specifically in the z-coordinate direction (where z=h ⁄2 and z=−h ⁄2). A sheet 

with a specific focus is referred to as a targeted sheet, also known as FGM (focused 

growth matrix).

Delale and Erdogan [7] have demonstrated that the influence of Poisson’s ratio 

on the deformation of the sheet is significantly smaller compared to the effect of 

elastic modulus. However, it is possible to consider Poisson’s ratio as a constant, 

while other parameters such as density, Young’s modulus, and the coefficient of 

thermal expansion are taken into account. The direction of sheet thickness was 

presumed to be changeable. These alterations can manifest as one of the following 

functions.

     7.6.6 MATERIAL ATTRIBUTES MODELED AS A POWER FUNCTION (P-FGM)

The volume percent of the target plane is defined as follows [8, 9]:
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Regarding this matter, p represents one of the material’s properties, while h denotes 

the material’s thickness. Thus, the material properties can be represented by a combi-

nation of volume fraction and process properties. Thus, the elastic modulus is deter-

mined by applying the law of combination of characteristics in the following manner:

 E z g z E g z E
m c( )= ( ) + − ( )



1  (7.12)

In the earlier connection, E
m

 represents the elastic modulus of the metal at the low-

est level of the FGM sheet (z=−h⁄2), whereas E
c
 represents the elastic modulus of 

the ceramic at the highest level of the FGM sheet (z = −h⁄2). The variations in the 

elastic modulus across the thickness of the target plate, as influenced by the power 

distribution, are illustrated in Figure 7.7. It is imperative to clarify that in the afore-

mentioned relationship, the temperature is assumed to be constant, which is a fun-

damental assumption underlying the obtained results. This diagram illustrates that 

the elastic modulus for p > 1 in the vicinity of the upper surface of the sheet under-

goes rapid changes. In other words, the characteristics of a significant portion of the 

sheet’s core thickness tend to align with those of the upper surface. Conversely, for 

p < 1 near the lower surface of the sheet, this tendency tends to be reversed.

              7.6.7 S-SHAPED FUNCTIONALLY GRADED MATERIAL 

At the scenario when a sheet is made up of multiple composite layers and the power 

distribution function is defined by Equation (7.12), there is a presence of stress 

concentration at one of the joint surfaces. This occurs specifically in areas where 

the material is continuous yet undergoes quick changes. Chung and Chi [10] have 
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established a volume fraction by employing two power functions to guarantee the 

evenness of stress distribution across all joint surfaces. The definitions of these two 

power functions are as follows:
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The elastic modulus of the sheet (FGM-S) is determined by utilizing these two com-

binations in the following manner:

 E z g z E g z E for z h
m c( )= ( ) + − ( )



 ≤ ≤

1 1
1 0 2, /  (7.15)

 E z g z E g z E for h z
m c( )= ( ) + − ( )



 − ≤ ≤

2 2
1 2 0, /  (7.16)

The S-shaped distribution function described in Equations (7.15) and (7.16) is used to 

illustrate the variations in the elastic modulus of the sheet, as illustrated in Figure 7.8.

 FIGURE 7.7  Diagram of the variations in the elastic modulus of a P-FGM plate.
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              7.6.8  MATERIAL QUALITIES IN THE CONTEXT OF AN 
EXPONENTIAL FUNCTION (E-FGM)

Many researches utilize the exponential function, specifically Equation (7.17), to 

accurately depict the characteristics of FGM materials.

 E z Ae
B z h( )= +( )/2

 (7.17)

Where:
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Figure 7.9 displays the variations in the elastic modulus across the thickness of the 

specific plate.

              7.6.9 MORI-TANAKA HOMOGENIZATION METHOD 

The homogenization method developed by Mori Tanaka is used to calculate the 

effective properties of a material that consists of a continuous background phase and 

 FIGURE 7.8  Diagram of the variations in elastic modulus within an S-FGM plate.
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a discontinuous reinforcement phase [11]. In the case of a material consisting of two 

phases, Mori Tanaka’s method involves labeling the background phase as “1” and 

the spherical particles of the reinforcing phase as “2”. The concepts of volumetric 

modulus and local effective shear modulus are defined as follows:
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Where:
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The volume modulus, shear modulus, and volume fraction of the background phase 

are denoted as K
1
, G

1
, and V

1
, respectively. Similarly, the volume modulus, shear 

 FIGURE 7.9  Diagram of the variations in Young’s modulus within an E-FGM plate.
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modulus, and volume fraction of the reinforcing phase are denoted as K
2
, G

2
, and V

2
, 

respectively. The relationship between the volume fraction of the amplifying phase 

and the background phase is given by the equation V V
1 2

1+ = . The volume fraction 

of the reinforcing phase is determined by the following formula:
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The relationship between the elastic modulus and Poisson’s ratio of a functionally 

graded material (FGM) can be expressed in terms of its bulk modulus and shear 

modulus as follows:
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The values for the heat transfer coefficient k and the thermal expansion coefficient α 

are determined using the following method:

(7.25)
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The values of density (r), specific heat capacity (C
p
), and other properties are deter-

mined using the law of mixtures method in the following manner:

 r r r= +
1 1 1 1
V V  (7.27)

 C C V C V
p p p
= +

1 1 1 2 1 1
r r  (7.28)

     7.7 VISCOELASTIC MATERIALS

When designing structures and machines, it is frequently essential to compute the 

impact of intricate conditions of stress, strain, and environment on the mechanical 

properties of various types of materials. To determine the mechanical response of a 
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structure to various stress or strain conditions and environmental factors, it is neces-

sary to derive the following fundamental relationships [12]:

 1. Equilibrium equations represent the various stress relationships at each spe-

cific point to ensure equilibrium.

   2.  The kinematic equations relate the strain components to displacement, pro-

viding a description of the body’s deformation.

   3.  Consistency equations involve multiple strain components and ensure con-

tinuity at a continuous level without any discontinuities.

   4.  The fundamental equations express the connections between stress, strain, 

and time using material constants specific to the given material.

 5. Boundary conditions specify the stresses experienced by the displacements 

at the boundaries.

Hooke’s law describes fundamental relationships when the behavior of materials 

under stress is linear and not influenced by time. Every book on the theory of elastic-

ity contains a comprehensive explanation of the equations pertaining to assumptions 

1, 2, 3, 4, and 5. This section provides a concise overview of the fundamental equa-

tions governing nonlinear and time-dependent materials.

     7.7.1 ELASTIC BEHAVIOR 

The majority of materials exhibit elastic behavior or a behavior that closely resem-

bles it when subjected to small stresses. Figure 7.10 depicts the curves representing 

the elastic strain response of an object. Constant strains persist consistently when 

subjected to a continuous stress and vanish promptly upon the removal of the load. 

Reversibility is the primary attribute of elastic strain. The majority of elastic materi-

als exhibit linear elasticity, meaning that a decrease in stress results in a correspond-

ing decrease in strain.

FIGURE 7.10 Comparing the various reaction to a constant load along the time.
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              7.7.2 PLASTIC BEHAVIOR 

If the level of stress exceeds a certain threshold, the behavior will not exhibit elastic-

ity. The point at which the material’s behavior transitions from elastic to nonelastic, 

due to the stress exceeding a certain threshold, is referred to as the elastic limit. 

Inelastic strain refers to the strain that persists even after the removal of stress. Cer-

tain materials exhibit a temporary, continuous deformation under a brief load, while 

the strain remains constant when the load is fully applied and maintained. However, 

once the stress is alleviated, a strain will persist indefinitely. The permanent defor-

mation is referred to as plastic strain (Figure 7.10). Plastic strain is considered to be 

time-independent, although it is common to observe some time-dependent strains 

along with plastic strain [13].

     7.7.3 VISCOELASTIC BEHAVIOR 

Certain materials initially demonstrate elastic behavior when subjected to rapid 

loading. However, the rate at which strain increases gradually slows down, result-

ing in a steady increase in strain with a decreasing growth rate. Upon the removal 

of stress, the strain undergoes a continuous decrease and exhibits an initial elas-

tic rebound (Figure 7.10). Viscoelastic materials are those that are notably influ-

enced by the rate of stress or strain. For instance, when the rate of stress is higher 

than the corresponding strain, it takes a longer time for these materials to reach 

their final stress value at a constant rate of stress. Refer to Figure 7.10. Plastics, 

wood, natural and synthetic fibers, concrete, and metals are examples of mate-

rials that exhibit viscoelastic behavior, particularly at elevated temperatures. 

Viscoelastic materials are commonly referred to as time-dependent materials 

due to the significant influence of time on their behavior. Viscoelasticity can be 

defined as the amalgamation of elasticity and viscosity, as described by Findley 

in 1976. Figure 7.11 displays the stress-strain curves for a viscous material and 

an ideal material. A material exhibiting linear viscoelastic behavior causes the 

stress-strain curve to shift towards contraction, as shown in the left diagram of 

Figure 7.11 [14].

Several phenomena that manifest in a viscoelastic material include the following:

 1. When the stress remains constant, the strain exhibits a progressive increase 

over time.

   2.  When the strain is maintained at a constant level, the stress gradually 

diminishes over time.

   3.  The level of stiffness that is actually achieved depends on the rate at which 

the load is applied.

   4.  The utilization of a loading cycle results in hysteresis, causing the dissipa-

tion of mechanical energy.

   5.  Sound waves undergo attenuation and degradation.

   6.  The magnitude of the jump and the elasticity of the movement resulting 

from the impact is less than 100%.

 7. Frictional resistance arises during the process of rolling.
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In general, all materials have some of these characteristics in response to a visco-

elastic material. Common metals, such as steel and aluminum, exhibit behavior 

similar to quartz when subjected to small strain at room temperature. Their behav-

ior remains consistent with that of linear elastic materials. Composite polymers, 

wood, and human tissues exhibit significant viscoelastic behavior similar to metals 

at elevated temperatures. A minor viscoelastic response can hold significance in 

certain applications. In order to achieve this objective, it is necessary to conduct 

an examination of the viscoelastic behavior of any material during its analysis or 

design process.

     7.7.4 THE STRESS-STRAIN RELATIONSHIP IN A VISCOELASTIC MATERIAL 

In order to examine the correlation between stress and strain in viscoelastic mate-

rials, three models can be taken into account: the Maxwell model, the Voigt model, 

and the standard linear solid model [14]. Maxwell’s model consists of a spring and 

a damper arranged in series with each other (Figure 7.12). This model assumes that 

the deformation is quasi-static. The calculation of total deformation or strain in 

Maxwell’s model is determined by the following equation:
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Regarding this matter, ε represents the overall strain, e
s
 denotes the strain of the 

spring, e
d
 signifies the strain of the damper, η represents the damping coefficient of 

the damper, and σ refers to the stress. By substituting the equation τ
η

=
E

 into Equa-

tion (7.29), we can express it in the following form:
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The Voigt model, also known as the Kelvin-Voigt model, consists of a spring and 

damper that are arranged in parallel (see Figure 7.12). In this model, the total stress 

FIGURE 7.11 The stress-strain diagrams in constant strain rate: a) linear viscoelastic and b) 

elastic-plastic.
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is obtained from the sum of the stresses of each element separately. The tension rela-

tionship in this model will be as follows [15, 16]:
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Where τ
η

=
E

 refers to the delay time. According to the two models explained earlier, 

it can be said that the most realistic model can be formed from the combination of 

both Maxwell and Kelvin models, which is known as the standard linear solid. This 

model includes three components. On the left side of Figure 7.12 is the model, which 

is the same as Maxwell’s model:
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And similarly, τ
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 a. For the right side of the model, we have the following:
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In the earlier relations, E
1
 and E

1
 show the elastic modulus for each of the spring mod-

els and the sum of the total stress s s s= +
1 2

. In general, the stress sum is as follows:
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FIGURE 7.12 Schematic of different spring-damper models: a) Maxwell, b) Voigt, and  

c) standard linear solid.
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     7.8 MAGNETOSTRICTIVE MATERIALS

It is not an exaggeration to say that the study of magnetostrictive materials is one 

of the areas of interest related to the exploration of smart materials. In point of fact, 

these materials are capable of transforming magnetic excitations into elastic reac-

tions, which may take the form of either stretching or contracting. It is important to 

take note of the fact that the magneto-elastic interaction in question manifests itself 

when the structure in question is subjected to a magnetic field. Structures that have 

a magnetic effect are great candidates for use as ultrasonic generators, ultrasonic 

receivers, and echo detectors due to the qualities listed earlier.

Active metallic compounds known as magnetostrictive materials change shape in 

response to magnetic fields. Magnetoelastic coupling and the associated dependence 

of magnetic moment orientation on interatomic distance are responsible for these 

distortions. The linear or Joule magnetostriction is the most prevalent kind of magne-

toelastic coupling, and it refers to the situation in which strains are recorded parallel 

to the direction of the magnetic field. It should be observed that irrespective of the 

direction of rotation of magnetic moments, the material will elongate if the mag-

netostriction is positive. Moreover, the transverse dimension will decrease, which 

will result in the volume remaining the same. When the magnetostriction occurs in 

the negative direction, the sample diameter grows while the sample length becomes 

shorter. After this, a magnetostriction curve that is symmetric is formed as a result of 

cycling the magnetic field. Although though Joule magnetostriction is present in the 

majority of magnetic materials, only a select few compounds containing rare earth 

elements may produce stresses that are more than 1,000  ×  10–6. Magnetostrictive 

materials alter their magnetic state in response to stresses because of the symmetric 

magnetoelastic coupling. The Villari effect allows for the measurement methods of 

force and displacement.

Magnetostriction is a property that is shared by all ferromagnetic materials; 

nevertheless, its value is often rather low for the majority of these materials. When 

combined with alloys that raise their Curie temperature above the surrounding tem-

perature, certain transition metals and rare elements exhibit a greater degree of mag-

netostriction than others do. This is especially true when the Curie temperature of the 

alloys is raised above the surrounding temperature. The Terfenal-D alloy, which is a 

mixture of Terbion, iron, and Dispersium, is the magnetostrictive material that has the 

best circumstances in terms of the amount of strain and the Curie temperature. This 

material is the winner among the magnetostrictive materials. As the field strength 

is increased, the positive value of the magnetostrictive coefficient in iron flips to a 

negative value. Magnetostriction is a phenomenon that only happens in materials 

when temperatures drop below the Curie point; nevertheless, the temperature of the 

surrounding environment is almost always lower than the temperature of the furnace. 

This allows magnetostriction to have a practical use. Currently, magnetostrictive 

materials that have the best possible characteristics are continuing to increase and 

improve [17, 18].

Table  7.1 is a compilation of the nominal longitudinal strain for a variety of 

materials. It is interesting to note that some materials, like nickel, have a negative 
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magnetostrictive coefficient, meaning that their length shortens when exposed to a 

magnetic field. In contrast, other materials, like Terfenol D, have a positive magneto-

strictive coefficient, and their length lengthens when exposed to a magnetic field [19].

      7.8.1 THE ORIGIN OF MAGNETISM IN MATERIALS 

Magnetic materials are made up of various different domains that are together referred 

to as magnetic domains (see Figure 7.13). Magnetic dipoles in a region of matter are 

said to be parallel and aligned in the same direction to form a domain. The total of all 

vectors from each domain is considered to be zero when the material is non-magnetic; 

however, when the material is magnetic, this value is considered to be something 

other than zero. When an external magnetic field is applied to magnetic materials, 

they get magnetized in a manner that is specific to their structure. Likewise, when the 

exposure to the magnetic field is removed, the magnetic materials demagnetize in a 

manner that is specific to their structure. The magnetic and non-magnetic properties 

of this process allow for the classification of materials into the following four groups: 

paramagnetic, ferromagnetic, antiferromagnetic, and ferrimagnetic, each of which 

will be discussed in further detail in the following paragraphs. When it comes to para-

magnetic materials, the magnetic vectors are dispersed randomly throughout the item 

and are aligned in the direction of the external field; however, once they exit the field, 

TABLE 7.2

Nominal Saturation Strain and Curie Temperature of  

Magnetostrictive Materials

Material Saturation Strain (ppm) Curie Temperature (K)

SmFe
2

−1560 —

CoFe
2
O

4
−110 793

Cobalt −62 1388

Nickel −40 630

Iron −14 1040

Co
72

 Fe
3
 B

6
 A

13
 (Amorphous) 0 —

82%Ni-18%Fe, Permalloy 0 —

Fe-3.2%Si +9 1015

45%Ni-55%Fe, Permalloy45 +27 —

87%Fe-13%Al +30 673

Fe
66

 Co
18

 B
15

 Si +35 —

Fe
3
 O

4
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 FIGURE 7.13  Vectors in materials: (a) paramagnetic, (b) ferromagnetic, (c) antiferromag-

netic, and (d) ferrimagnetic.
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they revert back to their initial configuration. If there is a magnetic field available, the 

magnetic vectors in ferromagnetic materials have a tendency to line up in a parallel 

fashion with one another. On the other hand, in contrast to materials that are para-

magnetic, they do not change position when an external field is removed. Because the 

magnetic vectors in antiferromagnetic materials are parallel to each other but point 

in opposite directions, their magnitudes are typically the same, and the magnetic 

intensity is, therefore, zero throughout the entire object when an external field is not 

present. Antiferromagnetic materials have a magnetic intensity of zero. The third and 

final classification is known as ferromagnetic materials. Once the vectors in these 

materials are aligned parallel to one another, as indicated in the figure, the amplitude 

and strength of these vectors are not equal, which results in the production of a mag-

netic field that permeates the whole item. In most cases, the presence of more than 

one ion in the chemical is responsible for causing this quality [17, 19].

              7.8.2 BASIC EQUATIONS OF THE MATERIAL 

The basic equations for magnetostrictive materials are outlined as follows. Consid-

ering a Cartesian coordinate system, O x-
1
 x

2
 x

3
, the equilibrium equations are given 

by the following [20–22]:
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Where s
ji
, H

i
, and B

i
 are respectively the components of the stress tensor, the 

intensity vector of the magnetic field, and the magnetic induction vector, whereas 

e
ikj

 is the Levi-Civita symbol. A  comma followed by an index denotes partial 

differentiation with respect to the spatial coordinate x
i
, and the Einstein’s sum-

mation convention for repeated tensor indices is applied. The constitutive laws 

are given as follows:
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Where e
ij
 are the components of the strain tensor and s

ijkl

H , d
ikl

, and µ
ij

T are respectively 

the magnetic field elastic compliance, the magnetoelastic constants, and the magnetic 

permittivity. Valid symmetry conditions are the following:
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The relation between the strain tensor and the displacement vector u
i
 is the following:

 e
ij j i i j

u u= +( )
1

2
, ,

 (7.39)
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The magnetic field intensity, named j the potential, is written as follows:

 H
i i
=j

,
 (7.40)

For Terfenol-D, the constitutive relations can be written as follows:
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     7.9 FLEXOELECTRIC MATERIALS

The flexoelectric effect in dielectric materials can cause a substantial and 

non-uniform deformation, leading to the disruption or substantial alteration of the 

material’s inversion symmetry and the generation of a net polarization. This phe-

nomenon, known as electrostriction, differs from other types of electromechanical 

coupling, such as piezoelectricity and electrification, in that it is an inherent and 

widespread effect that becomes stronger as the sample size decreases. Research 

conducted over the past decade indicates that the emergence of flexoelectricity has 

not only introduced a novel method for achieving electromechanical coupling but 

has also had a significant impact on other domains, such as smart materials, elec-

tronics, and even physics. The diagram illustrates the direct flexoelectric effect 
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in a dielectric beam, which results in the generation of electrical output when the 

beam is bent (see Figure 7.14) [23].

Flexoelectricity is a phenomenon in which the polarization and strain gradients 

are interconnected in an electromechanical process that is influenced by the size of 

the system. This feature is present in a diverse array of materials and becomes more 

prominent in objects at the nanoscale, where the strain gradient is greater. Simu-

lations play a crucial role in comprehending flexoelectricity due to the challenges 

of conducting experiments at extremely small sizes and the limited availability of 

analytical solutions [24].

Furthermore, it has the ability to violate the principles of central symmetry and 

can be observed in a wide range of substances, such as insulators, liquid crystals, bio-

logical materials, and semiconductors. Recent research indicates that certain biologi-

cal substances, including bones, hair, and biomembranes, have a notable flexoelectric 

reaction. The initial investigations on flexoelectricity in biological materials were 

conducted in 1975 by Williams and Berger. This preliminary investigation examined 

certain electromechanical characteristics of bones that may be attributed to “gradient 

polarization”; however, the precise mechanism remains incompletely comprehended.

     7.9.1 APPLICATIONS OF FLEXOELECTRIC MATERIALS 

Some of the recent applications of flexoelectricity include flexoelectric energy har-

vesters, flexoelectric sensors and actuators, domain engineering, liquid crystal dis-

play, and the adjustment of the photovoltaic effect using flexoelectricity [25].

7.9.1.1 Flexoelectric Energy Harvester

Energy harvesters are machines capable of extracting energy from external sources, 

including wind energy, solar energy, thermal energy, and more. Specifically, the 

 FIGURE 7.14  Schematic of the electric energy generation during bending of the flexoelec-

tric beam.
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electromechanical energy harvester is capable of gathering energy from mechan-

ical vibrations. The flexoelectric energy harvester is well-suited for integration 

in small sizes due to its size-dependent unique effect, which allows for the cre-

ation of a substantial strain gradient. The flexoelectric energy harvesting device 

has achieved an energy conversion efficiency of 6.6% with appropriate design, as 

reported in Refs. [26–28].

  7.9.1.2 Actuators

Piezoelectric materials have been extensively utilized for both sensing and actuating 

purposes. Furthermore, flexoelectricity can be utilized in sensor and actuator appli-

cations, particularly for devices of nanoscale dimensions. Flexoelectric sensors have 

an advantage over piezoelectric sensors and actuators because they are not restricted 

by the crystal symmetry of materials or operating temperature. The image later illus-

trates the design of a curved flexoelectric actuator made from non-polarized PVDF 

(Figure  7.15). This actuator has demonstrated excellent actuation characteristics, 

achieving a displacement resolution of up to 1.0 nm and a maximum displacement of 

63.6 nm (Figure 7.16) [29].

 FIGURE 7.15  Curved flexoelectric actuator using PVDF material.
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Bhaskar has successfully included a flexoelectric actuator composed of barium 

titanate particles that are on a micron scale according to Figure 7.17. This actuator is 

totally compatible with semiconductor silicon technology. According to Figure 7.18, 

the performance analysis demonstrates that this flexoelectric actuator exhibits simi-

lar performance to actuators that utilize piezoelectric materials containing lead [30].

7.9.1.3 Flexoelectric Sensors

Flexoelectric sensors are gaining popularity because of their compact size, absence 

of discharge and deterioration issues, and use of lead-free materials. The sophisti-

cated flexoelectric sensor has proven to be effective in various applications, including 

structural health monitoring, crack detection, and curvature measurement. Yan et al. 

[31] developed a flexoelectric bending sensor using barium strontium titanate (BST) 

that can directly convert bending deflections into output charge. The operational 

mechanism of this sensor is illustrated in Figure 7.19. In order to precisely measure 

the bending deflection, two BST micro-curvature sensors were affixed to the center 

lateral surfaces of an aluminum beam. These sensors were positioned symmetrically 

in relation to the beam’s neutral axis.

7.9.1.4 Amplitude Adjustment and Polarity Switching

Another noteworthy application of flexoelectricity that warrants consideration is 

the ability to regulate amplitude and switch polarity. Ferroelectric materials are 

defined by their inherent polarization, which may be altered by the application 

 FIGURE 7.16  Proper operation characteristic with acceptable displacement.
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 FIGURE 7.17  Schematic of the flexoelectric actuator.

FIGURE 7.18 Proper performance of the flexoelectric actuator in comparison with piezoe-

lectric actuators containing lead.
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of an external electric field. Within a material that is extremely small, such as an 

ultrathin ferroelectric film, the inherent polarization can be altered by a gradient 

in mechanical strain. The impressive performance of this material has generated 

growing interest, making the inhomogeneous thin film an ideal candidate for flex-

oelectric applications [25].

The phenomenon of coupling between polarization and strain gradient is 

referred to as flexoelectricity. This phenomenon is observed in all dielectric mate-

rials exhibiting any form of symmetry. This study investigates the Timoshenko 

beam energy harvesting system, specifically focusing on the effects of flexoelec-

tricity and strain gradient. The governing equations and boundary conditions have 

been obtained using Hamilton’s principle. The flexoelectric effect is characterized 

by the variation in both normal and shear strain, resulting in a more comprehen-

sive model. This article presents a model that examines and explores the impact 

of flexoelectricity on the dielectric beam and the energy harvesting system derived 

from the beam’s fundamental harmonic. An extensive analysis was conducted to 

assess the flexoelectric coefficients, gravity gradient constants, base acceleration, 

and the impact of an additional concentrated mass on Timoshenko’s energy har-

vesting system. The findings indicate that flexoelectricity significantly influences 

the efficiency of the energy harvesting system, particularly at the nanoscale. Typ-

ically, this impact results in a smoother beam behavior and alters the harvester’s 

first resonance frequency [32].

Compact wireless devices are fully autonomous, using ambient energy to power 

themselves, and have extensive practical uses. This study presents the development 

of an analytical model that incorporates the strain gradient effect for nanoscale flex-

oelectric energy harvesters. The proposal suggests finding the closed form of the out-

put voltage, which will allow for a rapid evaluation of the efficiency of flexoelectric 

energy harvesting at the nanoscale. The study reveals that the ideal load resistance 

FIGURE 7.19 Working principles of BST curvature sensor attached to beam.
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is not significantly influenced by the impacts of transverse shear and strain gradient. 

The impact of transverse cutting on the output power is significantly greater in the 

nanoscale flexoelectric energy harvesting system with a smaller length-to-thickness 

ratio and a bigger patched mass. The modelling employing the Euler-Bernoulli beam 

has yielded much more output power in comparison to the Timoshenko beam. Fur-

thermore, the strain gradient effect amplifies the frequency and diminishes the out-

put power of the beam. This paper provides guidance for mechanical engineers and 

material scientists in designing a nanoscale flexoelectric energy harvesting device 

with excellent performance [33]. Figures 7.20, 7.21, and 7.22 depict the relationship 

between output power and frequency for piezoelectric and flexoelectric energy har-

vesting systems. The analysis considers both the deformation and non-deformation 

of the transverse section, with a length-to-thickness ratios (l/h) of 5, 10, and 20. It is 

evident that the output power of the flexoelectric energy harvesting system surpasses 

that of the flexoelectric energy harvesting system. The flexoelectric energy harvest-

ing system has a maximum output power that is tenfold greater than the maximum 

output power of the piezoelectric energy harvesting system. Furthermore, it has been 

noted that the primary frequency estimated by the Euler-Bernoulli beam is higher 

than the frequency of the Timoshenko beam. The estimated output power according 

to the Euler-Bernoulli beam model exceeds that of the Timoshenko beam model. 

When the length-to-thickness ratio of a structure reaches 20, both the Timoshenko 

and Euler-Bernoulli beam models yield identical predictions for output power.

Flexoelectricity, which is characterized by its significant size-dependent feature, is 

a highly advantageous use of piezoelectricity in the field of micro/nanoscale energy 

harvesting. Nevertheless, there has been limited investigation into energy harvesters 

made from functionally graded flexoelectric materials. This work presents a theoretical 

FIGURE 7.20 Output power in terms of frequency for different beam models with l/h = 5.
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FIGURE 7.21 Output power according to frequency for different beams with l/h = 10.

FIGURE 7.22 Output power according to frequency for different beams with l/h = 20.
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analysis of the nonlinear vibration of a flexoelectric energy harvesting nanobeam with a 

concentrated mass at the free end. The analysis takes into account the electromechanical 

coupling generated by the strain gradient in the beam. The Galerkin approach is used to 

derive the equations for the coupled system and to provide approximate closed solutions 

for the output power. The study discovered that the voltage output and power density of 

the functionally graded flexoelectric energy harvester are significantly influenced by the 

material components, gradient index, size scale, and loading resistance [34].

               7.9.2  FUNDAMENTAL EQUATIONS oF  
FLEXOELECTRIC MATERIALS 

To consider the flexoelectric effect, the concept of Gibbs disturbance energy is 

used [35].
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In the context of Equation (7.43), the variables E
i
 and E

j
 represent the electric field, 

e
ij
 represents a component of strain, e

ij l,
 represents the strain gradient, E

k l,
 represents 

the electric field gradient, k
ij
 represents the dielectric constant tensor, b

ijkl
 represents 

the nonlocal electric coupling coefficient tensor, C
ijkl

 represents the elastic stiffness 

tensor, eijk represents the piezoelectric parameter, and µ
ijkl

 represents the flexoelectric 

parameter.

Furthermore, the expressions for electrostatic potential, electric field, and electric 

field gradient are as follows:
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In the given context, j  represents the electric potential, E
z
 represents the electric 

field, and E
z z,

 represents the gradient of the electric field. Subsequently, fundamental 

equations are derived using the nonlocal strain gradient theory [36, 37].

 1 12 2 2 2−( )∇ = − ∇( )( )+ − +( )( )
,

ea l C e E E
ij ijkl kl ijk i ijkl k l
σ ε γ µ  (7.47)

In the context of Equation (7.47), the symbol Ñ, which represents the gradient, is 

defined as the differential operator ¶ ¶/ x. Furthermore, C
ijkl

 represents the elastic 

coefficient, ea denotes the nonlocal parameter, and l signifies the length scale param-

eter. If the size scale is taken into account for piezoelectric and flexoelectric charac-

teristics, the value of g  is given by g = − ∇1 2 2l . Otherwise, if the size scale is not 

considered, g =1.
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7.10 METAMATERIALS

The extraordinary capabilities shown by metamaterials are attributed to their 

innovative structure, which is achieved by combining different materials with a 

repetitive micro-unit structure. The Poisson’s ratio of most materials is inherently 

positive; nevertheless, a specific approach was used on the structure of metama-

terials to render their Poisson’s ratio negative. Auxetics, derived from the Greek 

term “auxetikos”, meaning “to grow”, refer to a class of metamaterials charac-

terized by a negative or zero Poisson’s ratio. Certain mechanical materials pos-

sess negative Poisson’s ratio (NPR), which results in enhanced properties, such as 

improved compression and shear resistance, increased energy absorption, better 

sound insulation (acoustic energy), synclastic behavior (elastic recoil), anisotropy, 

high elasticity (in auxetic materials that adhere to Hooke’s law), and high damping 

resistance. Due to this distinctive characteristic, researchers conducted an experi-

ment on auxetic materials.

7.10.1 AUXETIC MATERIALS

The auxetic core layer is composed of cells that are organized in a honeycomb 

pattern. The mechanical properties of the honeycomb auxetic core layer, such as 

Young’s modulus, shear modulus, negative Poisson’s ratio, and thermal expansion 

coefficients, are believed to be influenced by the geometrical parameters of the indi-

vidual unit cell (Figure 7.23) [38, 39].

FIGURE 7.23 Schematic of the geometry of the cell of a honeycomb core layer.
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7.10.1.1 Auxetic Core

The potential consequences pertaining to the effective mechanical features of the 

auxetic core are as follows [40, 41]:
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The equations presented in Equations (7.48) to (7.38) provide a means to determine 

the mechanical characteristics of the used auxetic core. The thickness of the auxetic 

cell’s ribs is represented by the variable t , while the length of its horizontal ribs is 

signified by e, and the length of its vertical inclined ribs is represented by l. There 

are two efficacious auxetic core moduli, namely, the Young’s modulus denoted as Ea

11
 

and Ea

22
, as well as the shear modulus referred to as Ga

11
 and Ga

22
. Furthermore, both 

va

11
 and va

22
 exhibit high efficiency as auxetic variations of Poisson’s ratio.
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Dynamics of Nonlinear 

Smart Continuous 

Structures—Beams 

     8.1 INTRODUCTION

This part investigates the analysis of the beam’s transverse nonlinear vibration, 
both in free and forced conditions. The equations that describe the nonlinear vibra-
tion of the beam are derived based on the principle of Euler-Bernoulli theories. 
The governing equations of the transverse vibration of the beams can be expressed 
as fourth-order partial differential equations. These equations are subject to four 
boundary conditions at both ends. The beam’s boundary conditions can encompass 
partial derivatives of up to the third order. This chapter focuses on analyzing the free 
and forcede nonlinear vibration response of beams. In order to explain the principles 
that control the displacement field of the beam, it is important to establish a proper 
coordinate system. This system consists of the x coordinate, which represents the 
length of the beam, the z coordinate, which represents the thickness or height of the 
beam, and the y coordinate, which represents the width of the beam. When dealing 
with beam problems, the applied loads and geometry are arranged in a way that the 
displacement u v w, ,( )  along the coordinates x y z, ,( )  is solely dependent on the x 
and z coordinates. In the theory of beam, it is postulated that the displacement of v  
is precisely zero [1].

     8.2  NONLINEAR EQUATION OF TRANSVERSE 
VIBRATION OF BEAMS

     8.2.1 BACKGROUND 

Currently, there is a growing need for engineering structures, with spaceships, 
bridges, and autos serving as prime examples of such structures. When developing 
these structures, it is necessary to investigate many variables in order to enhance 
their performance and prolong their lifespan. One component of the design process 
involves analyzing the dynamic reaction of these structures to various and differ-
ent stimuli. Real engineering problems, conversely, entail challenges and intricacies 
during the problem-solving phase. Therefore, it is imperative to tackle the process 
of simplifying these matters. This is achieved by constructing a mathematical rep-
resentation of the engineering structure. However, in several instances, this will not 
be a straightforward task. However, this may be achieved mostly by streamlining the 
framework. For instance, the study of the behavior of basic structures like beams, 
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plates, and shells, which are considered as continuous systems, is highly significant 
in this process of simplification.

     8.2.2  NONLINEAR GOVERNING EQUATION OF THE  
EULER-BERNOULLI BEAM (THIN BEAM)

The equation regulating nonlinear motion and the boundary conditions of a thin 
beam (Figure  8.1) are derived in this section using the Hamilton principle. The 
beam is positioned on a viscoelastic substrate including a combination of a spring 
and a damper. In the theory of the thin or Euler-Bernoulli beam, the rotational 
movement of the cross-sectional surface perpendicular to the beam is neglected in 
comparison to its translational motion. Furthermore, unlike the bending deforma-
tion, the incision does not result in angular distortion. It is worth noting that the 
thin beam theory is only valid for beams that have a length-to-thickness ratio above 
10 [1].

Generally speaking, the Euler-Bernoulli beam theory can be described as the 
most basic beam theory, where the displacement field is specified as follows:

 u x z t u x t z
w x t

x
u x z t u x z1 2 30, , ,

,
, , , , , ,( )= ( )−

∂ ( )
∂

( )= tt w x t( )= ( ),  (8.1)

The displacement components in the x, y, and z directions are given by u1 and u3, 
respectively, with respect to the Equation (8.1).

The displacement field described in Equation (8.1) states that straight lines par-
allel and perpendicular to the neutral axis stay unchanged before and after defor-
mation, as depicted in Figure 8.2. Put simply, both normal transverse stresses and 
transverse stresses are not included.

Now, considering the Green’s strain-displacement connections in the Lagrangian per-
spective and taking into account the assumptions that govern von Karman’s theory [2]:

 e
ij i j j i k i k j i j

i

j

u u u u u
u

x
= + +( ) =

∂

∂

1

2 , , , , ,;  (8.2)

FIGURE 8.1 Schematic of the Euler-Bernoulli equation (thin beam) on a viscoelastic 
substrate.
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Regarding the Equation (8.2), the variables i  and j  can represent x, y, or z (i j x y z, , ,= ).  
Specifically, i j, , ,=1 2 3. Hence, the Equation (8.2) can be expressed alternatively as 
follows:
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The equations governing movement are derived using the Hamilton principle, as 
stated in the preceding chapter. Thus, the Hamilton principle can be expressed in the 
following manner:

 δ π
t

t

ext
T W dt

1

2

0∫ − +( ) =  (8.9)

FIGURE 8.2 Transverse displacement of the beam.
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In the context of Equation (8.9), T  represents the kinetic energy, p  represents the 
strain energy, and W

ext
 represents the work done by the external force.
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The definitions of N
xx

 and M
xx

are as follows:
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Regarding Equation (8.11), N
xx

, normal force, and M
xx

 represent the magnitudes 
exerted on the A-cross-sectional area. By incorporating Equation (8.11) into the ulti-
mate Equation (8.10), we obtain the following:
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By performing the process of integration on both sides of the equation, we establish 
a mathematical connection between the Equation (8.12) and the variable of time, 
denoted as t , inside the time span from t1 to t2 .
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We shall establish a correlation with the integral of each of the statements of Equa-
tion (8.13) as follows:
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By utilizing the derived relationships from Equations (8.14), (8.15), and (8.16), the 
Equation (8.13) can be reformulated as follows:
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We will utilize a T  to compute the kinetic energy:
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In the Euler-Bernoulli theory, the influence of the beam’s periodic inertia is disre-
garded. So in the Equation (8.18), we have the following:
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Therefore, the Equation (8.19) can be expressed as follows:
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By performing the process of integration on both sides of the equation, we obtain a 
mathematical Equation (8.20) in regard to the variable of time, denoted as t , inside 
the time span from t1 to t2 .
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In order to determine the work done by the external force W
ext( ), we express it in the 

following manner:
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By incorporating the obtained Equations (8.17), (8.20), and (8.22) into the overarch-
ing Equation (8.9), we will obtain the following:
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The result of the Equation (8.23) consists of the governing equations and their corre-
sponding boundary conditions, expressed as follows:
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Considering the initial Equation (8.24), where u= 0, and also taking into account 

that the integral of zdA is equal to 0 (
A

zdA∫ = 0), the tension ratio N
xx( ) can be 

derived as follows:
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By substituting the calculated value for N
xx

 into the initial Equation (8.11), we obtain 
the following:
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In the context of Equation (8.27), E  represents the modulus of elasticity of the beam, 
while A  represents its transverse cross-sectional area. The u  response is acquired in 
the following manner:
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We have a boundary given as follows:
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Alternatively, considering that I z dA
xx

A
= ∫ 2 , we can get the following:
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By substituting the resulting Equation (8.30) into the governing Equation (8.24), we 
obtain the following:
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The specified requirements that define the limits or constraints of the system are as 
follows:
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The Equation (8.33) indicates that the first boundary condition is d u
l

] =
0

0 while 
extracting equations. Put simply, u u l0 0( )= ( )= . The nonlinear equation describing 
the motion of the Euler-Bernoulli beam, based on the earlier equation (8.34), can be 
expressed as follows:
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For considering the influence of the viscoelastic substrate (consisting of a spring and 
damper) along with the external force f1  as shown in Figure 8.1, Equation (8.34) can 
express as follows:
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By substituting the aforementioned Equation into the Equation (8.33), we obtain the 
following:
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     8.3 CASE STUDY 1

     8.3.1 INTRODUCTION 

Researchers have a complex task when attempting to solve the nonlinear governing 
equations of a non-uniform micro- and nanobeam. This work investigates the non-
linear, size-dependent vibration of a non-uniform axially functionally graded (AFG) 
microbeam for the first time. The microbeam is simulated using the Euler-Bernoulli 
beam theory and the modified couple stress theory, including von Karman’s geomet-
ric nonlinearity.

     8.3.2 FORMULATION 

  8.3.2.1 Functionally Graded Materials

A microbeam is defined by its length, L, height, h, and width, b. The height is given 
by the equation h h x

h
= +( )1 1 b , where h1  is the initial height and b

h
x  is a param-

eter that determines how the height changes with respect to x. Similarly, the width 
is given by the equation b b x

b
= +( )1 1 b , where b1  is the initial width and b

b
x is a 

parameter that determines how the width changes with respect to x. The issue is 

regarded as the problem (Figure 8.3). The expressions b
h

h

h
= −1 2

1

 and b
b

b

b
= −1 2

1

 

denote the longitudinal and transverse cross sections, respectively. The moment of 
cross-sectional area (I) and cross-sectional area (A) are defined as follows [3]:



266 Nonlinear Vibration of Smart Continuous Structures

 I x z dydzh
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( )=
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2

2

2

2 2  (8.36)

 A x dydzh

h

b

b

( )=
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2

2

2

2  (8.37)

The Euler-Bernoulli axially functionally graded microbeam is a structure made of 
metal and ceramic materials. It has different mechanical and geometrical properties 
along the x-axis, which can be described by a function of the microbeam’s length 
(F x( )). This relationship is presented next [4]:

 F x F F F
x

L

p

( )= + −( )








1 2 1  (8.38)

Here, p represents the non-negative variable parameter, which is the power-law expo-
nent. It determines the material volume percentage along the axis of the beam. On the 
other hand, x represents the distance from the left end of the AFG beam. When the 
value of p is zero, it indicates that the material of the AFG beam is completely made 
of metal. In our current investigation, we used the assumption that p is equal to 1. The 
subscripts 1 and 2 indicate the starting point (x = 0) and ending position (x = L) of 
the microbeam, respectively. Equation (8.38) demonstrates that the material property 
at the beginning cross section (x= 0), the middle cross section (x = L/2), and the 
final cross section (x = L) may be defined as F F F L F F0 2 2 21 1 2( )= ( )= +, / / /  and 
F L F( )= 2 , respectively. Put simply, the microbeam starts out as pure ceramic, then 
becomes a mixture of ceramic and metal in the intermediate segment and finally 
ends as pure metal. This is seen in Figure 8.3. The function F(x) may be expressed 
as Equation (8.39):

 F x F
x

L
( )= −









1 1 b  (8.39)

FIGURE 8.3 Schematic of a non-uniform AFG microbeam.
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Where:
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The microbeam’s mechanical characteristics, including density (r), Young’s modu-
lus (E), shear modulus (μ), and Poisson’s ratio (v ), may be defined as follows:
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  8.3.2.2 The Modified Couple Stress Theory

The strain energy U S  of an isotropic linear elastic material may be mathematically 
represented as follows [5]:

 U dvS = +∫∫∫
1

2
( : : )σ χ m

L
 (8.42)

Where L  represents the occupied zone and the other parameters are specified as 
follows:

Cauchy stress:

 s = ( ) +λ µtr  I 2  (8.43)

The expression “ tr ∈( ) ” refers to the trace tensor of the (Î
kk

) strain. Classical strain 
Îis defined as follows:

  = ∇ + ∇( )( )1

2
u u

T
 (8.44)

Symmetric curvature m:

 m = 2 2l µc  (8.45)

Deviation part of couple stress:

 χ θ θ= ∇ + ∇( )( )1

2

T
 (8.46)

The material length scale parameter, denoted as “l”, controls the couple stress at a certain 
site. The displacement field components are represented by “u

i
”, while the rotation vector 

components are denoted as “q
i
”. The rotation vector is precisely specified as follows:
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 q =
1

2
curlu  (8.47)

Furthermore, in Equations (8.43) and (8.45), l and μ represent Láme’s constants, 
which are determined using the following formulas:

 u x
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v x
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+ ( )( )2 1
 (8.48)

 l x
E x v x

v x v x
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( ) ( )

+ ( )( ) − ( )( )1 1 2
 (8.49)

     8.3.3 THE GOVERNING EQUATION AND BOUNDARY CONDITIONS 

The governing equation and boundary conditions may be obtained by using the 
Hamiltonian principle, which is represented as follows:

 dH = 0 (8.50)

 H T U W dt
ext

= − +∫
1

0t

t
 (8.51)

The symbol τ represents the value of 2p  divided by w. ,T U , and W
ext

 represents 
the vibration period, kinetic energy, strain energy, and external work induced by an 
external force, respectively.

The displacement field is defined in the Euler-Bernoulli theory as the following:
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 u w x t
z
= ( ),  

The variables u u
x y
, , and u

z
 represent the displacement components along the x, y, and 

z axes, respectively. The term ¶ ¶w x/  refers to the rotation angle around the y-axis, 
while w x( ) represents the transverse deflection of the beam. The kinetic energy of a 
microbeam may be determined using the following equation:
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Where:
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The von Karman nonlinear strain-displacement relation is defined as a straight Eul-
er-Bernoulli beam, assuming massive transverse displacements, moderate rotations, 
and modest strains.
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The explicit formulations of the constituents of the rotation vector are obtained by 
using Equation (8.47) as follows:

 q
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 (8.56)

The non-zero components of the couple stress and Cauchy stress tensors may be 
computed by using the following three equations.
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The microbeam’s strain energy, arising from the beam’s strains and stresses, is pre-
cisely specified as follows:
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When analyzing free vibration, it is necessary to treat the external work done by 
applied forces as zero.

 W
ext
= 0 (8.62)

By inserting equations (8.53), (8.60), and (8.62) into equation (8.50) and using the 
basic lemma of calculus, one may deduce the first variation of total energy. This 
process allows us to obtain the governing equations and boundary conditions of the 
microbeam, based on the Euler-Bernoulli model. The microbeam’s nonlinear vibra-
tion equations have solutions that may be separated into spatial (x) and temporal (t) 
components. Therefore, we may infer the following:
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By using the Ritz-Galerkin approach and integrating with respect to time, the gov-
erning equations for Euler-Bernoulli beams may be derived using Equation (8.63).
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Since the AFG materials have uniform properties throughout their thickness, the 
values of B

x
 and m1 are assumed to be zero. Consequently, the governing equations 

are formulated in terms of displacements.
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The boundary conditions are as follows:

 U or N= =0 0 (8.68)
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The values of “q=0” and “ f =0” represent the distributed transverse and axial load, 
respectively. The stress resultants (N M Y, , ) in the equations earlier are provided as 
follows:
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     8.3.4 SOLUTION METHODOLOGY 

Differential quadrature method (DQM) is an accurate and effective numerical method 
presented in early 1970s. The accuracy of this method depends on the precision of 
weighting coefficients controlled by the number of grid points. In primary formula-
tions of DQM, an algebraic equation system was employed to calculate weighting 
coefficients which determined the number of grid points. An explicit formulation 
for the weighting coefficients was later presented and led to generalized differential 
quadrature method (GDQM). Many regular domain problems are solved using this 
procedure. The GDQ technique defines the rth order derivative of function f x

i( ) as 
follows [5]:
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The value of C
ij
n may be determined using the following equation, where n is the 

number of grid points along the x direction:
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Where M x( ) is defined as follows:
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The coefficient C r( ) for weighting, in the x direction, may be determined as follows:
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The Chebyshev-Gauss-Lobatto approach is used to achieve a more uniform distribu-
tion of mesh points.
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By combining the three mass matrices, we can get the linear and nonlinear stiffness 
of the functionally graded microbeam, as described by Equations (8.66) and (8.67) 
in terms of nonlinear motion [6].
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In order to solve the governing motion equation using the GDQM, we begin by dis-
regarding the nonlinear stiffness matrix. To achieve this objective, we may use the 
weight coefficients (Equation (8.75)) and apply them to the linear motion equations, 
resulting in the following:
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By applying the boundary conditions (Equations (8.66) to (8.70)) to Equations (8.78) 
and (8.79), and combining the corresponding matrices for the boundary conditions 
and governing equations, the linear fundamental frequency may be determined as 
shown next:
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The indices “b” and “d” represent the border and domain, respectively, whereas  
“l” represents the mode shape. The linear mode forms are necessary for solving the 
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nonlinear vibration equations of the functionally graded microbeam. The U and W 
mode forms may be obtained by using Equation (8.90). By inserting the obtained 
mode shapes into the nonlinear stiffness matrix and using Equation (8.87), as well 
as connecting the linear and nonlinear stiffness matrices with the mass matrix, it is 
possible to compute the nonlinear frequency and mode shape. Next, by using the iter-
ation approach, the nonlinear frequency is recalculated in order to get a convergent 
nonlinear frequency.
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     8.3.5 NUMERICAL RESULTS 

The generalized differential quadrature technique is used to solve the governing 
equations of motion. The findings are computed for the first two linear and nonlinear 
frequencies of the AFG microbeams made of pure ceramic and pure metal, with 
microbeams that are clamped, simply supported, and clamped-simply supported. 
Subsequently, the impacts of the nonlinearity and the rates of cross sections through-
out the thickness and breadth of the microbeam are showcased in various figures and 
tables.

In order to provide a clear understanding of how various factors impact the nonlin-
ear frequencies, the outcomes are provided in relation to the normalized frequency. 
The normalized frequency is a term that is used to describe the frequency of an event 
or phenomenon that has been adjusted or standardized in some way.

 Normalized frequency
Non linear frequencyof micro beam

L
=

− −� �
iinear frequencyof ceramicuniformbeam

 (8.83)

In addition, non-dimensional parameters are specified in the following manner, 
which facilitates the analysis of the results:
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1
2
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 (8.84)

The terms “I0” and “Amp” represent a non-dimensional, small-scale parameter and 
a nonlinear amplitude, respectively.
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Table 8.1 displays the mechanical characteristics of ceramic and metal. Figures 8.4 
and 8.5 show the initial and subsequent normalized frequencies of a microbeam in 
relation to the amplitude. The microbeam is subject to simply supported, clamped, 
and clamped-simply supported boundary conditions. The normalized frequencies 
are computed for microbeams made of pure ceramic, pure metal, and AFG. It is 
evident that the normalized frequencies of the microbeam rise in conjunction with 
the amplitude. Additionally, the normalized frequencies of the AFG microbeam are 
lower than those of pure ceramic and higher than those of pure metal. Figures 8.4 and 
8.5 demonstrate that the normalized frequencies of the clamped-simply supported 
microbeam are lower than those of the simply supported microbeam and higher than 
those of the clamped microbeam.

Tables 8.2 to 8.4 show the linear and nonlinear fundamental and second normal-
ized frequencies of ceramic, metal, and AFG microbeams. The tables correspond 
to different boundary conditions: clamped-simply supported, simply supported, and 
clamped, respectively. It is observed that the fundamental and second frequencies 
of the microbeams exhibit a rise in relation to the amplitude. Moreover, the primary 
frequencies of the microbeams drop as the value of b

h
 decreases. The frequencies 

shown in Tables 8.2 to 8.4, printed in italic bold, are the frequencies that rise as the b
b
 

decreases. Table 8.2 shows that the second normalized frequency of the clamped-sim-
ply supported microbeams drops as b

h
 increases, when the Amp is less than or equal 

to 3. However, when the amplitude is set to 4, the second frequencies of the pure 
metal and ceramic uniform microbeams rise as the b

h
 decreases from zero to −0.1. 

The increase in AFG microbeam occurs at b
b
=−0 2.  and falls from −0.1 to −0.2.

Table  8.2 demonstrates that reducing the b
b
 value leads to a rise in the linear 

and nonlinear fundamental frequencies of AFG, pure ceramic, and pure metal 
clamped-simply supported microbeams. When the amplitude of the microbeam is 
modest (Amp = 0 and 1) and the cross section is almost uniform over the thickness 
(b

h
= − 0 0 1, . ), reducing the βb results in an increase in the second frequencies of the 

microbeam. However, when the nonlinearity and the rate of cross section change rise 
in the z direction, the influence of b

b
 on the second frequencies of the microbeam 

changes. Specifically, the second frequencies of ceramic and metal microbeams 

TABLE 8.1 

The Coefficients of Young’s Modulus, Mass Density, and Poisson’s Ratio of 

Ceramic (Al2 O3) and Metal (SUS304)

Material Properties Value

SUS304 E (Pa) 2.0104e + 11

r (kg/m3) 8166

N 0.3262

Al
2
O

3
E (Pa)
r (kg/m3)

3.4955e + 11
3800

N 0.24
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FIGURE 8.4 Relationship between the normalized fundamental frequency and the nonlinear 
amplitude of several types of microbeams.
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FIGURE 8.4 (Continued)

 FIGURE 8.5  Schematic representation of a micro/nanobeam that is being exposed to external 
parametric excitation.
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TABLE 8.2 

Normalized Fundamental and Second Frequencies of Clamped-Simply Supported Microbeams in Different Nonlinear 

Amplitudes and Rates of Cross Section Change, l0 0.1=
 Fundamental Normalize Frequency Second Normalize Frequency

Amp = 0 Amp = 1 Amp = 2 Amp = 3 Amp = 4 Amp = 0 Amp = 1 Amp = 2 Amp = 3 Amp = 4

βb = −0 Uniform 

beam Pure ceramic

1 1.042961 1.161219 1.33338 1.540894 1 1.056035 1.206947 1.420946 1.673513

AFG 0.709033 0.738624 0.820251 0.939406 1.083356 0.717173 0.75417 0.854536 0.998067 1.168587

Pure metal 0.546804 0.570295 0.634959 0.729097 0.842567 0.546804 0.577444 0.659964 0.776979 0.915083

βh = −0.1 Pure ceramic 0.965141 1.010685 1.135145 1.314716 1.529567 0.955747 1.017631 1.182025 1.411586 1.679419

AFG 0.682953 0.714074 0.799357 0.922818 1.070945 0.683818 0.723896 0.831388 0.983101 1.161517

Pure metal 0.527743 0.552646 0.620702 0.718892 0.836373 0.522606 0.556445 0.646336 0.771861 0.918313

βh = −0.2 Pure ceramic 0.929176 0.977313 1.107851 1.294452 1.516065 0.910547 0.977371 1.152593 1.393911 1.672685

AFG 0.656103 0.689091 0.778773 0.907358 1.060433 0.649728 0.693798 0.810319 0.972206 1.160388

Pure metal 0.508077 0.534398 0.605777 0.707811 0.82899 0.497891 0.53443 0.630242 0.762196 0.914631

βh = −0.4 Pure ceramic 0.853261 0.90799 1.053515 1.256935 1.494446 0.816624 0.887576 1.070079 1.316614 1.59769

AFG 0.599665 0.637962 0.739837 0.882308 1.048714 0.578917 0.63486 0.776876 0.966336 1.180592

Pure metal 0.466566 0.496493 0.576066 0.687297 0.817169 0.446533 0.48533 0.585123 0.71993 0.873623

βb = −0.2 βh = 0 
Pure ceramic

1.014645 1.057204 1.174562 1.345794 1.552577 1.004254 1.063432 1.222072 1.445847 1.708895

AFG 0.720048 0.749389 0.830468 0.949084 1.09265 0.720434 0.759325 0.864414 1.014008 1.19109

Pure metal 0.554812 0.578083 0.642255 0.735885 0.848955 0.54913 0.581489 0.668234 0.790595 0.93443

βh = −0.1 Pure ceramic 0.979388 1.024469 1.147909 1.326437 1.54046 0.960115 1.022491 1.188136 1.41936 1.689062

AFG 0.693668 0.72461 0.80954 0.932744 1.08081 0.687142 0.729374 0.842137 1.000488 1.186007

Pure metal 0.535533 0.560184 0.627681 0.725301 0.842329 0.524995 0.559102 0.649677 0.776112 0.923586

(Continued )
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 Fundamental Normalize Frequency Second Normalize Frequency

Amp = 0 Amp = 1 Amp = 2 Amp = 3 Amp = 4 Amp = 0 Amp = 1 Amp = 2 Amp = 3 Amp = 4

βh = −0.2 Pure ceramic 0.94304 0.990572 1.119771 1.304967 1.525392 0.915017 0.978739 1.146763 1.379525 1.64953

AFG 0.666532 0.699428 0.789 0.917664 1.071059 0.653106 0.69967 0.822148 0.991373 1.187311

Pure metal 0.515658 0.541649 0.612295 0.713561 0.834091 0.500335 0.535179 0.627054 0.75433 0.901969

βh = −0.4 Pure ceramic 0.866431 0.920883 1.06596 1.269201 1.50689 0.821266 0.889462 1.065817 1.305304 1.5793

AFG 0.609572 0.648047 0.750512 0.893992 1.061733 0.582395 0.636066 0.773128 0.957007 1.165704

Pure metal 0.473768 0.503542 0.582871 0.694004 0.823973 0.449071 0.486361 0.582793 0.713745 0.863567

TABLE 8.2 (Continued)

Normalized Fundamental and Second Frequencies of Clamped-Simply Supported Microbeams in Different Nonlinear 

Amplitudes and Rates of Cross Section Change, l0 0.1=
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TABLE 8.3 

Normalized Fundamental and Second Frequencies of Simply Supported Microbeams in Different Nonlinear Amplitudes and 

Rates of Cross Section Change, l0 0.1=
 Fundamental Normalize Frequency Second Normalize Frequency

Amp = 0 Amp = 1 Amp = 2 Amp = 3 Amp = 4 Amp = 0 Amp = 1 Amp = 2 Amp = 3 Amp = 4

βb = −0 Uniform beam Pure 
ceramic

1 1.08534 1.305322 1.603108 1.943083 1 1.08562 1.306237 1.604769 1.94551

AFG 0.717417 0.778781 0.936916 1.150925 1.395211 0.721144 0.777235 0.923378 1.123329 1.353263

Pure metal 0.546804 0.593468 0.713755 0.876586 1.062486 0.546804 0.593621 0.714256 0.877494 1.063813

βh = −0.1 Pure 
ceramic

0.951496 1.040855 1.26852 1.573272 1.918655 0.951878 1.038088 1.258723 1.555326 1.892406

AFG 0.680852 0.745581 0.91024 1.130333 1.379539 0.684561 0.746131 0.903839 1.116022 1.357291

Pure metal 0.520282 0.569144 0.693632 0.860271 1.049128 0.520491 0.567631 0.688274 0.850458 1.034775

βh = −0.2 Pure 
ceramic

0.90135 0.995457 1.231955 1.544568 1.896049 0.902954 0.990198 1.211677 1.507152 1.841302

AFG 0.643126 0.711496 0.882899 1.108977 1.362825 0.647354 0.715842 0.887655 1.114404 1.369095

Pure metal 0.492862 0.54432 0.673638 0.844576 1.036767 0.493739 0.541444 0.662549 0.824117 1.006831

βh = −0.4 Pure 
ceramic

0.794972 0.900852 1.15787 1.487744 1.85218 0.80212 0.891825 1.115162 1.407951 1.735479

AFG 0.563393 0.640542 0.827024 1.065558 1.328579 0.570634 0.640525 0.812304 1.035036 1.282563

Pure metal 0.434694 0.49259 0.633128 0.813504 1.012779 0.438603 0.487653 0.609775 0.769873 0.948967

βb = −0.2 βh = 0 Pure 
ceramic

0.999513 1.084874 1.304891 1.602698 1.942679 1.000118 1.080845 1.290293 1.575647 1.902841

AFG 0.717513 0.779664 0.939588 1.155699 1.402145 0.721148 0.780907 0.935483 1.145442 1.385696

Pure metal 0.546537 0.593213 0.713519 0.876361 1.062264 0.546868 0.59101 0.705537 0.86157 1.040481

(Continued )
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 Fundamental Normalize Frequency Second Normalize Frequency

Amp = 0 Amp = 1 Amp = 2 Amp = 3 Amp = 4 Amp = 0 Amp = 1 Amp = 2 Amp = 3 Amp = 4

βh = −0.1 Pure 
ceramic

0.950176 1.039819 1.268078 1.573459 1.919436 0.9522 1.033735 1.243827 1.528111 1.852589

AFG 0.68033 0.746065 0.912939 1.135566 1.387333 0.684703 0.75047 0.917554 1.140617 1.392988

Pure metal 0.51956 0.568577 0.69339 0.860374 1.049555 0.520666 0.56525 0.680129 0.835577 1.013003

βh = −0.2 Pure 
ceramic

0.899197 0.993909 1.231647 1.545569 1.898291 0.903475 0.986272 1.197862 1.481914 1.804439

AFG 0.641991 0.711258 0.884563 1.112743 1.368671 0.647625 0.713593 0.879917 1.100422 1.348799

Pure metal 0.491684 0.543473 0.673469 0.845123 1.037993 0.494024 0.539297 0.654996 0.810316 0.986674

βh = −0.4 Pure 
ceramic

0.791162 0.897929 1.156583 1.488025 1.853859 0.803024 0.888582 1.103011 1.385766 1.703198

AFG 0.561051 0.639801 0.829429 1.071258 1.337458 0.57115 0.638022 0.803448 1.019117 1.259572

Pure metal 0.43261 0.490991 0.632424 0.813658 1.013697 0.439096 0.48588 0.603131 0.757742 0.931315

TABLE 8.3 (Continued)

Normalized Fundamental and Second Frequencies of Simply Supported Microbeams in Different Nonlinear Amplitudes and 

Rates of Cross Section Change, l0 0.1=
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TABLE 8.4 

Normalized Fundamental and Second Frequencies of Clamped Microbeams in Different Nonlinear Amplitudes and Rates of 

Cross Section Change, l0 0.1=
 Fundamental Normalize Frequency Second Normalize Frequency

Amp = 0 Amp = 1 Amp = 2 Amp = 3 Amp = 4 Amp = 0 Amp = 1 Amp = 2 Amp = 3 Amp = 4

βb = −0

Uniform beam Pure ceramic

1 1.021209 1.081996 1.175573 1.294351 1 1.044291 1.16593 1.342503 1.554826

AFG 0.714029 0.729358 0.773268 0.840813 0.926479 0.718212 0.746532 0.824973 0.940073 1.079741

Pure metal 0.546804 0.558401 0.59164 0.642808 0.707756 0.546804 0.571022 0.637535 0.734086 0.850185

βh = −0.1 Pure ceramic 0.951769 0.974085 1.037763 1.135139 1.257907 0.951764 0.996693 1.119472 1.296609 1.508541

AFG 0.678467 0.694646 0.740775 0.811234 0.899964 0.682174 0.712908 0.797206 0.919374 1.066081

Pure metal 0.520431 0.532633 0.567453 0.620698 0.687829 0.520428 0.544996 0.612132 0.708991 0.824876

βh = −0.2 Pure ceramic 0.902513 0.92623 0.993533 1.095626 1.223322 0.902478 0.947565 1.070206 1.246159 1.455731

AFG 0.642194 0.659135 0.707202 0.780094 0.871241 0.645356 0.679216 0.770936 0.901881 1.057238

Pure metal 0.493498 0.506466 0.543268 0.599093 0.668917 0.493478 0.518132 0.585193 0.681405 0.795999

βh = −0.4 Pure ceramic 0.800373 0.827181 0.902234 1.013936 1.151185 0.800063 0.846755 0.972039 1.148941 1.357051

AFG 0.567146 0.586426 0.640351 0.720509 0.81889 0.568856 0.606481 0.706216 0.845166 1.007007

Pure metal 0.437647 0.452306 0.493345 0.554424 0.629473 0.437477 0.463009 0.531515 0.628245 0.742041

βb = −0.2 βh = 0  

Pure ceramic

0.999085 1.020313 1.08115 1.174794 1.293641 0.999552 1.042171 1.159553 1.330558 1.536802

AFG 0.714239 0.729728 0.774078 0.842253 0.92866 0.718329 0.748018 0.829975 0.949718 1.094488

Pure metal 0.546304 0.557911 0.591177 0.642382 0.707368 0.546559 0.569863 0.634048 0.727554 0.840329

βh = −0.1 Pure ceramic 0.951694 0.974101 1.038026 1.135753 1.258928 0.951738 0.994551 1.111991 1.282217 1.486657

AFG 0.679235 0.695409 0.741527 0.811977 0.900703 0.682562 0.714878 0.803167 0.930508 1.082828

Pure metal 0.52039 0.532642 0.567597 0.621034 0.688387 0.520414 0.543824 0.608041 0.701121 0.81291

βh = −0.2 Pure ceramic 0.90328 0.927177 0.994968 1.097751 1.226248 0.90287 0.945984 1.063696 1.233332 1.436104

AFG 0.64352 0.660515 0.708733 0.781848 0.873266 0.646009 0.67955 0.770489 0.900455 1.05478

Pure metal 0.493917 0.506984 0.544053 0.600255 0.670517 0.493693 0.517268 0.581633 0.674391 0.785267

βh = −0.4 Pure ceramic 0.80283 0.829698 0.90492 1.016882 1.15446 0.801271 0.846299 0.967535 1.139401 1.342196

AFG 0.569591 0.589095 0.643621 0.724624 0.823987 0.570017 0.606518 0.703589 0.839303 0.997782

Pure metal 0.438991 0.453682 0.494814 0.556035 0.631263 0.438138 0.46276 0.529052 0.623029 0.733918
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drop with b
b
. The second frequency of the AFG microbeam experiences a similar 

decrease when b
h
= 0 4.  and Amp is greater than or equal to 2.

Table 8.3 demonstrates that the second normalized frequencies of the simply sup-
ported pure ceramic and metal microbeams decline as b

h
 decreases. The second 

resonance frequency of the AFG (axially functionally graded) simply supported 
microbeam reduces as b

h
 decreases, given that the amplitude (Amp) is less than or 

equal to 3. Observations indicate that when the amplitude is 4 and the rate of cross 
section change of the microbeam along the width is = 0, decreasing b

h
 from zero to 

−0.2 results in an increase in the second frequency of the AFG microbeam. How-
ever, when the rate of cross section change along the thickness is high (bh  ³ 0 2. ), 
the second frequency decreases as b

h
 decreases. Table 8.3 shows that reducing the 

b
b
 leads to a rise in the fundamental frequency of the uniform AFG microbeam, 

while causing a drop in the fundamental frequencies of the pure metal and ceramic 
microbeams. In addition, reducing b

b
 leads to a drop in the linear fundamental fre-

quencies of non-uniform AFG, pure metal, and pure ceramic microbeams. Alterna-
tively, when we enhance the nonlinearity and reduce the rate of cross section change 
along the thickness of the microbeam (b

h
), we see a distinct impact of b

b
 on the fre-

quencies under various situations. Specifically, the frequencies rise as b
b
 decreases. 

At an Amp value of 4, the fundamental frequency of the non-uniform microbeams 
increases as the b

b
 decreases. The second linear frequencies of the AFG, pure metal, 

and pure ceramic microbeams are inversely proportional to the decrease in b
b
. When 

the microbeam is uniform or the rate of cross section variation along the thickness 
is modest (b

h
<−0 1. ), the second nonlinear frequency of the AFG microbeam 

grows as the b
b
 drops. Observations indicate that the second frequencies of the AFG 

microbeam fall when b
h
 is less than or equal to −0.2. Similarly, the nonlinear second 

frequencies of the pure metal and ceramic microbeams likewise decrease with b
b
.

Table 8.4 demonstrates that reducing the b
b
 leads to a drop in the fundamental 

frequency of uniform pure metal and pure ceramic microbeams, whereas it results 
in an increase in the fundamental frequency of uniform AFG microbeam. Table 8.4 
demonstrates that the nonlinear fundamental frequencies of non-uniform AFG, pure 
ceramic, and metal microbeams rise as βb decreases. Furthermore, it has been shown 
that altering the rate at which the cross section varies throughout the thickness has 
an impact on the influence of b

b
 on the linear fundamental frequency of microbeams 

made of pure ceramic and metal.
Table 8.4 demonstrates that the frequency of the clamped microbeams reduces 

as the value of b
h
 decreases. The frequency of the AFG microbeam rises as the 

value of b
b
 decreases, provided that the microbeam is uniform or has a low rate of 

cross section change throughout the thickness ( βh>−0 1. ). Furthermore, when the 
value of b

h
 is less than or equal to −0.2, the linear second frequency of the clamped 

microbeams grows as b
b
 decreases. Table 8.4 demonstrates that the nonlinear second 

frequencies of both pure ceramic and metal microbeams drop as b
b
 increases. The 

influence of b
b
 on the frequencies of the microbeam is contingent upon the nonlin-

earity and b
h
. By modifying these parameters, the impact of b

b
 is altered.

Tables 8.5 show the normalized fundamental and second frequencies of microbe-
ams with clamped, simply supported, and clamped-simply supported boundary 
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TABLE 8.5 

Normalized Fundamental and Second Frequencies of Clamped Microbeams in Different Nonlinear Amplitudes and Small-

Scale Parameters, b
h
=−0.3 , b

b
=−0.2.

 Fundamental Normalize Frequency Second Normalize Frequency

l0 = 0 l0 = 0.1 l0 = 0.2 l0 = 0.3 l0 = 0.4 l0 = 0 l0 = 0.1 l0 = 0.2 l0 = 0.3 l0 = 0.4

Amp = 0 Pure ceramic 1 1.033057 1.125864 1.264486 1.435294 1 1.033154 1.126254 1.265351 1.436764

AFG 0.710923 0.734785 0.801723 0.901588 1.024498 0.713307 0.737369 0.804869 0.905569 1.029489

Pure metal 0.546804 0.56488 0.615627 0.691426 0.784824 0.546804 0.564932 0.61584 0.691899 0.785628

Amp = 2 Pure ceramic 1.119012 1.148685 1.232959 1.360951 1.521217 1.199483 1.227673 1.308065 1.430903 1.585709

AFG 0.794602 0.815994 0.876741 0.968959 1.084351 0.87013 0.889927 0.946683 1.033947 1.144427

Pure metal 0.61188 0.628105 0.674187 0.744173 0.831807 0.655882 0.671297 0.715255 0.782424 0.867072

Amp = 4 Pure ceramic 1.412733 1.436529 1.505372 1.612828 1.751212 1.652242 1.673757 1.736141 1.833854 1.96037

AFG 1.001446 1.01851 1.067957 1.145271 1.244928 1.219743 1.233888 1.275684 1.342601 1.430657

Pure metal 0.772488 0.7855 0.823143 0.881901 0.957569 0.903452 0.915217 0.949329 1.002759 1.071938

Amp = 8 Pure ceramic 2.220503 2.23591 2.281716 2.355972 2.455347 2.801016 2.815541 2.858107 2.925466 3.013625

AFG 1.571296 1.582057 1.614321 1.667139 1.738327 2.094046 2.10185 2.126377 2.168211 2.225871

Pure metal 1.21418 1.222604 1.247651 1.288255 1.342593 1.531606 1.539549 1.562824 1.599656 1.647862
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conditions. The tables provide the frequencies for various amplitudes and small-scale 
characteristics. The small-scale parameter has the effect of increasing the linear and 
nonlinear frequencies of pure ceramic, pure metal, and AFG microbeams. The stiff-
ness of the microbeam is directly proportional to the small-scale parameter, resulting 
in a rise in the frequency of the microbeams.

     8.3.6 CONCLUSIONS 

In summary, the key findings of this research may be summarized as follows:

• The study demonstrates that the primary and secondary frequencies of 
clamped, simply supported, and clamped-simply supported microbeams rise 
in response to the nonlinear amplitude, small-scale parameter, and the rate 
of cross section change along the thickness (βh).

  •  The impact of the rates of cross section changes (b
h
  and b

b
 ) on the AFG 

microbeam may vary in certain situations.
• The impact of these factors on microbeams made of pure metal and ceramic.

     8.4 CASE STUDY 2

     8.4.1 INTRODUCTION 

The suggested approach involves using a micro/nanobeam that follows the principles 
of nonlocal strain gradient theory and von Karman hypothesis to study nonlinear 
vibration and instability zones. The behavior of the beam is influenced by its size. 
The micro/nano piezoelectric sandwich beam is affected in its axial direction by the 
parametric excitation. Furthermore, the electric enthalpy energy density is used to 
analyze the impact of flexoelectricity.

     8.4.2 MATHEMATICAL MODELING 

Figure 8.5 depicts the schematics of a micro/nanobeam, showcasing its axial length 
(L) and breadth (b). Furthermore, the distance between the micro/nanobeam and 
stationary electrode is shown as g. The micro/nanobeam is exposed to an external 
parametric excitation load at a frequency of W [7].

The electric Gibbs free enthalpy density is used to analyze the impact of 
flexoelectricity.

G k E E b E E C e E
b ij i j ijkl i j k l ijkl ij kl ijk i jk ijk
=− − + − −

1

2

1

2

1

2, , ε ε ε µ
ll k ij l ij k l

E E( ε ε, , )−  (8.85)

E
i
 and E

j
 represent electrical field variables, e

ij
 denotes strain components, eij l,  and 

E
k l,  represent the strain and electrical field gradients, respectively. In addition, k

ij
, b

ijkl
,  

and C
ijkl

 define the tensor for the dielectric constant, nonlocal electrical coupling 
coefficient, and elastic stiffness, respectively. On the other hand, e

ijk
 and u

ijkl
 repre-

sent the parameters for piezoelectric and flexoelectric effects.
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The electrostatic potential is calculated using the following equation:
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The variables V
P
 and h

P
 represent the piezoelectric voltage and thickness of the 

piezoelectric layers, respectively. Furthermore, the electric field and electric field 
gradient may be obtained in the following manner:
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  8.4.2.1 Nonlocal Strain Gradient Theory

The equation may be expressed using the nonlocal strain gradient theory (NSGT) as 
follows:

 1 12 2 2 2−( )∇ = − ∇( )( )+ − +( )( ) ,ea l C e E E
ij ijkl kl ijk i ijkl k l
σ ε γ µ  (8.89)

The symbol ∇=
∂

∂x
 represents the differential operator, C

ijkl
 is the elastic coeffi-

cient, ea is a nonlocal parameter, l  is the length scale parameter, and e
kl

 represents 
the strain. It is important to note that when considering the length scale for piezoelec-
tric and flexoelectric effects, the value of g is equal to g = − ∇1 2 2l . Otherwise, when 
not considering these effects, g is equal to 1 (g =1).

This study uses the Euler-Bernoulli beam theory to determine the displacement 
field in the following manner:

 u u z
w

x
v w w= −

∂

∂
= =, ,0  (8.90)

Here, “u” represents the axial displacement and “w” represents the transverse 
displacement. The von Karman strain-displacement theory yields the following 
expressions:
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It is important to note that in the Euler-Bernoulli beam theory, the strain gradient in 
the x direction is negligible compared to the strain gradient in the z direction and 
may be disregarded. The constitutive equations for the piezoelectric Euler-Bernoulli 
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beam theory, including the flexoelectric effect, are derived within the context of the 
nonlocal strain gradient theory as follows:

 1 1
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By substituting equations (8.87), (8.88), (8.91), and (8.92) into equations (8.93) and 
(8.94), we get the following expressions.
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Where N
xx

, M
xx

, and P
xxz

 represent the stress resultants and are calculated as follows:
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By inserting equations (8.95) and (8.96) into equations (8.97)–(8.99), we may get that
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It is important to clarify that these phrases are introduced in the following manner:

 EA E E A EI E I E
eff Iso P eff Iso P( ) = + ′′( ) ( ) = +( )Á Í,  (8.103)

 Á = ′′ =bh A bh
P

,  (8.104)
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It is important to note that E
Iso

 and E
P
 represent the Young’s modulus of the elastic 

and piezoelectric layers, respectively. The governing equation is found using Hamil-
ton’s variational technique.

 d
0

0
t

K U W dt∫ − −( )



 =  (8.106)

Here, variations in external forces are defined as follows:

 d dWdt q W dxdt
t Lt

=∫ ∫∫0 00
 (8.107)

The equation is given by q F F Fcos t
e c

= + + Ω . Furthermore, the electrostatic and 
Casimir forces are shown below:
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p2
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 (8.109)

The symbol e0 represents the vacuum permittivity, which has a value of 
.8 854 10 12 2 1 2
×

− − −C N m . V_dc refers to the applied voltage on the elastic layer. More-
over, the Planck constant is h = ×

−1 055 10 3. , and c
m

s
= ×2 998 10

8
.  represents the 

velocity of light.
The first form of strain energy may be expressed as:
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The variation of kinetic energy is defined as follows:
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Here, I
A
, represents the axial inertia, I0  represents the translatory inertia, and I1 

represents the rotary inertia. These values are calculated using the formulas 

I b h h
Iso P P0 2= +( )r r  and I

b
h h

Iso P p1
3 3

12
2= + ( )( )r r . It is worth mentioning that 

r
Iso

 and r
P
 denote the density of the elastic and piezoelectric layers, respectively.

The governing equation for the micro/nanobeam may be obtained as follows:
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The expression N
xx

 may be represented in the following manner:
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Within the context of nonlocal strain gradient theory, it may be expressed as:
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The Taylor series expansions for electrostatic and Casimir forces are implemented 
as follows:
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     8.4.3 SOLUTION METHOD 

  8.4.3.1 Galerkin Technique

The Galerkin approach may be used to get an approximate solution for the simply 
supported boundary condition. This solution can be written as follows:

 w x t t
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L
x,( )= ( )φ
π

sin  (8.119)
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One may argue that f t( ) represents the time-dependent unknown parameter, whereas 

sin
k

L
x

p
 represents the spatial basis function. By replacing the Equation (8.119) with 

equation (8.115), we get the following:
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B1, B2, B3 , B4, and B5  are defined as follows:
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In addition, dimensionless parameters are added in the following manner:

 τ = = =
Ω

2
t r r g, ,φ ψ  (8.126)

By using these dimensionless parameters and substituting them into Equation (8.120), 
the governing equation for the micro/nanobeam may be derived as follows:

 ψ ψ εη εη ψ εη ψ εη ψ τ+ =− − + +S2
1 2

2
3

3
4 2cos  (8.127)
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In addition, S, h1, h2 , h3 , and h4may be defined as follows:
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To investigate the parametric resonance of the system, the dimensionless frequency 
is defined as follows:

 S = +1 εσ  (8.129)

Here, s  is defined as the parameter that represents the detuning.

8.4.3.2 Multiple Time Scales Method

The Nayfeh and Mook technique [8], which involves various time scales, is used to 
tackle the fundamental issue. Subsequently, a collection of initial approximations of 
the first order are taken into account as follows:

 ψ τ ε ψ εψ, , , .( )= ( )+ ( )+…0 0 1 1 0 1T T T T  (8.130)

In which:

 T T0 1= =τ ετ,  (8.131)

T0  and T1 were seen to differentiate between the rapid and gradual time scales. Using 
Equation (8.131), the following determination may be made:
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Therefore, by replacing Equations (8.132) and (8.133) into Equation (8.127) and set-
ting the coefficients of e0  and e1 equal to zero, the following may be obtained:
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1 0 0 3 0 02 2 2: .D D D D cos T+ =− − − − +  (8.135)

The solution to Equation (8.134) may be obtained as follows:

 y0 1 0 1 0= ( ) ( )+ ( ) ( )A T T A T Texp .i exp i  (8.136)
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The function A exhibits an unknown complex behavior, whereas A  represents its 
complex conjugate version. Substituting Equation (8.136) into Equation (8.135) yields 
the following result:
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Hence, the secular factor must be removed from the equation.

 − ( )− ( )− + ( )=2 2 3
2

01 1 3
2 4

1i T A T A A A TÁ σ η
η

 (8.138)

It is essential to take into account the polar form of function A T1( ) as shown next:
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Where a T1( ) and b T1( ) are actual functions. By substituting Equation (8.139) into 
Equation (8.138) and then separating the real and imaginary parts, the following may 
be obtained:
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Furthermore, in order to assess the steady-state response, it is suggested that a′ = 0  

and αβ
′

= 0 . The modulation equations for the major parametric resonance are 
obtained as follows:

 −








 ( )=

η
β4

4
2 0sin  (8.142)

 σ
η
α

η
β+ − ( )

3

8 4
23 2 4 cos  (8.143)

  8.4.3.3 Trivial Steady-State Response

To assess the stability of the system, we use the Cartesian form represented by the 

equation ),A p iq e
i T= −( )

1

2
1b  We then substitute A into Equation (8.138) as shown 

[7, 9]:

 i ′− ′( )− −( )+ − −( ) +( )+ +( )=p iq p iq p q ipq p iq p iqβ
η η3

8
2

4
03 2 2 4  (8.144)
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To characterize the autonomous form of the system, it is important to take into 

account the value of h3 , which is equal to 
s
2

. By substituting this value into Equation 

(8.144), the following derivation may be obtained:

 ′ =− + +( )−p q q p q q
σ η η

2

3

8 4
3 2 2 4  (8.145)

 ′ = − +( )−q p p p q p
σ η η

2

3

8 4
3 2 2 4  (8.146)

The last phase involves assessing the instability analysis of the system, specifically 
focusing on the unremarkable steady-state response of the micro/nanobeam. It is 
assumed that both p and q are equal to zero. Moreover, the Jacobian matrix of Equa-
tions (8.145) and (8.146) is defined as follows:
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 (8.147)

  8.4.3.4 Non-trivial Steady-State Response

In order to ensure the stability of the piezoelectric micro/nanobeam, it is necessary to 
reset the matrix determination to zero. In a non-trivial, steady-state solution, the value 
of α is not equal to zero (¹ 0.). Therefore, it may be worded as follows [7]:

 −








 ( )=

η
β4

4
2 0sin  (8.148)

 σ
η
α

η
β+ − ( )

3

8 4
23 2 4 cos  (8.149)

The trigonometric function sin cos2 2 1b b+ = )  may be used in Equations (8.148) and 
Equation (8.149) and so can be obtained as follows:
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The expression for the detuning parameter at the positive bifurcation point is obtained 
by setting α equal to zero.

 σ
η

=+ ( )4 2

4
 (8.152)
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     8.4.4 RESULTS AND DISCUSSION 

In this part, the outcomes and numerical findings are thoroughly examined and 
deliberated upon.

   8.4.4.1 Numerical Results

The material qualities and geometrical requirements reported in Table  8.6 are 
assumed for the current investigation. In addition, a simply supported border condi-
tion is used for this study. Figure 8.6 demonstrates the influence of flexoelectricity 

TABLE 8.6 

Material and Geometrical Properties of the Isotropic and Piezoelectric 

Layers [10]

Silicon PZT-5H

Young’s Modulus 210 GPa 126 GPa

Gap 92 µm –

Thickness 57 µm 0.57 µm

Width 5 mm 5 mm

Length 20 mm 20 mm

Piezoelectric Constant –
-6 35

2
.

C

m

Flexoelectric Constant –
- -10 7 C

m

Dielectric Constant –
1 3 10 8. × −

C

Vm

FIGURE 8.6 The dimensionless frequency against the thickness of the simply supported 
beam considering different flexoelectric parameter.
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 FIGURE 8.7  The dimensionless frequency versus the considering different piezoelectric voltage  
 V thickness of the beam assumed m

dc
.( ( ))1 7- µ   for S-S BC.

on the nonlinear vibrational characteristics of a micro/nanobeam that is simply sup-
ported. The phenomenon of flexoelectricity results in an increase in the stiffness of 
the beam. Additionally, when the flexoelectric parameter rises, the dimensionless 
frequency also increases. It is important to acknowledge that flexoelectricity plays 
a significant role in thin beams. When the thickness of the beam grows, this impact 
may be ignored.

 ea e l e= − = −( )800 6 1 8 3, .  

Figure 8.7 illustrates the relationship between the dimensionless frequency and the 
V

dc
. When the direct current voltage (V

dc
) rises, there is a drop in the dimensionless 

frequency. Furthermore, the dimensionless frequency decreases as the V
P
 increases. 

With the rise in V
P
, the structure exhibits a higher degree of flexibility.

Figure  8.8 demonstrates that the pull-in voltage falls as the space between the 
sandwich beam and stationary electrode shrinks. Moreover, Figure 8.8 showed that 
when V

dc
 increased, there was a corresponding drop in dimensionless quantity.

Figure  8.9 demonstrates the impact of the piezoelectric parameter on the fre-
quency that is not expressed in specific units. It can be seen that the piezoelectric 
parameter enhances the structural rigidity and raises the dimensionless frequency. 
The impact is more pronounced for the slender beams.

A graph is drawn to examine the impact of the length scale parameter on the non-
linear behavior of an electromechanical micro/nanobeam by comparing the dimen-
sionless frequency with the nonlocal parameter. Figure 8.10 demonstrates that when 
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the length scale grows, the dimensionless frequency also increases. Furthermore, the 
dimensionless frequency drops as the nonlocal parameter increases.

Figure 8.11 illustrates the impact of adding different parametric loads. Increasing 
the magnitude of external parametric stresses results in the expansion of stable areas.

 FIGURE 8.8  The relation between the dimensionless frequency and the V
dc

  consid-
ering a different gap between the sandwich beam and stationary electrode for S-S BC 
 ( , , . )V ea e l e

P
= = − = −2 800 6 1 8 3  .

 FIGURE 8.9  The relation between the dimensionless frequency and the thickness of the beam 
for different piezoelectric parameters , . , ,ea e l e V V

P dc
= − = − = =( )800 6 1 8 3 0 0  .
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FIGURE 8.10 The relation between the dimensionless frequency and the nonlocal parameter 
(V V

P dc
= = 0).

Figure 8.12 illustrates the influence of the piezoelectric parameter on the ampli-
tude response and the zones of instability. The gap between the stable and unstable 
solution decreases as the piezoelectric parameter rises. Therefore, it can be seen that 
the piezoelectric parameter significantly influences the dynamic instability of elec-
tromechanical micro/nanobeams.

 FIGURE 8.11  The amplitude response against the detuning parameter applying a different 
parametric excitation , .ea e l e= − = −( )800 6 1 8 3  .
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 FIGURE 8.12  The effect of piezoelectric parameter on the amplitude response against the 
detuning parameter ( V V ea e l e F

P dc
= = = − = − =1 1 5 3 1 8 3 0 05, . , . , . ) .

To analyze the impact of varying voltage on the elastic layer, a graph is generated 
to illustrate the amplitude response in relation to the detuning parameter. Figure 8.13 
demonstrates that raising the applied voltage on the elastic layer expands the area 
where stability is maintained and results in a decrease in the stiffness of the beam.

Figure 8.14 illustrates the impact of the spacing between the sandwich beam and 
stationary electrode on the areas of dynamic instability. While the gap does not 

 FIGURE 8.13  The effect of V
dc

  on the amplitude response against the detuning parameter 
 ( , . , . )V V ea e l e

P
= = − = −1 1 5 3 1 8 3  .



298 Nonlinear Vibration of Smart Continuous Structures

significantly alter the instability of the system, widening the gap reduces the ampli-
tude response.

Furthermore, in order to examine the impact of the length scale parameter on the 
vibrational characteristics of the electromechanical system, the amplitude is graphed 
against the detuning parameter in Figure 8.15. By raising the length scale parameter, 
it can be seen that the stable zone decreases in size.

Figure 8.16 illustrates that the size of the stable area expands as the piezoelectric 
voltage rises. The softening behavior might be identified or acknowledged.

 FIGURE 8.14  The effect of gap on the amplitude response against the detuning parameter 
 ea e l e F= − = − =( )1 5 3 1 8 3 0 01. , . , .  .

 FIGURE 8.15  The effect of length scale parameter on the amplitude response against the 
detuning parameter ea e V V V

P dc
= − = =( )1 5 3 1. ,  .
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Figure  8.17 illustrates the saddle node bifurcation point for different levels of 
force amplitude in relation to the amplitude response. It is evident that the amplitude 
response diminishes as the V

dc
 rises. Put simply, changing the direct current voltage 

(V
dc

) would result in the occurrence of a saddle node bifurcation point.
Figure 8.18 depicts the relationship between the force amplitude and the amplitude 

response for various V
dc

 levels. Furthermore, it can be inferred that the amplitude 

 FIGURE 8.16  The effect of piezoelectric voltage on the amplitude response against the 
detuning parameter l e ea e F V V

dc
= − = − = =( )1 8 3 1 5 3 0 05 1. , . , . ,  .

 FIGURE 8.17  The effect of direct current voltage on saddle node bifurcation points for differ-
ent values of force amplitude against the amplitude response s =+( )5  .
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response diminishes as the V
dc

 grows, and the location of the subcritical pitchfork 
bifurcation point remains the same.

Figures 8.19 and 8.20 show the phase portrait of the electromechanical micro/
nanobeam for various V

dc
 values. The location of the saddle node and center varies 

as the V
dc

 increases.

 FIGURE 8.18  The force amplitude against the response amplitude for different values of V
dc

  
 s =−( )5  .

 FIGURE 8.19  The dimensionless velocity against the dimensionless deflection for V V
dc
=1 . 



301Dynamics of Nonlinear Smart Continuous Structures—Beams

                       8.4.5 CONCLUSION 

The primary outcome of this investigation may be obtained in the following manner:

• The dimensionless frequency of narrow beams rises as the flexoelectric and 
piezoelectric parameters increase.

  •  The pull-in voltage diminishes as the distance between the sandwich beam 
and stationary electrode decreases.

• The dimensionless frequency and instability areas are significantly affected 
by the length scale and nonlocal factors.

• By increasing the piezoelectric parameter, the distance between the bifurca-
tion sites is reduced.

  •  The stable area expands as the applied voltage on the elastic core and piezo-
electric layers increases.   

     8.5 CASE STUDY 3

     8.5.1 INTRODUCTION 

The study focuses on investigating the dynamic instability and vibration of function-
ally graded (FG) porous sandwich nanobeams, which are supported by a viscoelastic 
foundation and subjected to an axial harmonic load, based on the nonlocal theory. 
This article utilizes the Timoshenko and nonlocal continuum theories to include 
shear deformation, rotational bending, and small-scale effects.

 FIGURE 8.20  The dimensionless velocity against the dimensionless deflection for V V
dc
= 20 . 
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8.5.2 THEORY AND FORMULATION

The problem’s layout is shown in Figure 8.21 and Figure 8.22. The nanobeam is com-

posed of a porous core (h
c
) and two face layers (h

f
) that are tightly fused together. 

The sandwich FG porous nanobeam, with a length denoted as L, is experiencing 

an axial harmonic load. The load has a frequency denoted as W and an amplitude 

denoted as N
d
. The Timoshenko nanobeam under investigation is positioned atop a 

viscoelastic foundation characterized by the parameters k
w

 and c
d
 [11].

 FIGURE 8.21  A simply supported FG sandwich nanobeam on a viscoelastic foundation.

FIGURE 8.22 The cross section of FG porous nanobeam with different porosity distribution 

pattern.
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8.5.2.1 Nonlocal Nanobeam Model

In the classical continuum theory, it is understood that the stress at a certain point 
x is only connected to the strain at that same location. Contrarily, according to the 
nonlocal elasticity theory, the stress field may be expressed as follows:

 σ α τ= −( ) ( )′ ′ ′∫
v

x x T x dx, , (8.153)

 t =
e a

L

0  (8.154)

The symbol T x( ) represents the classical stress tensor at a certain position x, whereas 

the symbol a ′−( )x x  stands for the nonlocal modulus. Furthermore, e0 represents a 
coefficient associated with the material, whereas a and L correspond to the internal 
and exterior characteristic lengths, respectively. The nonlocal constitutive relations 
of a beam may be mathematically represented as follows:

 σ

σ

ε
xx

xx

xx
e a

x
E−( )

∂

∂
=0

2
2

2
,  (8.155)

 τ
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υ
xz
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xz
e a
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E z
−( )

∂

∂
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+( )0

2
2

2
2 1

γ , (8.156)

The variables s
xx

 and t
xz

 represent the axial and shear stress, whereas e
xx

,g
xz

 repre-
sent the axial and shear strain. Additionally, E and υ denote Young’s modulus and 
Poisson’s ratio, respectively.

8.5.2.2 Porosity Distribution

The material properties along the z-direction of the porous core exhibit fluctuation, 
which allows for the determination of material parameters, such as Young’s modulus 
(E), mass density (r), and thermal expansion coefficient (a) [12].

 E z E e z( )= − ( )



1 01 l  (8.157)

 ρ ρ λz e z
m( )= − ( )



1 1  (8.158)

 α α λz e z
m( )= − ( )



1 1  (8.159)
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The values for e0 and e
m

 are obtained from the open-cell metal foam model.

 e
E

E
0

2

1

1= −  (8.161)

 e e
m
= − −1 1 0  (8.162)
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0 0
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2

e e
e  (8.163)

The variables E1, r1, and a1 correspond to the highest values of Young’s modulus, 
mass density, and thermal expansion coefficient of the porous core, respectively. On 
the other hand, E2 represents the minimum value of Young’s modulus.

     8.5.3 EQUATIONS OF MOTION 

This work uses the Timoshenko beam theory to analyze the impact of shear defor-
mation on the FG nanobeam.

 

u x z t u x t z x t

u x z t

u x z t w x t
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2

3

0

, , , ,

, ,

, , ,
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 (8.164)

The displacements along the x, y, and z axes are represented by u1, u2 , and u3, respec-
tively, in Equation (8.164). The displacements of the beam are characterized by the 
axial displacement (u), transverse displacement (w), and rotation of the cross section 
(Æ). The normal and shear strains and stresses may be determined using the nonlin-
ear von Karman strain-displacement theory.
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Where:
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The variables T
T
 and T

B
denote the temperature of the upper and lower layers of the 

nanobeam, respectively. The strain energy of the Timoshenko nanobeam is expressed 
as follows:

 

U dAdx
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The stress resultants (N
x
, M

x
, and Q

x
) may be represented in the following manner:
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K
s
 represents the correction factor for shear. A

ij
, B

ij
, and D

ij
 represent the stiffnesses 

associated with extensional, bending, and bending-extensional coupling, respec-
tively. The values are computed using the following formula:
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The kinetic energy of a FG nanobeam is determined by the following:
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The potential energy resulting from external forces and the elastic basis is mathemat-
ically represented by the following:
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The equation of motion is derived using Hamilton’s concept.
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By replacing the Equations (8.168), (8.174), and (8.175) with Equation (8.176), we get 
the equations that describe the motion:
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Where:
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By excluding the rotational and in-plane inertias, Equation (8.169) yields the stress 
resultants as follows:
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By inserting the expression for Q
x
 from Equation (8.179) into Equation (8.178) and 

using the stress resultants, the dimensionless equations of motion are obtained, rely-
ing on the subsequent non-dimensional parameters:
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Notably, the impact of the nonlinear damping factor is disregarded, resulting in the 
dimensionless equations:
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In order to solve the equations of motion, the Galerkin method is used.
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 W X W X,τ τ φ( )= ( ) ( ) (8.186)

 ϕ τ τ ψX S X,( )= ( ) ( ) (8.187)

By replacing Equations (8.186) and (8.187) with Equations (8.184) and (8.185), we 
get the following:

M W K N P W C W C SW K W K S K W K W

C W

..

cos+ ( )( ) + + + + + +

=

0 1
3

2 1 4 2 3

3 0

t +


 (8.188)

 C W C S4 5 0+ =  (8.189)
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By substituting Equation (8.189) into Equation (8.188), we get the nonlinear equation 
of motion.
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Where:
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The eigen functions corresponding to hinged-hinged boundary conditions are for-
mally defined as follows:

 φ πX X( )= sin ( ) 

and  ψ πX X( )= cos ( )  (8.193)

The dimensionless natural frequency of the Timoshenko nanobeam is determined in 
relation to its free vibration.

 ŵ2 =
K

M
 (8.194)

By using the mathematical technique of perturbation theory with the use of a pertur-
bation parameter ε, the governing equation produces the following result:
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     8.5.4 SOLUTION METHODS 

8.5.4.1 Multiple Scale Method

The technique of several scales is a very effective mathematical tool for solving 
various nonlinear equations. It involves adding trial variables as distinct times-
cales, which frequently have physical significance on their own. The multiple scale 
approach, developed by Mook and Nayfeh [8], allows us to get an approximate solu-
tion for Equation (8.195) in the following form:

 W W T T T W T T T W T T Tτ ε ε( )= ( )+ ( )+ ( )0 0 1 2 1 0 1 2
2

2 0 1 2, , , , , ,  (8.197)

Where:

 T T T0 1 2
2= = =τ ετ ε τ, ,  (8.198)
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By replacing the equation represented by Equation (8.197) into Equation (8.195), and 
subsequently for the identical power of ε, the differential equations are as follows:
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The complex version of Equation (8.202) is used to solve Equation (8.199).

 W A T T i T A T T i T0 1 2 0 1 2 0= ( ) [ ]+ ( ) −[ ], ,exp exp
 w w  (8.202)

Where A and A  are complex conjugates. Equation (8.200) is expressed in the follow-
ing format:
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Where cc represents the complex conjugate of the previously given variables. By 
establishing the detuning parameter (s ) and setting P = +2ω̂ εσ , we eliminate the 
secular and small divisor components of Equation (8.203) in the following manner:
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By substituting equations (8.202) and (8.205) into Equation (8.201), the secular terms 
of the differential equation of motion may be eliminated. This yields the following:
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Consequently, we combine Equations (8.204) and (8.206) in order to eliminate the 
terms D A1

2  and D A1 .
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Using the multiple-scale technique, Equations (8.204) and (8.207) represent the first 
two terms.
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In order to solve Equation (8.208), we must evaluate the following solutions for A  
and A :

 A a i a= [ ] = [ ]
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2
exp A expb b, -i  (8.209)

Here, “a” and “b” represent the amplitude and phase angle of “A” and “A”. By 
substituting equation (8.209) into equation (8.208) and then separating the real and 
imaginary components, we get the governing equations for variables a and b .
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Finally, by assuming that ′ =a 0 and ′ ′ ′= = −( )γ γ εσ β0 2 , the steady-state 
response of the nanobeam may be expressed as follows:
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 H a H a4 3 0− [ ]=sin g  (8.214)

The investigation of the instability and bifurcation zones of the Timoshenko 
nanobeam heavily relies on both the simple and complex solutions of the beam. In 
order to get a solution that is not trivial (where an is not equal to zero), the trigono-
metric function cos sin

2 2 1g g[ ]+ [ ]=  is used in Equations (8.213) and (8.214).
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The non-trivial solution has a response amplitude (a) given by the following:
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The simple solution of the system is found by using the Cartesian form of the solution 

of Equation (8.208), which is given by A p iq i T= −( ) [ ]
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2 1exp b .
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In order to get a self-governing version of Equation (8.217), it is necessary to substi-
tute b  with s/2. The imaginary and real components of Equation (8.217) are once 
again separated, leading to the following:

 ′ =− − + − + −p q
q c q c q c q

p
1

2 2 8 4

3

64

2 2 2
1
2

1
2

1
2

3
εσ

ε µ

ω

ε σ

ω

ε

ω

ε

ω
εµ

ˆ

ˆ ˆ ˆ ˆ
ˆ  (8.218)

 ′ = + + − − −q p
p c p c p c p

q
1

2 2 8 4

3

64

2 2 2
1
2

1
2

1
2

3
εσ

ε µ

ω

ε σ

ω

ε

ω

ε

ω
εµ

ˆ

ˆ ˆ ˆ ˆ
ˆ  (8.219)

The Jacobian matrix of equations (8.218) and (8.219) may be obtained.
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By computing the determinant and trace of matrix J, we may determine the stability 
zones of the system by assuming positive values for µ̂.
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 (8.221)

 τ εµ=−2 ˆ  (8.222)

     8.5.5 RESULTS AND DISCUSSION 

This section will provide numerical data illustrating the instability and nonlinear 
vibration of a Timoshenko FG nanobeam subjected to a harmonic axial load. The 
findings will be presented in the form of figures and tables.

8.5.5.1 Numerical Results

The factors studied for analyzing the stability and bifurcation zones of FG sand-
wich porous nanobeams include porosity, nonlocal coefficient, viscous-Winkler 
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parameters of foundation, temperature, slenderness ratio, thickness ratio, and ampli-
tude of parametric excitation.
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Nevertheless, these factors might be modified in order to analyze their impact.  
Figure 8.23 demonstrates the impact of porosity distribution on the curve of the 
amplitude-detuning parameter. Based on Figure  8.23, it can be deduced that 
modifying the structure of the porous core will not affect the behavior of the 
nanobeams. Given this circumstance, an additional study will be undertaken just 
focusing on the initial porosity distribution. This work used a continuous line to 
represent stable solutions, whereas dashed lines are utilized to represent unsta-
ble solutions. When observed, two stationary points are formed for the negative 
and positive values of the detuning parameter. Initially, when the value of σ is 
increased, the stable branch of the trivial solution undergoes a transformation, 
resulting in the presence of both stable and unstable branches. This indicates 
that the point is undergoing a supercritical pitchfork bifurcation. Regarding the 
second issue, specifically with subcritical pitchfork bifurcation, the reduction 
of the detuning value leads to the creation of two unstable solutions. Subcritical 
pitchfork bifurcation involves the first appearance of unstable equilibrium points 
when a parameter is modified, while supercritical pitchfork bifurcation entails 
the emergence of stable equilibrium points initially. These bifurcations represent 
significant changes in the behavior of dynamical systems when parameters are 
modified.

Figures 8.24 and 8.25 illustrate the impact of the porosity factor e0 on the bifurca-
tion and instability states of the FG sandwich porous nano Timoshenko beam. Due 
to the inverse link between response amplitude (a) and stiffness, it can be inferred 
that an increase in the porosity coefficient leads to a rise in the non-dimensional 
amplitude (a). Furthermore, the region of instability will become more pronounced 
as the value of e0 increases. As seen in Figure 8.26, an augmentation in the porosity 
coefficient will cause the supercritical and subcritical pitchfork bifurcation points to 
migrate towards the right.

Figures 8.26 and 8.27 demonstrate the impact of the nonlocal component on the 
nonlinear stability of a nanobeam. This is done by examining the effects of fixed 
values for the detuning parameter (Ã) and forced amplitude (c1), as shown in the 
corresponding figures. Both images demonstrate that increasing the value of the 
nonlocal parameter results in a decrease in the non-dimensional amplitude (a). 
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 FIGURE 8.23  Non-dimensional amplitude versus detuning parameter curves different poros-
ity distributions.

 FIGURE 8.24  Parametric curves illustrating the relationship between non-dimensional ampli-
tude and detuning parameter, specifically examining the impact of the porosity coefficient.
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 FIGURE 8.25  Non-dimensional amplitude versus force amplitude of parametric excitation 
curves: effects of porosity coefficient at (a) σ = −20 and (b) σ = 20.
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 FIGURE 8.26  Non-dimensional amplitude versus detuning parametric curves: effects of non-
local parameter.

Another evident observation is that modifying this parameter has no impact on the 
stability and bifurcation points of the system. Based on the information provided 
in Figure 8.26 and Figure 8.27, it can be seen that taking into account the nonlocal 
parameter will result in a reduction in the non-dimensional amplitude.

While prior characteristics have little influence on the stability and bifurcation 
states of a nanobeam, the Winkler and damping parameters of the foundation have a 
crucial role in determining the behavior of the Timoshenko nanobeam.

Figure 8.28 displays the relationship between the non-dimensional amplitude (a) 
and the forced amplitude (c1) for different Winkler coefficients (k

w
). As seen in Fig-

ure 8.28(a), the supercritical bifurcation point will exhibit a greater level of excitation 
as the values of the Winkler coefficient grow. Similarly, Figure 8.28(b) exhibits the 
similar behavior, and as the forced amplitude increases, the bifurcation points move 
towards the right. Furthermore, when the value of k

w
 rises, the size of the non-triv-

ial unstable branch expands, leading to a corresponding increase in the location of 
another bifurcation point associated with a saddle node.

Various values of the damping coefficient (C
d
) are examined to assess its impact 

on the instability of a sandwich nanobeam. These findings are then visualized in 
Figure 8.29. It is possible that a decrease in the damping coefficient might result in a 
higher non-dimensional amplitude of excitation in both graphs. Moreover, by raising 
the coefficient constant, the bigger value of forced amplitude leads to the presence of 
all three kinds of bifurcation points: supercritical, subcritical, and saddle.
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 FIGURE 8.27  Non-dimensional amplitude versus force amplitude of parametric excitation 
curves: effects of nonlocal parameter at (a) σ=− 20  and (b) σ=  20 .
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 FIGURE 8.28  Non-dimensional amplitude versus force amplitude of parametric excitation 
curves: effects of Winkler stiffness at (a) σ=−20  and (b) σ= 20 .
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 FIGURE 8.29  Non-dimensional amplitude versus force amplitude of parametric excitation 
curves: effects of viscous damping at (a) σ=−20  and (b) σ= 20 .
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Figure  8.30 illustrates the influence of temperature variations on the frequen-
cy-response curve. Clearly, a higher temperature results in a greater non-dimensional 
amplitude of the solution. Furthermore, it is shown that the position of the bifurcation 
points varies depending on the temperature values. The distance between two sites 
of division, which is associated with the unstable basic solution, grows as the tem-
perature rises.

Figures 8.31 and 8.32 illustrate the impact of geometric parameters, namely, the 

thickness ratio (
h

h

c

f

) and slenderness ratio (
L

h
), on both the trivial and non- trivial 

 solutions. The graphs depict the relationship between the force amplitude of para-

metric excitation and the amplitude of the nanobeam. Both graphs exhibit two bifur-
cation points, namely, the saddle node and subcritical pitchfork. By examining the 
impact of thickness and slenderness ratio on the stiffness of a nanobeam, it can be 

inferred that an increase in the (
h

h

c

f

) and (
L

h
) ratio would result in a greater non-di-

mensional amplitude. Furthermore, when the detuning parameter is set to σ=+25, 
increasing the slenderness and thickness ratio results in the expansion of the non-triv-
ial unstable branch of the solution.

 FIGURE 8.30  Non-dimensional amplitude versus detuning parametric curves: effects of tem-
perature variation.
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 FIGURE 8.31  Non-dimensional amplitude versus force amplitude of parametric excitation 
curves: effects of slenderness ratios at σ= 20 .

 FIGURE 8.32  Non-dimensional amplitude versus force amplitude of parametric excitation 
curves: effects of thickness ratios at σ = 20.
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                    8.5.6 CONCLUSION 

The examination of this research yields the following findings.

   • Decreasing the v alues of the porosity coefficient, slenderness, and thickness 

ratio may result in reduced levels of nonlinear reactions.

• Among the factors that were evaluated, the nonlocal parameter had the least 

significant effect on the instability and bifurcation state of the nanobeams.

•    An elevation in the Winkler coefficient will lead to a decrease in the non- 

dimensional amplitude and a displacement of bifurcation points towards the 

right side.

• The dampening of the foundation has little impact on the dynamic response. 

It has the ability to simply alter the location of the bifurcation points.

• The rising temperatures lead to greater amplitudes and an unstable trivial 

branch of the nanobeams.
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     9.1 INTRODUCTION

The oscillation of plates is crucial in the analysis of practical systems, including bridge 

decks, hydraulic structures, pressure tank covers, highway and airport pavements, ship 

decks, aircraft, missiles, and machine components. The theory of elastic plates approx-

imates three-dimensional elasticity theory in two dimensions, allowing the deforma-

tion of each point in the plate to be described just by the deformation of the midplane. 

A plate is a solid object confined between two surfaces. The separation between the two 

surfaces determines the plate’s thickness, which is considered negligible relative to the 

lateral dimensions, including the length and width for a rectangular plate and the diame-

ter for a circular plate. A plate is deemed thin when the ratio of its thickness to the lesser 

lateral dimension (e.g., width for a rectangular plate and diameter for a circular plate) 

is below 1/20. In this chapter, the governing equations of forced nonlinear vibrations of 

rectangular plates are developed utilizing thin plate theory. The oscillation of plates on 

elastic foundations and those subjected to in-plane loads is also described.

     9.2  NONLINEAR EQUATION OF TRANSVERSE 
VIBRATION OF PLATES

     9.2.1 INTRODUCTION 

This section examines the study of plate transverse vibrations under both free and 

forced situations. The equations governing the plate’s movement are formulated 

based on the concepts of Kirchhoff theory. Kirchhoff’s theory is relevant for the 

analysis of thin plates, as it neglects the effects of rotational inertia and shear defor-

mation. Mindlin’s theory accounts for the influences of rotational inertia and shear 

deformation. Mindlin’s theory is pertinent for analyzing structures with substantial 

cross-sectional dimensions. The equations that describe the transverse vibration of 

plates can be formulated as fourth-order partial differential equations. These equa-

tions are governed by eight boundary conditions at each extremity [1].

To elucidate the principles governing plate movement, it is essential to develop an 

appropriate coordinate system. This system comprises the x coordinate, denoting the 

plate’s length; the y coordinate, indicating the plate’s breadth; and the z coordinate, 

representing the plate’s thickness or height. In addressing plate issues, the applied 

loads and geometries are configured such that the displacements u v w, ,( ) along the 

coordinates x y z, ,( ) are contingent upon the x y, , and z coordinates.

       9  
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     9.3 NONLINEAR CLASSICAL PLATE THEORY

     9.3.1 INTRODUCTION 

Plates are planar objects with two dimensions significantly bigger than the third 

dimension. They have the ability to endure several types of stresses, including ten-

sile, compressive, cross-plate, bending, twisting, and transverse shear forces. For 

instance, a membrane is a planar structure that can only endure tensile and shear 

forces acting on its central surface.

In classical plate theory, the middle plate is examined as a benchmark plate, align-

ing with the Kirchhoff hypothesis. Kirchhoff postulates the following [1, 2]:

 1. The magnitude of deformation experienced by the middle plate is less than 

the thickness of the plate.

  2. The middle plate remains unaffected by bending and is considered to be in 

a neutral state.

  3. Avoidance of transverse shear forces is implemented.

 4. Transverse tension is neglectable compared to other tension components.

However, laboratory studies indicate that traditional plate theory underestimates 

deformation and overestimates natural frequencies, particularly at high oscillation 

frequencies. Furthermore, in the context of composite materials, it is crucial to con-

sider shear stresses, which arise due to their relatively low shear strength. Alterna-

tive theories were offered to address the limitations of classical plate theory and 

Kirchhoff hypotheses. One such theory is the first-order shear deformation theory for 

homologous plates, which yields six partial differential equations.

The presence of significant elastic deformations and rotations in a structure with 

varying thickness introduces geometric nonlinearities in the equations that govern its 

behavior. When there are significant transverse displacements in a plate, the central 

plate experiences strain and assumptions 1 and 2 become invalid. In order to deter-

mine the geometric nonlinearities of thin plates, the concept of van Karman strains 

was previously introduced and explained.

     9.3.2 THE NONLINEAR GOVERNING EQUATION OF A RECTANGULAR PLATES 

The equations and boundary conditions that govern the static and nonlinear dynamics 

of plates (as seen in Figure 9.1) are derived using a combination of classical and non-

linear plate theory of the van Karman type. Classical plate theory, as previously stated, 

relies on Kirchhoff’s assumptions that the transverse sections of the plate are flat and 

rectangular in relation to the reference plate, both before and after deformation.

The displacement field for the plate is often stated as follows:
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The displacement components in the x , y , and z  directions, denoted as u
1
, u

2
, 

and u
3
, respectively, are located within the range of Equation (9.1). The displace-

ment field described in Equation (9.1) states that transverse sections, relative to 

the reference plate, maintain a flat and rectangular shape both before and after 

deformation. To clarify, both normal transverse stresses and transverse stresses 

are not considered.

Now, consider the Green’s strain-displacement connections in the Lagrangian 

perspective and take into consideration the assumptions that govern von Karman’s 

theory [3]:
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FIGURE 9.1 Schematic of an isotropic rectangular plate, placed on a visco-Pasternak sub-

strate and under a distributed external force.
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The Hamilton principle is employed to derive the governing equations. Thus, the 

Hamilton principle can be expressed in the following manner:

 δ π
t

t

ext
T W dt

1

2

0∫ − +( ) =  (9.8)

Regarding Equation (9.8), T  represents kinetic energy, p  represents strain energy, 

and W
ext

 represents the work done by the external force.
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In the context of Equation (9.9), N
xx

 and M
xx

 are defined as follows:
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Regarding the Equation (9.10), N
xx

, normal force, and M
xx

 represent the values 

exerted on the A-cross-sectional area. Next, we will utilize T  to compute the kinetic 

energy:
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In order to determine the work done by the external force W
ext( ), we express it in the 

following manner:

 d d
t

t

ext
t

t l

W dt f x y t wdxdydt
1

2

1

2

0
∫ ∫ ∫= ( ), ,  (9.12)

By including the obtained Equations (9.9), (9.11), and (9.12) into the overarching 

Equation (9.8) and setting the coefficients du, dv, and dw to zero, we may derive the 

equations of motion as follows:
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And boundary conditions as follows:
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The governing equations of the plate in terms of displacement expressions are derived 

in the following manner:
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In Equations (9.15), (9.16), and (9.17), the values of A
ij
 and D

ij
 for a homogeneous 

plate will be as follows:
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In Equation (9.18), E  represents the modulus of elasticity, and u represents the Pois-

son coefficient. Furthermore ,I I
1 2

, and I
0
 are explicitly specified as follows:
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In Equation (9.20), the presence of symmetry results in I
1
 being equal to zero. It is 

important to mention that the value of I
1
 will be zero when the density r remains 

constant and the middle plate is chosen as the reference plate.

In the following, for a symmetrical rectangular plate supported by a visco-Paster-

nak substrate with isotropic and homogenous material under a distrusted, arbitrary 

external force, the equations that describe the movement of the plate (9.1) can be 

succinctly described as follows:
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It is noted that the energy of nonlinear rectangular plate vibrations with significant 

amplitude is mostly affected by the inertia of the plate, which has a negligible effect 

on the energy in the middle.

Given the influence of the viscoelastic substrate (consisting of a spring and damper) 

and the external force f
1
 as shown in Figure 9.1, we can express the following:
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The linear coefficient of the Winkler spring in the elastic bed is denoted as k
w

, the 

Pasternak shear coefficient is represented by k
G

, the elastic bed damping coefficient 

is denoted as c
d
, and the external transverse force is denoted as f

1
.

Additionally, we can express the values for M
xx

, M
yy

, and M
xy

:
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The bending stiffness of the plate, denoted as D , is given by the formula 

D
Eh

=
−( )

3

212 1 n
. By substituting the aforementioned equations for M

xx
, M

yy
, and 



330 Nonlinear Vibration of Smart Continuous Structures

M
xy

 into the governing equation, the equation of motion is derived by applying van 

Karman’s nonlinear relationships in the following manner:
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The coefficients c
11

, c
22

, c
12

, and c
66

 are defined as follows:
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     9.4 CASE STUDY 1

     9.4.1 INTRODUCTION 

This study examines the parametric vibration and dynamic instability of a rectan-

gular and symmetric magnetostrictive sandwich composite plate (MSCP) over a 

visco-Pasternak medium. The MSCP is composed of three layers, with a magneto-

strictive layer encompassing the core and composites as its top and bottom surfaces. 

The study focuses on the MSCP and its response to temperature variations, paramet-

rically stimulating forces, and magnetic loads. The analysis takes into account the 

geometrical von Karman nonlinearity.

     9.4.2 THEORY AND FORMULATION 

Figure 9.8 displays a sandwich plate composed of three layers atop a visco-Paster-

nak medium. Figure 9.8 illustrates that the three layers stated are magnetostrictive, 

forming the core of the sandwich structure. The top and lower faces are believed to be 

composite layers. The MSCP has dimensions a for length and b for breadth. The core 

has a thickness of h
c
, while the faces have a thickness of h

f
 [4].

              9.4.3 CONSTITUTIVE EQUATIONS 

The modelling of sandwich plates in this part utilizes the first-order shear deforma-

tion theory (FSDT). FSDT models are widely favored for their ease of analysis and 
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programming, making them very popular arithmetic models. The displacement fields 

are provided according to the first-order shear deformation theory of plates.
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The functions u x y t, ,( ), , ,v x y t( ), and w x y t, ,( ) represent the displacement com-

ponents parallel to the x, y, and z axes, respectively. The functions j
x

x y t, ,( ) and 

j
y

x y t, ,( ) represent the rotation angles of the normal vector with respect to the y and 

x axes. The strain field for FSDT, which is not linear, may be mathematically repre-

sented using the von Karman hypothesis, as stated in reference.
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 FIGURE 9.2  Schematic of a MSCP subjected to temperature increment, parametrically 

exciting force, and magnetic field placed on a visco-Pasternak medium.



332 Nonlinear Vibration of Smart Continuous Structures

The equation that describes the relationship between stress-strain and the impact of 

magnetostrictive material on it is represented as:
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 (9.28)

s
ij
 represents stress while e

ij
 represents strain. The model shown above demonstrates 

that the strain and magnetic field are mutually exclusive. In Appendix A, there is a 

detailed explanation of the words Qc

ij , which represent the converted elastic stiffness 

coefficients of the core. The symbol DT  denotes the temperature changes, which are 

assumed to be unaffected by time. The symbol a
ij
 indicates the thermal expansion 

coefficient. The magnetostrictive constant is denoted as e
ji
, and H

z
 represents the 

magnetic field as:

 H K I x y t K C t
w x y z t

t
z c c
= ( )= ( )

∂ ( )
∂

, ,
, , ,

 (9.29)

The equation presented involves the constant K
c
, which is influenced by several factors 

including the number of turns and the width of the coil. In this study, the variables I t( ),  
, , ,w x y z t( ), and C t( ), respectively, denote the coil current, transverse displacement, 

and control gain. It is worth noting that the control gain remains constant and is set to 

1. Additionally, the product of K
c
 and C t( ) is referred to as the velocity feedback gain.

The correlation between stress and strain of the face layer is expressed as follows [5]:

 σ ε
f f fc=  (9.30)

Let f represent the number of layers. According to Hook’s rule, we can deduce the 

following:
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E
1
, E

2
, n

12
, n

21
, G

12
, G

23
, and G

13
 denote the material characteristics of the composite 

layers, specifically graphite epoxy (AS/3501) as assumed in this paper. Additionally, 

Figure 9.3 illustrates that the composite fibers are unidirectional, with q representing 

the angle of the fibers relative to the x-axis.

The equation of motion may be derived by using Equation (9.32) using the energy 

technique and Hamilton’s principle.
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The variables U K, , and W  symbolize the energy stored in a system due to deforma-

tion, the energy associated with motion, and the energy transferred to or from the 

system by external forces, respectively.

The equations of motion may be derived by using Hamilton’s principle.
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FIGURE 9.3 Schematic of the angle of the fibers in the lamina.
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Where (I I I
0 1 2
, , ) represent the mass moments of inertia and are defined as follows:
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Where r
t
 represents the mass density of the face layer and r

c
 represents the mass 

density of the core layer. The force resultants Nij and moment resultants. The calcu-

lation of M
ij
 may be expressed by using the displacement gradients, magnetic field, 

and temperature in the following manner:
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K represents the shear correction factor, which is precisely equal to 5/6.
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A
ij
, D

ij
, and B

ij
 represent the stiffness values for extensional, bending, and bend-

ing-extensional coupling, respectively. These values are specified in relation to the 

lamina stiffness Q
ij
, which is given as follows:
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The equations of motion (Equation (9.53)) may be reformulated in terms of displace-

ments u v w. .( ) by substituting the expressions for the force and moment resultants 

from Equations (9.35) to (9.37).
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     9.4.4 SOLUTION METHOD 

The governing equations of the sandwich plate have been computed under the “The-

ory and Formulation” section. The equations of motion were solved using the Galerkin 

technique. The Galerkin technique is used to solve the governing equation of motion 

under simple boundary conditions, assuming the answer to be the following [6]:
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By putting Equation (9.45) into Equations (9.39) to (9.43), the resulting equations may 

be stated as follows:
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The C
ij
 constants are extended in Appendix B. The variables (U V X Y, , , ) were 

obtained by computing them in terms of W.
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 (9.47)

The S
ij
 constants are enlarged in Appendix B in terms of C

ij
.

Next, we replace Equation (9.47) into the third expression of Equation (9.46) to get 

the governing equation of motion:
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9.4.4.1 Multiple Scale Method

The approach proposed by Nayfeh and Mook [7], known as the multiple scale 

method, is used to solve Equation (9.48). According to this approach, the expansion 

of W is expressed in the form of a second-order approximation:

 W t W T T T W T T T W T T T( )= ( )+ ( )+ ( )0 0 1 2 1 0 1 2

2

2 0 1 2
, , , , , ,e e  (9.49)

T
0
 represents rapid time scales, whereas T

1
 and T

2
 represent slower scales that cor-

respond to variations in amplitude and phase resulting from nonlinearity, damping, 

and resonances, respectively.

 T t T t T t
0 1 2

2= = =, ,e e  (9.50)

By substituting the Equation (9.49) into Equation (9.48) and equating at the same 

order of e, we may get the following partial differential equations.
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0
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Initially, our objective is to find the solution to a partial differential Equation (9.51) 

in the specified format.

 W A T T i T A T T i T
0 1 2 0 1 2 0
= ( ) [ ]+ ( ) −[ ], exp , expw w  (9.54)

The function A is unknown and depends on T
1
 and T

2
. The pairs (A, A) are complex 

conjugates. By replacing the Equation (9.54) in the right-hand side of Equation (9.52):
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 (9.55)

The function cc represents the complex conjugate of the previous terms. The resonance 

conditions derived in this example are primarily the principal resonance Ω≅ 2ŵ.

 Ω= +2ω εσ (9.56)

s  represents the detuning parameter. By omitting the secular and small divisor com-

ponents, Equation (9.55) may be simplified when Ω≈ 2w .
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The solution to Equation (9.52) is provided as follows:
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Similarly, by replacing Equation (9.54) and (9.58) into Equation (9.53) using the sec-

ond-order approximation:
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The solvability criteria of Equation (9.59) may be expressed in the following manner, 

after deleting secular terms.
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By using Equation (9.57) to delete the terms D A
1

2  and D A
1

 from Equation (9.60), we 

may get the following result:
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It can be shown that Equation (9.57) and (9.61) represent the first two components in 

a multiple-scale analysis of the following:
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In Equation (9.62), A and A  are expressed in polar forms.
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Which are the amplitudes and phases of steady-state responses referred to as “a” and 

“b”. By substituting Equation (9.63) into Equation (9.62), the equations regulating 

the amplitudes and phases may be derived by separating the real and imaginary 

components.
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To determine the steady-state response, we assume that ′ =a 0 and ′ =g 0
′ ′= −( )γ εσ β2 ; thus, modulation equations for the principal parametric resonance 

are expressed as follows:
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 G a G a G a
4 5

3

3
0+ − [ ]=sin g  (9.68)

To get a non-trivial solution for the system, it is necessary to delete the determinant 

of the coefficient matrix. In order to analyze the system’s steady-state reaction, it is 

necessary to take into account that a is not equal to zero (a¹ 0). Therefore, the fol-

lowing will be obtained [8]:
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By using the trigonometric identity cos sin2 2 1g g[ ]+ [ ]=  in Equations (9.69) and 

(9.70), the resulting equations are as follows:
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Ultimately, the amplitude a is acquired in the following manner:
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(9.72)

The stability of the fixed points and the steady-state solution is contingent upon the 

characteristics of the roots’ natural portion. If the natural component of each root is 

positive, then the associated steady-state solution is said to be unstable. Furthermore, 

if the real component of each root is zero or negative, the associated steady-state 

solution is stable.

In order to ascertain the stability of the trivial solution, we analyze the characteristics 

of the linear solutions of Equation (9.62), which are the solutions of the following:
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9.4.4.1.1  Non-trivial Steady-State Response

9.4.4.1.2  Trivial Steady-State Response
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To begin with, we define the Cartesian form of the solution as A p iq i T= −( ) [ ]
1

2
1

exp b .  

By inserting this expression into Equation (9.73), we may recast the procedure of the 

solution as follows:
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Simultaneously, in order to render the equation self-sufficient, it is necessary for b  

to equal s / 2 . In order to achieve autonomy, it is necessary to take into account the 

phase angle in relation to the detuning parameter. By performing a separation of 

the real and imaginary components in Equation (9.74), the following outcomes are 

obtained [9]:
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Now, we construct the Jacobian matrix for Equations (9.75) and (9.76) as shown next:
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Thus, we can express the determinant and trace of matrix A in the following manner:
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 τ ε=− c
2
 (9.79)

Ultimately, if the condition c
2

0>  holds true, we can determine the stability of the 

system.

     9.4.5 RESULTS AND DISCUSSION 

This study uses the first shear deformation theory to derive the equations of motion 

for an embedded MSCP (multi-span continuous plate) that is supported by a  
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viscous-Winkler-Pasternak foundation. The plate is subjected to uniform paramet-

ric excitation and a magnetic field. The study investigates the impact of several 

factors, including different fiber angles, viscous-Winkler-Pasternak parameters, 

temperature, thickness ratio, and velocity feedback gain, on the stability and bifur-

cation areas of the magnetostrictive sandwich composite plate. The characteristics 

of the materials are outlined in Tables 9.1 and 9.2, while other aspects are taken into 

account.

        9.4.6 NUMERICAL RESULTS 

This work introduces a theoretical analysis of the vibrations of a laminated com-

posite plate. The plate is exposed to an in-plane force, heat load, and is supported 

by a viscoelastic foundation. This section investigates various significant parame-

ters related to the dynamics of the sandwich plate with a magnetostrictive material 

core. In addition to parametric studies, factors such as velocity feedback gain, the 

influence of the foundation, temperature change, thickness ratio, and fiber angle are 

examined. The results are presented in plotted and charted form.

Tables 9.3 and 9.4, as well as Figures 9.4 and 9.5, illustrate the impact of veloc-

ity feedback gain (C(t)Kc) on both the amplitude response and dynamic instabil-

ity. By adjusting the velocity feedback gain parameter, one may manipulate the 

amplitude of the MSCP. The increase in the damping parameter is found to be 

directly proportional to the increase in the feedback parameter. Figures 9.4 and 

9.5 demonstrate that varying feedback gains have no impact on the subcritical and 

supercritical pitchfork bifurcation points. However, they may lead to alterations in 

the saddle points.

TABLE 9.1

Elastic properties of Terfenol-D [4].

Properties E
c u

c
r
c

e
31

 = e
32

30 GPa 0.25 9.25 × 103 kg/m3 442.55 N/(mA)

TABLE 9.2

Properties of composite layer [4].

c
11

 (Gpa) c
22

 (Gpa) c
12

 = c
21

 (Gpa) c
66

 (Gpa) c
44

 = c
55

 (Gpa)

q  = 0 140.90 10.06 3.02 7 0

q  = 45 46.25 46.25 32.25 36.23 7

q  = 90 10.06 140.9 3.02 7 0

 a m=1  , b= a , .h a= 0 1  , hc h= 0 8.  , kw = ×5 10 Pa/m7  , kp = 5 10 Pa.m×
6  , cd

= 5 10 Pa.s×
3

 , e= 0 01.  .
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TABLE 9.3

Effect of Foundation Parameters and Velocity Feedback Gain on Amplitude 

Response

K
w

K
p

C
d

C(t)Kc

104 2 × 104 3 × 104 4×104

107 106 0 0.012276 0.00607878 0.00404536 0.00303214

103 0.01226 0.00607123 0.00404033 0.00302838

5x103 0.011884 0.00588504 0.00391642 0.0029355

10x103 0.010559 0.00522888 0.00347975 0.0026082

5x106 0 0.011903 0.00589398 0.00392237 0.00293996

103 0.011886 0.00588567 0.00391684 0.00293582

5x103 0.011471 0.00568023 0.00378012 0.00283334

10x103 0.009986 0.00494515 0.00329094 0.00246668

10x106 0 0.011436 0.00566287 0.00376857 0.00282468

103 0.011417 0.00565355 0.00376237 0.00282003

5x103 0.01095 0.00542206 0.00360832 0.00270457

10x103 0.00924 0.00457541 0.00304488 0.00228225

5x107 106 0 0.012087 0.00598513 0.00398303 0.00298543

103 0.012071 0.0059772 0.00397775 0.00298147

5x103 0.011675 0.00578142 0.00384746 0.00288382

10x103 0.010271 0.0050863 0.00338487 0.00253708

5x106 0 0.011714 0.00580038 0.00386008 0.00289327

103 0.011696 0.00579167 0.00385429 0.00288893

5x103 0.01126 0.00557596 0.00371073 0.00278133

10x103 0.009688 0.00479756 0.00319272 0.00239306

10x106 0 0.011246 0.00556896 0.00370607 0.00277784

103 0.011226 0.0055592 0.00369958 0.00277297

5x103 0.010736 0.00531645 0.00353803 0.00265189

10x103 0.008925 0.00441962 0.00294121 0.00220454

10x107 106 0 0.01185 0.00586814 0.00390517 0.00292707

103 0.011833 0.00585972 0.00389957 0.00292287

5x103 0.011413 0.00565148 0.00376099 0.002819

10x103 0.009905 0.00490469 0.00326401 0.00244649

5x106 0 0.011477 0.00568326 0.00378214 0.00283485

103 0.011458 0.00567404 0.003776 0.00283025

5x103 0.010996 0.00544494 0.00362354 0.00271598

(Continued)
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TABLE 9.4

Effect of Geometrical Parameters, Temperature, and Velocity Feedback Gain 

on the Amplitude Response

DT a/b h
c
/h

C(t)Kc

104 2 × 104 3 × 104 4 × 104

0 1 0.7 0.00965563 0.00476404 0.00316834 0.00237424

0.8 0.00826376 0.00409209 0.00272323 0.00204116

0.9 0.00724437 0.00359747 0.00239529 0.00179568

1.5 0.7 0.0178013 0.00867619 0.00575764 0.00431134

0.8 0.0163826 0.00804405 0.0053451 0.00400423

0.9 0.0156984 0.00775188 0.00515617 0.00386405

2 0.7 0.0280242 0.0132632 0.00875818 0.00654701

0.8 0.0260732 0.0125373 0.00830063 0.00621058

0.9 0.0255658 0.012438 0.00825143 0.00617802

150 1 0.7 0.00979356 0.00483209 0.0032136 0.00240816

0.8 0.00839241 0.0041558 0.00276563 0.00207294

0.9 0.00736044 0.0036551 0.00243367 0.00182445

1.5 0.7 0.0179629 0.00875496 0.00580991 0.00435048

0.8 0.0165258 0.00811439 0.00539183 0.00403925

0.9 0.0158232 0.00781347 0.00519713 0.00389475

2 0.7 0.028248 0.0133691 0.00882812 0.0065993

0.8 0.0262684 0.0126312 0.00836279 0.00625708

0.9 0.0257358 0.0125207 0.00830629 0.0062191

K
w

K
p

C
d

C(t)Kc

104 2 × 104 3 × 104 4×104

10x103 0.009307 0.00460878 0.00306708 0.00229889

10x106 0 0.011008 0.00545121 0.00362771 0.0027191

103 0.010988 0.00544089 0.00362084 0.00271395

5x103 0.010468 0.00518342 0.0034495 0.00258553

10x103 0.00852 0.00421908 0.00280774 0.00210451

TABLE 9.3 (Continued )

Effect of Foundation Parameters and Velocity Feedback Gain on Amplitude 

Response
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DT a/b h
c
/h

C(t)Kc

104 2 × 104 3 × 104 4 × 104

300 1 0.7 0.0099305 0.00489966 0.00325853 0.00244183

0.8 0.00851997 0.00421896 0.00280766 0.00210444

0.9 0.00747546 0.00371222 0.0024717 0.00185296

1.5 0.7 0.0181243 0.00883361 0.00586211 0.00438957

0.8 0.0166689 0.00818464 0.00543852 0.00407422

0.9 0.0159479 0.00787506 0.0052381 0.00392545

2 0.7 0.0284718 0.013475 0.00889805 0.00665157

0.8 0.0264637 0.0127251 0.00842496 0.0063036

0.9 0.0259061 0.0126036 0.00836126 0.00626026

TABLE 9.4 (Continued )

Effect of Geometrical Parameters, Temperature, and Velocity Feedback Gain 

on the Amplitude Response

FIGURE 9.4 Amplitude response versus force amplitude of parametric excitation curves: 

Effect of velocity feedback gain at (a) s = −20 and (b) s = 20.
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 FIGURE 9.5  Amplitude response versus detuning parametric curves: Effect of velocity feed-

back gain at N N
d
= ×5 106  .

FIGURE 9.4 (Continued)
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FIGURE 9.6 Amplitude response versus force amplitude of parametric excitation curves: 

Effect of (a) Winkler stiffness and (b) Pasternak stiffness at s = 20.

Figures 9.6 and 9.7 illustrate the impact of foundation characteristics, such as the 

Winkler and Pasternak coefficient, as well as the influence of viscous damping on 

the stability of the system. The results indicate that the amplitude response is directly 

influenced by the foundation coefficients. As the Winkler and Pasternak coefficients 

increase, the amplitude response decreases, while keeping the excitation constant. In 

addition, the crucial points of the pitchfork bifurcation shift towards the right. Fig-

ure 9.7a clearly demonstrates that the impact of the viscous damping parameter has a 
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greater influence on the amplitude response compared to the effect of the foundation 

parameters, although in a similar manner. Furthermore, it has been shown that reduc-

ing the viscous damping parameter causes a displacement of bifurcation points, with 

a more pronounced effect on saddle points compared to subcritical pitchfork bifurca-

tion sites. Furthermore, it is evident that as the viscous damping parameter increases, 

FIGURE 9.7 Effect of viscous damping on (a) amplitude response versus force amplitude of 

parametric excitation curves at s = −20 and (b) amplitude response versus detuning parametric 

curves.
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while keeping the parametric excitation constant, the unstable region between the 

supercritical pitchfork and subcritical pitchfork bifurcation points decreases in size, 

resulting in a larger disparity between the stable and unstable curves.

Figure  9.8(a) and Table  9.4 provide the amplitude response values of the sys-

tem for different ratios of magnetostrictive layer thickness to total plate thickness  

FIGURE 9.8 Effect of thickness ratios on (a) amplitude response versus force amplitude of 

parametric excitation curves at s = −20 and (b) amplitude response versus detuning parametric 

curves.
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(
h

h

c ) and amplitudes of parametric excitation (N
d
). While the location of the subcrit-

ical pitchfork bifurcation point remains same, the thickness ratio has a substantial 

impact on the amplitude response magnitude. It was observed that when the thick-

ness ratio increases, the amplitude response decreases. One potential explanation for 

this phenomenon might be that when the phrase related to magnetostrictive material 

is used in the context of damping, an increase in damping leads to a reduction in the 

magnitude of the amplitude response. Furthermore, it has been shown that saddle 

bifurcation points manifest at reduced amplitudes as the thickness ratio increases. 

Figure 9.8(b) examines the correlation between the stability of the system and the 

thickness ratio. It does this by graphing the amplitude response against the detuning 

parameter for various thickness ratio values. The findings indicate that when the 

thickness ratio lowers, there is a noticeable separation between stable and unstable 

pitchforks, resulting in a wider stable zone.

Figure  9.9 illustrates the impact of the aspect ratio (a/b) on the nonlinear 

dynamic stability of the system. Based on the information provided in Figure 9.9 

and Table 9.4, it can be concluded that the impact of changes in aspect ratio on the 

amplitude response of the system is more pronounced than the impact of changes in 

thickness ratio that were previously described. Furthermore, it is evident that when 

the aspect ratio increases, the stable and unstable pitchforks separate, resulting in a 

larger distance between them.

By analyzing Figure 9.10 and Table 9.4, which examine the impact of temperature 

variations on the amplitude response of the system, it becomes evident that this factor 

has a negligible influence on the system’s dynamic response and stability.

 FIGURE 9.9  Amplitude response versus detuning parametric curves: Effect aspect ratio at 

 N N
d
= ×5 106  .
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FIGURE 9.11 Amplitude response versus force amplitude of parametric excitation curves: 

Effects of fiber angle at s = −20.

FIGURE 9.10 Amplitude response versus force amplitude of parametric excitation curves: 

Effects of temperature variation at s = 20.

The impact of the fiber angle is seen in Figure 9.11. This graphic displays the 

amplitude response versus the parametric excitation parameter at three distinct 

angles: q = 0, 45, and 90 degrees. The fiber angle has a noticeable impact on the 

amplitude response of the composite plate, while the orientation effects the elastic 
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characteristics of the layers and the stiffness of the MSCP. This diagram illustrates 

the impact of the fiber angle on a square plate with a length-to-width ratio of 1. As 

anticipated, the outcomes for angles of 0 and 90 degrees are comparable for a square 

plate. The greatest value is obtained for the outcomes of these two angles, whereas 

the amplitude response for q = 45 is mostly lower. Additionally, it was determined 

that the impact of fiber angle on thick plates is greater than on thin plates.

     9.4.7 CONCLUSION 

The primary objective of this work is to provide a comprehensive understanding 

of the use of magnetostrictive materials in sandwich constructions, which have the 

potential to be utilized in various composite structures. The results of a numerical 

study examining the impact of important parameters are as follows:

• By adjusting the feedback velocity gain, the vibration of MSCP can be man-

aged, and increasing this parameter leads to greater damping.

• Modifying the velocity feedback gain does not influence the subcritical and super-

critical pitchfork bifurcation points, but it may cause changes to saddle points.

• Viscous damping has a greater impact on the amplitude response of the sys-

tem compared to the stiffness of the foundation. Additionally, its influence 

on the saddle point is more noticeable than its effect on the pitchfork bifur-

cation point when the circumstances are subcritical.

• As the thickness ratio falls, the space between the two bifurcation sites widens.

• An increase in aspect ratio causes stable and unstable pitchforks to diverge, 

resulting in a broader unstable region.

• The temperature does not have a substantial impact on the dynamic behavior 

and stability of the system.

     9.5 CASE STUDY 2

     9.5.1 INTRODUCTION 

The objective of this work is to examine the nonlinear vibration and instability of a 

sandwich plate. The plate consists of an auxetic honeycomb core and a carbon nano-

tube reinforced composite (CNTRC) face layer. The plate is placed on a viscous elastic 

foundation and subjected to parametric excitation. The analytical model incorporates 

the Hamilton principle and utilizes nonlinear strain-displacement relations derived 

from the von Karman theory and the first shear deformation plate theory (FSDT).

     9.5.2 MATHEMATICAL MODEL 

This research examines a sandwich plate composed of three layers: two face sheets 

reinforced with nanocomposite carbon nanotubes (CNTs) and an auxetic core layer 

supported by Winkler-Pasternak foundations. Figure 9.12 displays the measurements 

and proportions of the sandwich plate, which include the length (a), width (b), and 

the height of both the core (h
c
) and the face layers (h

t
) [10].
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              9.5.3 AUXETIC CORE MATERIALS 

The study presents a plate that has a honeycomb core with an auxetic property, mean-

ing it has a negative Poisson’s ratio. The core material consists of unit cells that pos-

sess important characteristics that are essential to its properties. The work uses the 

formulae developed by Zhu et al. to compute the mechanical characteristics of the 

honeycomb. The material has a distinctive characteristic known as a negative Poisson 

ratio, which has the potential to provide benefits by lowering stress concentrations 

and improving resilience [11, 12].
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 FIGURE  9.12  A schematic diagram of sandwich plate with an auxetic honeycomb core 

and a carbon nanotube reinforced composite (CNTRC) face layer placed on a visco- Winkler-

Pasternak medium.
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The variables t
h
, l

h
, and q  represent the thickness, length of the vertical cell, and the 

angle of the rib, respectively.

     9.5.4 CNTRC FACE SHEETS 

The study introduces three variations of sandwich plates, consisting of two face 

sheets composed of poly(methyl methacrylate) (PMMA) that are reinforced with sin-

gle-walled carbon nanotubes (SWCNTs). The panels represent three different config-

urations of carbon nanotube reinforcement (CNTRCs), where the volume proportion 

of carbon nanotubes may be expressed as follows:
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The equation V
CNT

CNT
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*
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ω

ω ρ ρ ρ ρ ω
 represents the relationship 

for V
CNT

* . Here, the subscripts CNT and m refer to carbon nanotubes and the matrix, 

respectively. The variables w and r denote mass fraction and density, respectively. 

The effective shear and Young’s modulus of a CNTRC face sheet may be expressed 

as shown next:
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V represents the volume fractions in the given context. The values of the correction 

parameters h
i
 are shown in Table  9.5. The CNTRC face sheets possess effective 

Poisson’s ratio and thermal expansion coefficients as follows:
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This work uses the first-order shear deformation theory to establish the governing 

equations for sandwich plates that have auxetic honeycomb cores and are placed 

on visco-Pasternak foundations. These plates are subjected to parametric excitation. 

The strain displacement, as described by the von Karman nonlinear relation, may be 

expressed as follows:
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The equations provided indicate that u , v , and w represent displacement coefficients 

for the coordinates x y z, ,  ( ), while j
x
 and j

y
 represent the rotations of the normals 

at the midpoint relative to the x and y axes, respectively.

The strain-stress link between material characteristics is dependent on temperature.
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Q
ij
 represents the lowered stiffnesses of the layer under plane stress, as determined 

by the material coefficients.

The formula for calculating the moment and force resultants is determined based 

on displacement gradients.
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The shear correction factor is denoted as K, whereas the extensional stiffness is rep-

resented by A
ij
, the bending stiffness by B

ij
, and the bending-extensional coupling 

stiffness by D
ij
. These values are computed using the following formula:
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The nonlinear equilibrium equations of the sandwich plate may be found using Ham-

ilton’s principle.
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The equations of motion may be expressed as coefficients of (u, v, w) and (f
x
, f

y
) 

using the force and moment resultants.
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     9.5.5 SOLUTION METHOD 

The Galerkin technique may be used to solve these equations given straightfor-

ward boundary conditions. This approach aids in the examination of the free and 

forced vibration of sandwich plates with auxetic honeycomb cores and CNTRC face 

layers [6].
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The following equations will be derived by putting Equation (9.94) into Equations 

(9.89) through (9.93):
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The coefficients of H
ij
 are given in Appendix C. In dynamics stability, the lateral 

direction (w) is the most crucial displacement component for various structures. 

Therefore, the in-plane and rotational inertia factors are disregarded. The variables 

U V X, , , and Y  were computed in relation to W using the following equations:
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Appendix D offers an elucidation of L
ij
 constants in relation to H

ij
. To get the gov-

erning equation of motion, we replace Equation (9.97) into the third formula of Equa-

tions (9.96).
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Where:

 

c
H

H

H H L H L

H
K

H

H

K
H L H

1

39

310

2 38 36 31 37 41

310

1

311

310

2

32 11

= =
+ +

=

=
+

, ,w

333 21 34 31 36 32 35 41 37 42

310

3

31 32 12 33 2

L H L H L H L H L

H

K
H H L H L

+ + + +

=
+ +

,

22 34 32 35 42

310

+ +H L H L

H

 

9.5.5.1 Multiple Scale Method

Nayfeh and Mook suggest a technique of solving Equation (9.98) using several scales. 

They derive the second-order approximation of W as follows [7]:
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The following partial differential equations may be obtained by substituting Equa-

tion (9.99) into Equation (9.98) and assessing them at the same e scale.
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To begin, the first task is to solve the partial differential Equation (9.101) in the fol-

lowing manner:

 W A T T i T A T T i T
0 1 2 0 1 2 0
= ( ) [ ]+ ( ) −[ ], exp , expw w  (9.103)

Where A and A  are complex conjugates. The Equation (9.102) is expressed in the 

following format:
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In Equation (9.105), the word “cc” denotes the complex conjugate. The secular and 

small denominator factors in Equation (9.105) may be eliminated by introducing the 

detuning parameter (s) and assigning it the following value.
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2
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2
0

1 1 1
1A e  (9.105)

The answer to Equation (9.102) is as follows:
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By using the same approach to eliminate the secular elements in the previous equa-

tion of motion, denoted as Equation (9.104), we substitute Equation (9.107) into 

Equation (9.103), resulting in the following equation:
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By eliminating secular components from Equation (9.108), the requirements for its 

solvability may be stated as follows:
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By use Equation (9.106) to exclude variables x and y from Equation (9.109), one may 

get the following:
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It is easy to show that Equation (9.106) and (9.110) correspond to the first and subse-

quent components of the multiple-scale analysis of the given statement.
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The polar representations of A and A  in Equation (9.111) are as follows:

 A t a t i t t a t t( )= ( ) ( )



 ( )= ( ) ( )





1

2

1

2
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An amplitude and phase of the steady state response are determined by a and b . 

To get the governing equations, one may substitute Equation (9.112) into Equation 

(9.111) and then separate the real and imaginary components.
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Consequently, the steady-state response may be obtained by assuming the following 

presumption: ′ =a 0. Furthermore, ′ ′ ′= = −( )γ γ εσ β0 2 . The modulation equa-

tions are calculated using the following formulae:
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One may assess the stability of the trivial solution by computing the Cartesian form 

of the solution (A p iq i T= −( ) [ ]
1

2
1

 exp b ) in Equation (9.111), where it is used to make 

the equations autonomous. Thus, the following equations are shown [13]:
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9.5.5.1.1  Trivial Steady-State Response
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To assess the stability of the system under the condition of a simple steady-state 

response, we construct the Jacobian matrix for Equations (9.118) and (9.119) as shown 

next:
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Thus, we can express the determinant and trace of matrix A in the following manner:
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 τ ε=− c
2
 (9.121)

Ultimately, by assuming c
1

0> , we can determine the stability of the system.

The non-trivial steady-state response can only be evaluated when the value of “a” is 

not equal to zero (a¹ 0) in Equations (9.116) and (9.117). The outcome will be as 

follows:
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The frequency-response equation is obtained by analyzing the phrase 

(cos sin2 2 1g g[ ]+ [ ]= ).
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Equation (9.125) may be used to calculate the instability and bifurcation diagrams of 

auxetic honeycomb cores with CNTRC face sheets in sandwich plates.

9.5.5.1.2  Non-Trivial Steady-State Response
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     9.5.6 RESULTS AND DISCUSSION 

The sandwich plate used in this research included a honeycomb core, an auxetic con-

ductive layer, and a carbon nanotube reinforced composite layer (CNTRC) on both 

the top and bottom surfaces of the honeycomb core. The material qualities used in a 

sandwich plate are shown in Table 9.6 and Table 9.7. The sandwich plate has certain 

dimensions. The interior auxetic core is characterized by q° °
=−45 , 

h

l

h

h

=1 and 
t

l

h

h

= 

0.01385. Furthermore, the parameters considered for the elastic foundation and tem-

perature condition are as follows:

 k Pa Pa K
w w d

o= = =10 10 1200 300 0 016 5, , . , , .k c = Pa s T =e  

The influence of the geometrical parameters of the core material (namely, the cell 

angle and length ratio) on the amplitude of parametric excitation of sandwich plates 

with auxetic cores can be seen in Figure 9.13 and Figure 9.14. Unlike the cell angle, 

TABLE 9.5

The Corrective Parameters for CNTs-Polymer Composites

V
CNT

* h1 h2 h3

0.12 0.137 1.022 0.715

0.17 0.142 1.626 1.138

0.28 0.141 1.585 1.110

TABLE 9.6

The Material Properties of the Core and Faces Layers

Material E  (GPa) u a  (×10–6/K) a (kg/m3)

Honeycomb material 69(1–0.0053 ΔT) 0.33 23(1 + 0.00072 ΔT) 2700

PMMA (3.52–0.0034 ΔT) 0.34 45(1 + 0.005 ΔT) 1150

CNTs See Table 9.7 0.175 See Table 9.7 1400

TABLE 9.7

The Young’s Modulus, Shear Modulus, and Thermal Expansion Coefficients 

of SWCNTs

T (K) E11 (TPa) E22 (TPa) G12 (TPa) a11 (×10–6/K) a12 (×10–6/K)

300 5.6466 7.0800 1.9445 3.4584 5.1682

500 5.5308 6.9348 1.9643 4.5361 5.0189

700 5.4744 6.8641 1.9644 4.6677 4.8943
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FIGURE 9.13 Influence of cell angle auxetic core on amplitude vibration versus parametric 

excitation amplitude curves at s = 30.

 FIGURE 9.14  Influence of 
h

l

h

h

  auxetic core on amplitude vibration versus parametric excita-

tion amplitude curves at s = 30
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the location of the bifurcation point moves towards the left as the cell angle rises. 

The subcritical pitchfork bifurcation point placements shift to the right as the length 

ratio increases. Dashed lines represent complex unstable solutions that are not easily 

predictable or straightforward. Moreover, it was deduced from Figure 9.14 that aug-

menting the length ratio beyond the value of 2 would not have a substantial impact 

on the nonlinear characteristics of the sandwich plate.

Figure 9.15 illustrates three distinct forms of carbon nanotube (CNT) reinforce-

ment on the face layer XX, OO, and UU of the sandwich plate. The purpose is to 

compare the nonlinear dynamic amplitude. The influence of the carbon nanotube 

(CNT) reinforcement on nonlinear behavior is evident. Moreover, FG-OO amplifies 

both the magnitude and the distance between supercritical and subcritical bifurca-

tion points, hence, expanding the region of instability. This figure demonstrates that 

the selection between the other two forms of carbon nanotube (CNT) reinforcement 

has a little impact on the responses and extent of the unstable zone. Therefore, the 

reinforcement type used for the nonlinear behavior of sandwich plates in this study 

is FG-UU.

Figure 9.16 depicts the correlation between the amplitude response (a) and the 

detuning parameter (b) for different values of CNT volume percent. Figure  9.16 

demonstrates that higher CNT volume percentages lead to a decrease in both the 

amplitude and useable area of the sandwich plate. The analysis of Figure 9.15 and 

Figure 9.16 has led to the conclusion that carbon nanotubes have a pivotal impact on 

enhancing the rigidity of a sandwich plate.

Figure 9.17 demonstrates the impact of foundation damping coefficients on both 

dynamic instability and bifurcation sites. Both figures clearly demonstrate that the 

reaction amplitude of a sandwich plate may be reduced by raising the damping coef-

ficient. By augmenting the coefficient constant, bigger values of forced amplitude 

 FIGURE 9.15  Effect of different types of CNT reinforcements on amplitude vibration ver-

sus detuning parameter curves at N
d
=105  (N).
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 FIGURE 9.16  Effect of different values of CNT volume on amplitude vibration versus 

detuning parameter curves at N
d
=105  (N).

FIGURE 9.17 Influence of viscous damping on bifurcations in the nonlinear instability of a 

sandwich plate at (a) s = −30 and (b) s = 30.

will result in the appearance of all three kinds of bifurcation points, namely, super-

critical, subcritical, and saddle.

The instability of the sandwich plate is influenced by the Winkler-Pasternak foun-

dation parameters, as seen in Figure 9.18 and Figure 9.19. Therefore, an increase in the 



370 Nonlinear Vibration of Smart Continuous Structures

FIGURE 9.17 (Continued)

FIGURE 9.18 Influence of Winkler stiffness on bifurcations in the nonlinear instability of a 

sandwich plate at (a) s = −30 and (b) s = 30.
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FIGURE 9.18 (Continued)

FIGURE 9.19 Influence of Pasternak stiffness on bifurcations in the nonlinear instability of 

a sandwich plate at (a) s = −30 and (b) s = 30.
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foundation parameters will lead to a decrease in the response amplitude of the sand-

wich plate. The placement of the bifurcation points may be influenced by modifying 

the stiffness characteristics of the foundation, as shown in Figure 9.18 and Figure 9.19. 

The crucial aspect is that the Pasternak foundation has a greater influence on the 

system compared to the Winkler foundation. This discrepancy may arise from the 

nonlinearity of the Pasternak foundation and displacement, in contrast to the Winkler 

foundation. The foundation serves as a dampening mechanism. Therefore, it is evident 

that as the foundation coefficients grow, the fundamental frequency decreases.

Figures 9.20, 9.21, and 9.22 depict the relationship between a detuning parameter 

and the response amplitude. These figures demonstrate how the geometric properties 

of sandwich plates, such as the ratio of core thickness to width, length-to-width, and 

slenderness ratio, affect both trivial and non-trivial solutions. All diagrams have two 

bifurcation points, namely, a supercritical pitchfork and a subcritical pitchfork. Fig-

ure 9.20 demonstrates that a greater ratio of ( )/h h
c

 leads to an increased response 

amplitude and a wider gap between two bifurcation points, indicating an expansion 

of the unstable region. Similarly, Figure 9.21 demonstrates the relationship between 

the length-to-width ratio and the properties of the system, and this connection can 

be understood using the same reasoning. From the analysis of Figure 9.22, it is clear 

that an augmentation in the thickness of the sandwich plate will result in a reduction 

in the amplitude level. This occurs due to the enhanced rigidity of the sandwich plate.

The dynamic response of sandwich plates is analyzed by considering a temperature 

rise with three different values, as seen in Figure 9.23. An increasing temperature has 

a negative impact on the nonlinear dynamic response of the sandwich plate, causing 

an increase in its amplitude. The decrease in the rigidity of the sandwich plate may be 

attributed to the heat impact. Furthermore, changes in the temperature increment val-

ues do not seem to have a substantial impact on the location of the bifurcation points.

FIGURE 9.19 (Continued)
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 FIGURE 9.20  A comparison of different values of 
h

h

c   on amplitude vibration against detun-

ing parameter diagrams at N
d
=105  (N).

 FIGURE 9.21  A comparison of different values of 
b

a
  on amplitude vibration against detun-

ing parameter diagrams at N
d
=105

  (N).
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 FIGURE 9.22  A comparison of different values of 
h

a
  on amplitude vibration against detun-

ing parameter diagrams at N
d
=105  (N).

FIGURE 9.23 Influence of temperature increment on bifurcations in the nonlinear instability 

of a sandwich plate at (a) s = −30 and (b) s = 30.
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              9.5.7 CONCLUSION 

The study concludes with several key findings.

• The amplitude response curve indicates that increasing the cell angle and 

decreasing the length ratio of the auxetic core lead to the earlier appearance 

of supercritical bifurcation points.

  •  The type of CNT reinforcement has a significant impact on the location of 

both supercritical and subcritical pitchfork bifurcation, as well as the stabil-

ity of the system. FG-XX sandwich plates have the most minimal unstable 

area.

• By increasing the volume fraction of carbon nanotubes (CNTs), the stability 

of the system is enhanced since it reduces the distance between two bifurca-

tion points.

• Temperature increases have a detrimental impact on the nonlinear vibration 

of the sandwich plate.

  •  Sandwich plates can be mechanically reinforced by taking into account 

the volume fraction of carbon nanotubes (CNTs) and the Viscos-Winkler-

Pasternak foundations.

• The unstable area of the plate increases as both the thickness of the auxetic 

core layer and the height-to-length ratio increase due to the geometric char-

acteristics of the plate.

FIGURE 9.23 (Continued)
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